Ultraviolet Transparency of Plastic Films Determines the Quality of Lettuce (Lactuca sativa L.) Grown in a Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Variables Analysed
2.2.1. Daily Mean Photosynthetic Active Radiation, Air Temperature, and Relative Humidity
2.2.2. Height, Diameter, Fresh Weight, and Dry Weight
2.2.3. Leaf Area Index
2.2.4. Chlorophyll Fluorescence
2.2.5. Colour
2.2.6. Anthocyanin Content
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, M.I.; Garrido, Y. Leafy vegetables: Baby leaves. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.I., Beaudry, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 527–536. [Google Scholar]
- Bot, G.P.A.; van de Braak, N.J. Physics of greenhouse climate. In Greenhouse Climate Control an Integrated Approach; Bakker, J.C., Bot, G.P.A., Challa, H., van de Braak, N.J., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 1995; pp. 125–159. [Google Scholar]
- Espi, E.; Salmerón, A.; Fontecha, A.; García-Alonso, Y.; Real, A.I. New Ultrathermic Films for Greenhouse Covers. J. Plast. Film Sheeting 2006, 22, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Semida, W.M.; Hadley, P.; Sobeih, W.; El-Sawah, N.A.; Barakat, M.A.S. The influence of thermic plastic films on vegetative and reproductive growth of iceberg lettuce «Dublin». Int. J. Agric. Biosyst. Sci. Eng. 2013, 7, 243–248. [Google Scholar]
- Dyer, A.G.; Chittka, L. Bumblebee search time without ultraviolet light. J. Exp. Biol. 2004, 207, 1683–1688. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Sanz, J.M. Crop Pollination in Greenhouses. In Bee Pollination in Agricultural Ecosystems; James, R.R., Pitts-Singer, T.L., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 27–47. [Google Scholar]
- Kittas, C.; Tchamitchian, M.; Katsoulas, N.; Karaiskou, P.; Papaioannou, C. Effect of two UV-absorbing greenhouse-covering films on growth and yield of an eggplant soilless crop. Sci. Hortic. 2006, 110, 330–337. [Google Scholar] [CrossRef]
- Guo, J.; Han, W.; Wang, M. Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review. Afr. J. Biotechnol. 2008, 7, 4966–4972. [Google Scholar]
- Krizek, D.T.; Clark, H.D.; Mirecki, R.M. Spectral Properties of Selected UV-blocking and UV-transmitting Covering Materials with Application for Production of High-value Crops in High Tunnels. Photochem. Photobiol. 2005, 81, 1047–1051. [Google Scholar] [CrossRef]
- Tsormpatsidis, E.; Henbest, R.G.C.; Battey, N.H.; Hadley, P. The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: Potential for exploiting effects of ultraviolet radiation in a production system. Ann. Appl. Biol. 2010, 156, 357–366. [Google Scholar] [CrossRef]
- Ordidge, M.; García-Macías, P.; Battey, N.H.; Gordon, M.H.; Hadley, P.; John, P.; Lovegrove, J.A.; Vysini, E.; Wagstaffe, A. Phenolic contents of lettuce, strawberry, raspberry, and blueberry crops cultivated under plastic films varying in ultraviolet transparency. Food Chem. 2010, 119, 1224–1227. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, C.R.; Britz, S.J. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of greenhouse-grown leaf lettuce (Lactuca sativa L.) cultivars. J. Food Compos. Anal. 2006, 19, 637–644. [Google Scholar] [CrossRef]
