Use of Biochar-Compost for Phosphorus Availability to Maize in a Concretionary Ferric Lixisol in Northern GHANA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Sample Preparation
2.2. Analytical Methods
2.3. Experimental Design and Screen House Experiment
2.4. Statistical Analysis
3. Results
3.1. Characterization of Soil
3.2. Effect of the Amendments on Shoot Dry Matter Yield of Maize
3.3. Effects of the Amendments on Root Dry Matter and Root Volume of Maize
3.4. Effects of the Amendments on P Uptake
3.5. Effects of the Amendments on Residual Soil pH, Total C, Total P, and Available P
4. Discussion
4.1. Soil Characteristics
4.2. Effects of Amendments on Growth Parameters
4.3. Effects of Amendments on Residual Soil pH, Total C, Total P, and Available P
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MOFA (Ministry of Food and Agriculture). Ghana Maize Strategy Document and Investment Opportunities for the Private Sector; Research and Information Directorate (SRID): Accra, Ghana, 2012. [Google Scholar]
- Nartey, E.; Dowuona, G.N.; Ahenkorah, Y.; Mermut, A.R.; Tiessen, H. Amounts of distribution of some forms of phosphorus in ferruginous soils of the interior savanna zone of Ghana l. Ghana J. Agric. Sci. 1997, 30, 135–143. [Google Scholar] [CrossRef]
- Abekoe, M.K. Phosphorus Fractions and Rock Phosphate Transformations in Soils from Different Landscape Positions in Northern Ghana. Ph.D. Thesis, University of Saskatchewan, Dept. of Soil Science, Saskatoon, SK, Canada, 1996. [Google Scholar]
- Zapata, F.; Sikora, F. Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production; Technical Document (IAEA); IAEA: Wien, Austria; p. 2002.
- Sanchez, P.A.; Uehara, G. Management considerations for acid soils with high phosphorus fixation capacity. In The Role of Phosphorus in Agriculture; American Society of Agronomy: Madison, WI, USA, 1980; pp. 471–514. [Google Scholar]
- Havlin, J.L.; Beaton, J.D.; Nelson, W.L.; Tisdale, S.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th ed.; Prentice-Hall: New Delhi, India, 2006. [Google Scholar]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils—Implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Le Bayon, R.C.; Weisskopf, L.; Martinoia, E.; Jansa, J.; Frossard, E.; Keller, F.; Föllmi, K.B.; Gobat, J.M. Soil phosphorus uptake by continuously cropped Lupinus albus: A new microcosm design. Plant Soil 2006, 283, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Redel, Y.D.; Rubio, R.; Rouanet, J.L.; Borie, F. Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma 2007, 139, 388–396. [Google Scholar] [CrossRef]
- Zamuner, E.C.; Picone, L.I.; Echeverria, H.E. Organic and inorganic phosphorus in Mollisol soil under different tillage practices. Soil Tillage Res. 2008, 99, 131–138. [Google Scholar] [CrossRef]
- Schwertmann, U.; Kodama, H.; Fischer, W.R. Mutual interactions between organics and iron oxides. Interact. Soil Miner. Nat. Org. Microbes 1986, 17, 223–250. [Google Scholar]
- Liu, F.; He, J.; Colombo, C.; Violante, A. Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate. Soil Sci. 1999, 164, 180–189. [Google Scholar] [CrossRef]
- Lehmann, J.; Rondon, M. Bio-char soil management on highly weathered soils in the humid tropics. Biol. Approaches Sustain. Soil Syst. 2006, 113, e530. [Google Scholar]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Lehmann, J. Bioenergy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Jiang, H.; Yu, H.Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Eduah, J.O.; Nartey, E.K.; Abekoe, M.K.; Breuning-Madsen, H.; Andersen, M.N. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma 2019, 341, 10–17. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Fernández, J.M.; Nieto, M.A.; López-de-Sá, E.G.; Gascó, G.; Méndez, A.; Plaza, C. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Sci. Total Environ. 2014, 482, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cotxarrera, L.; Trillas-Gay, M.I.; Steinberg, C.; Alabouvette, C. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 2002, 34, 467–476. [Google Scholar] [CrossRef]
- Erhart, E.; Burian, K.; Hartl, W.; Stich, K. Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J. Phytopathol. 1999, 147, 299–305. [Google Scholar] [CrossRef]
- Tandy, S.; Healey, J.R.; Nason, M.A.; Williamson, J.C.; Jones, D.L. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation. Environ. Pollut. 2009, 157, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Adu, S.V.; Asiamah, R.D. Soils of the Lawra-Wa Region, Upper West Region, Ghana; Memoir No. 16; Soil Research Institute, CSIR: Kwadaso, Kumasi, Ghana, 2003. [Google Scholar]
- Ghana Meteorological Service. Raw Data on Climate, 2010 Annual Report; Ghana Meteorological Service: Accra, Ghana, 2010. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 545–567. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from the soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Fox, R.L.; Kamprath, E.J. Phosphate sorption isotherms for evaluating the phosphate requirements of soils 1. Soil Sci. Soc. Am. J. 1970, 34, 902–907. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Evangelou, V.P. Environmental Soil and Water Chemistry: Principles and Applications; John Wiley and Sons: New York, NY, USA, 1998; p. 564. [Google Scholar]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Elsevier/Academic Press: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Fageria, N.K.; Filho, M.B. Dry-matter and grain yield, nutrient uptake, and phosphorus use-efficiency of lowland rice as influenced by phosphorus fertilization. Commun. Soil Sci. Plant Anal. 2007, 38, 1289–1297. [Google Scholar] [CrossRef]