- Torres, A.P.; López, R.G. Commercial Greenhouse Production-Measuring Daily Light Integral in a Greenhouse; Purdue Extension Publication HO-238W; University of Purdue: Lafayette, IN, USA, 2010. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
- Mcguire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Marin, A.; Ferreres, F.; Barberá, G.G.; Gil, M.I. Weather Variability Influences Color and Phenolic Content of Pigmented Baby Leaf Lettuces throughout the Season. J. Agric. Food Chem. 2015, 63, 1673–1681. [Google Scholar] [CrossRef]
- Islam, M.; Lee, Y.-T.; Mele, M.; Choi, I.-L.; Kang, H.-M. The Effect of Phosphorus and Root Zone Temperature on Anthocyanin of Red Romaine Lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. 2002, 107, ACL-2. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.J.; Bohrer, G.; Steiner, A.L.; Hollinger, D.Y.; Suyker, A.; Phillips, R.P.; Nadelhoffer, K.J. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric. For. Meteorol. 2015, 201, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Jongschaap, R.E.; Dueck, T.A.; Marissen, N.; Hemming, S.; Marcelis, L.F.M. Simulating seasonal pattern of increased greenhouse crop production by conversion of direct radiation into diffuse radiation. Acta Hortic. 2006, 718, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Hemming, S.; Mohammadkhani, V.; Dueck, T. Diffuse greenhouse covering materials-material technology, measurements and evaluation of optical properties. Acta Hortic. 2008, 797, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Li, H.; Yu, J.; Liu, H.; Cao, Z.; Manukovsky, N.S.; Liu, H. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Sci. Hortic. 2017, 214, 51–57. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR- and UV-blocking materials. Renew. Sustain. Energy Rev. 2013, 18, 271–287. [Google Scholar] [CrossRef]
- Von Zabeltitz, C. (Ed.) Climate Conditions and Classification. In Integrated Greenhouse Systems for Mild Climates; Springer: Berlin, Germany, 2011; pp. 5–27. [Google Scholar]
- Tsormpatsidis, E.; Henbest, R.G.C.; Davis, F.J.; Battey, N.H.; Hadley, P.; Wagstaffe, A. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Exp. Bot. 2008, 63, 232–239. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Feister, U.; Häder, D.-P.; Piazena, H.; Grin, E.A.; Klein, A. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2014, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.S. Nutritional Quality and Effect on Disease Prevention of Vegetables. Food Nutr. Sci. 2019, 10, 369–402. [Google Scholar] [CrossRef] [Green Version]
- Gazula, A.; Kleinhenz, M.D.; Streeter, J.G.; Miller, A.R. Temperature and Cultivar Effects on Anthocyanin and Chlorophyll b Concentrations in Three Related Lollo Rosso Lettuce Cultivars. HortScience 2005, 40, 1731–1733. [Google Scholar] [CrossRef] [Green Version]
- Santos-Buelga, C.; Mateus, N.; De Freitas, V. Anthocyanins. Plant Pigments and Beyond. J. Agric. Food Chem. 2014, 62, 6879–6884. [Google Scholar] [CrossRef]
- Mulabagal, V.; Ngouajio, M.; Nair, A.; Zhang, Y.; Gottumukkala, A.L.; Nariz, M.G. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem. 2010, 118, 300–306. [Google Scholar] [CrossRef]
- Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24. [Google Scholar] [CrossRef]