- Morales, M.M.; Comerford, N.; Guerrini, I.A.; Falcão, N.P.S.; Reeves, J.B. Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use Manag. 2013, 29, 306–314. [Google Scholar] [CrossRef]
- Guppy, C.N.; Menzies, N.W.; Moody, P.W.; Blamey, F.P.C. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Soil Res. 2005, 43, 189–202. [Google Scholar] [CrossRef]
- Ros, M.; Hernandez, M.T.; García, C. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem. 2003, 35, 463–469. [Google Scholar] [CrossRef]
Scheme 1. | pH (1:10)water | EC (dS/m) | Total P (mg/kg) | Available P (mg/kg) | Total C (g/kg) | Total N (g/kg) |
---|---|---|---|---|---|---|
10 (1KW: 1CD): 0 Biochar | 9.0 ± 0.0 | 6.2 ± 0.1 | 6776 ± 669 f | 295.9 ± 14.9 a | 136.9 ± 0.90 a | 15.7 ± 0.11 c |
9 (1KW: 1CD): 1 Biochar | 8.9 ± 0.0 | 6.1 ± 0.1 | 6211 ± 668 e | 410.3 ± 50.9 b | 191.6 ± 0.27 c | 15.2 ± 0.02 c |
8 (1KW: 1CD): 2 Biochar | 8.9 ± 0.0 | 5.9 ± 0.1 | 5130 ± 460 b | 658.0 ± 43.7 c | 193.9 ± 0.57 c | 13.1 ± 0.04 ab |
7 (1KW: 1CD): 3 Biochar | 8.8 ± 0.0 | 5.4 ± 0.0 | 6028 ± 648 d | 809.7 ± 57.3 e | 228.3 ± 1.47 d | 13.9 ± 0.07 b |
6 (1KW: 1CD): 4 Biochar | 8.7 ± 0.0 | 5.1 ± 0.0 | 4582 ± 410 a | 938.8 ± 48.9 g | 251.1 ± 0.49 e | 13.8 ± 0.01 b |
10 (1KW: 2CD): 0 Biochar | 9.0 ± 0.0 | 5.7 ± 0.1 | 6338 ± 317 e | 663.8 ± 39.5 c | 132.5 ± 0.16 a | 13.2 ± 0.02 ab |
9 (1KW: 2CD): 1 Biochar | 9.0 ± 0.0 | 5.6 ± 0.1 | 5801 ± 437 c | 777.4 ± 40.6 d | 157.0 ± 0.53 b | 12.8 ± 0.04 a |
8 (1KW: 2CD): 2 Biochar | 8.9 ± 0.0 | 5.8 ± 0.1 | 5733 ± 383 c | 877.5 ± 5.3 f | 229.0 ± 0.64 d | 15.8 ± 0.04 c |
7 (1KW: 2CD): 3 Biochar | 8.6 ± 0.0 | 4.9 ± 0.1 | 6346 ± 452 e | 901.0 ± 10.2 f | 230.4 ± 0.94 d | 13.3 ± 0.06 ab |
6 (1KW: 2CD): 4 Biochar | 8.3 ± 0.0 | 4.6 ± 0.0 | 5125 ± 261 a | 1016.9 ± 45.2 h | 247.5 ± 1.41 e | 13.2 ± 0.04 ab |
Treatment | * ID | Full SPR Amendment Application Rate (g /kg Soil) | Half SPR Amendment Application Rate (g /kg Soil) |
---|---|---|---|
Control (No amendment) | T0 | 0 | 0 |
[7 (1KW:1CD):3 Biochar] | T1 | 45.7 | 22.9 |
[6 (1KW:1CD):4 Biochar] | T2 | 39.4 | 19.7 |
[7 (1KW:2CD):3 Biochar] | T3 | 41.1 | 20.5 |
[6 (1KW:2CD):4 Biochar] | T4 | 36.4 | 18.2 |
Inorganic amendment (Triple superphosphate) | T5 | 0.18 | ** na |
Parameters | Results |
---|---|
Moisture content at field capacity (%) | 15.02 ± 0.75 |
Sand (%) | 77.8 |
Silt (%) | 10.5 |
Clay (%) | 11.7 |
Textural class | Sandy loam |
Bulk density (Mg/m3) | 1.59 ± 0.5 |
Concretions (%); > 2 mm | 9.3 ± 0.6 |
pH (1:1)water | 5.8 ± 0.0 |
pH (1:1)KCl | 4.8 ± 0.0 |
Electrical conductivity (dS/m) | 0.23 ± 0.02 |
Total carbon (g/kg) | 2.2 ± 0.3 |
Total P (mg/kg) | 100 ± 4.4 |
Available P (mg/kg) | 13.16 ± 0.33 |
Ca (cmolc/kg) | 2.42 |
Mg (cmolc/kg) | 0.66 |
K (cmolc/kg) | 0.13 |
Na (cmolc/kg) | 0.07 |
* PBS (%) | 33.13 |
CEC *** (cmolc/kg) | 9.9 ± 1.0 |
** SPR (mg P/kg) | 37 ± 0.8 |
Treatment | Shoot Dry Matter (g) | Root Dry Matter (g) | Root Volume (cm3) | P Uptake (g/pot) |
---|---|---|---|---|
T1 | 70.91 ± 1.28 cd | 11.06 ± 0.25 b | 96.7 ± 20.8 b | 0.303 ± 0.010 de |
1/2 (T1) | 75.15 ± 4.22 ef | 13.13 ± 0.68 c | 120.0 ± 10.0 bc | 0.287 ± 0.020 cd |
T2 | 72.28 ± 5.21 de | 12.89 ± 0.28 c | 105.0 ± 17.3 b | 0.300 ± 0.010 de |
1/2 (T2) | 75.13 ± 3.88 de | 15.44 ± 0.96 d | 120.0 ± 30.0 bc | 0.280 ± 0.020 cd |
T3 | 89.83 ± 2.56 f | 16.90 ± 0.35 d | 146.7 ± 20.8 c | 0.360 ± 0.020 f |
1/2 (T3) | 65.46 ± 3.72 bc | 12.46 ± 0.71 bc | 113.3 ± 15.3 bc | 0.263 ± 0.020 c |
T4 | 100.44 ± 1.58 g | 23.98 ± 1.00 e | 223.3 ± 25.2 d | 0.320 ± 0.010 e |
1/2 (T4) | 78.29 ± 7.04 e | 16.77 ± 0.44 d | 130.0 ± 10.0 bc | 0.290 ± 0.010 de |
T5 | 60.82 ± 1.07 b | 16.28 ± 0.94 d | 123.3 ± 11.5 bc | 0.200 ± 0.010 b |
T0 | 43.13 ± 2.43 a | 7.50 ± 0.69 a | 43.3 ± 5.8 a | 0.097 ± 0.010 a |
* CV (%) | 4.7 | 5.7 | 14.4 | 5.3 |
Treatment | pH (1:1 H2O) | Total P (mg/kg) | Available P (mg/kg) | Total C (g/kg) |
---|---|---|---|---|
T1 | 7.5 ± 0.1 | 253 ± 27.7ef | 94.77 ± 2.95 ef | 11.97 ± 1.00 c |
1/2(T1) | 7.3 ± 0.1 | 220 ± 30.7 cde | 68.12 ± 2.91 cd | 9.21 ± 1.24 b |
T2 | 7.5 ± 0.2 | 269 ± 1.5 f | 115.12 ± 8.24 g | 14.21 ± 1.85 d |
1/2(T2) | 7.3 ± 0.2 | 189 ± 13.1 bc | 73.27 ± 8.16 d | 11.04 ± 0.55 c |
T3 | 7.5 ± 0.1 | 223 ± 27.2 de | 100.15 ± 11.58 f | 12.39 ± 1.44 c |
1/2(T3) | 7.2 ±0.2 | 208 ± 13.3 bcd | 61.93 ± 4.58 c | 7.97 ± 0.75 b |
T4 | 7.4 ± 0.2 | 245 ± 42.3 ef | 89.90 ± 6.79 e | 12.52 ± 1.70 c |
1/2(T4) | 6.8 ± 0.2 | 187 ± 14.2 bc | 47.11 ± 1.90 b | 8.21 ± 2.14 b |
T5 | 5.1 ± 0.2 | 117 ± 24.4 a | 14.83 ± 0.93 a | 3.65 ± 0.49 a |
T0 | 5.9 ± 0.1 | 99 ± 17.8 a | 8.65 ± 0.27 a | 3.47 ± 0.26 a |
CV (%) | 9 | 7.1 | 9.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulemana, N.; Nartey, E.K.; Abekoe, M.K.; Adjadeh, T.A.; Darko, D.A. Use of Biochar-Compost for Phosphorus Availability to Maize in a Concretionary Ferric Lixisol in Northern GHANA. Agronomy 2021, 11, 359. https://doi.org/10.3390/agronomy11020359
Sulemana N, Nartey EK, Abekoe MK, Adjadeh TA, Darko DA. Use of Biochar-Compost for Phosphorus Availability to Maize in a Concretionary Ferric Lixisol in Northern GHANA. Agronomy. 2021; 11(2):359. https://doi.org/10.3390/agronomy11020359
Chicago/Turabian StyleSulemana, Nasirudeen, Eric K. Nartey, Mark K. Abekoe, Thomas A. Adjadeh, and Daniel A. Darko. 2021. "Use of Biochar-Compost for Phosphorus Availability to Maize in a Concretionary Ferric Lixisol in Northern GHANA" Agronomy 11, no. 2: 359. https://doi.org/10.3390/agronomy11020359
APA StyleSulemana, N., Nartey, E. K., Abekoe, M. K., Adjadeh, T. A., & Darko, D. A. (2021). Use of Biochar-Compost for Phosphorus Availability to Maize in a Concretionary Ferric Lixisol in Northern GHANA. Agronomy, 11(2), 359. https://doi.org/10.3390/agronomy11020359