- Li, X.; El Solh, M.; Siddique, K. Mountain Agriculture: Opportunities for Harnessing Zero Hunger in Asia; FAO: Bangkok, Thailand, 2019. [Google Scholar]
- Quintero, M.F.; Ortega, D.; Valenzuela, J.L.; Guzmán, M. Variation of hydro-physical properties of burnt rice husk used for carnation crops: Improvement of fertigation criteria. Sci. Hortic. 2013, 154, 82–87. [Google Scholar] [CrossRef]
Diameter Lettuce Head | Height | Dry Weight | Fresh Weight | LAR | Photosynthetic Efficiency | Chroma | Hue Angle | Anthocyanins Content | |
---|---|---|---|---|---|---|---|---|---|
Film Plastic | NS | NS | NS | NS | NS | NS | *** | *** | *** |
Cultivar | ** | NS | NS | NS | NS | * | *** | *** | *** |
Plastic × cultivar | NS | NS | NS | NS | NS | * | NS | *** | *** |
LSD Test ‡ | |||||||||
Film Plastic | |||||||||
UV-Transparent | 15.36 | 8.15 | 1.74 | 234.17 | 1.74 | 0.813 | 17.90 b | 91.12 b | 142.34 a |
UV-Blocking | 15.27 | 8.16 | 1.65 | 230.50 | 1.65 | 0.815 | 20.46 a | 175.22 a | 49.69 b |
Cultivar | |||||||||
‘Lollo Rosso’ | 14.40 b | 7.90 | 1.35 | 242.75 | 1.35 | 0.810 b | 9.28 b | 158.12 a | 226.89 a |
‘Casabella’ | 14.25 b | 7.94 | 1.63 | 227.63 | 1.62 | 0.817 a | 23.35 a | 120.97 b | 29.97 b |
‘Vera’ | 17.28 a | 8.63 | 2.11 | 226.63 | 2.11 | 0.815 a | 24.90 a | 120.41 b | 31.19 b |
Film Plastic × Cultivar | |||||||||
‘Lollo Rosso’ | |||||||||
UV-Transparent | 14.61 | 8.15 | 1.34 | 269.75 | 1.34 | 0.802 b | 8.91 | 286.04 a | 346.33 a |
UV-Blocking | 14.19 | 7.65 | 1.36 | 215.75 | 1.36 | 0.819 a | 9.65 | 30.21 c | 107.45 b |
‘Casabella’ | |||||||||
UV-Transparent | 14.34 | 8.00 | 1.74 | 232.75 | 1.74 | 0.821 a | 20.93 | 122.05 b | 37.38 c |
UV-Blocking | 14.17 | 7.89 | 1.51 | 222.50 | 1.51 | 0.813 a | 25.76 | 119.88 b | 22.55 c |
‘Vera’ | |||||||||
UV-Transparent | 17.11 | 8.30 | 2.14 | 200.00 | 2.14 | 0.817 a | 23.85 | 121.09 b | 43.33 c |
UV-Blocking | 17.45 | 8.95 | 2.08 | 253.25 | 2.01 | 0.813 a | 25.95 | 119.73 b | 19.06 c |
Cultivar | Anthocyanins Content (mg/100 g Fresh Weight | |
---|---|---|
UV-Blocking Film | UV-Transparent Film | |
‘Casabella’ | 22.5 ± 1.3 b B | 37.3 ± 2.7 b A |
‘Lollo Rosso’ | 107.4 ± 2.1 a B | 346.8 ± 4.6 a A |
‘Vera’ | 19.6± 0.9 b B | 43.8 ± 3.3 b A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero-Arias, D.G.; Acuña-Caita, J.F.; Asensio, C.; Valenzuela, J.L. Ultraviolet Transparency of Plastic Films Determines the Quality of Lettuce (Lactuca sativa L.) Grown in a Greenhouse. Agronomy 2021, 11, 358. https://doi.org/10.3390/agronomy11020358
Quintero-Arias DG, Acuña-Caita JF, Asensio C, Valenzuela JL. Ultraviolet Transparency of Plastic Films Determines the Quality of Lettuce (Lactuca sativa L.) Grown in a Greenhouse. Agronomy. 2021; 11(2):358. https://doi.org/10.3390/agronomy11020358
Chicago/Turabian StyleQuintero-Arias, Deissy Giovanna, John Fabio Acuña-Caita, Carlos Asensio, and Juan Luis Valenzuela. 2021. "Ultraviolet Transparency of Plastic Films Determines the Quality of Lettuce (Lactuca sativa L.) Grown in a Greenhouse" Agronomy 11, no. 2: 358. https://doi.org/10.3390/agronomy11020358
APA StyleQuintero-Arias, D. G., Acuña-Caita, J. F., Asensio, C., & Valenzuela, J. L. (2021). Ultraviolet Transparency of Plastic Films Determines the Quality of Lettuce (Lactuca sativa L.) Grown in a Greenhouse. Agronomy, 11(2), 358. https://doi.org/10.3390/agronomy11020358