Molecular Diversity within a Mediterranean and European Panel of Tetraploid Wheat (T. turgidum subsp.) Landraces and Modern Germplasm Inferred Using a High-Density SNP Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 3 December 2020).
- Bennici, A. Durum Wheat (Triticum durum Desf.). In Crops I Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 89–104. [Google Scholar]
- Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.A.; D’Amore, R.; Allen, A.M.; McKenzie, N.; Kramer, M.; Kerhornou, A.; Bolser, D.; et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakan, O.; Willcox, G.; Graner, A.; Salamini, F.; Kilian, B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet. Resour. Crop Evol. 2010, 58, 11–53. [Google Scholar]
- Dubcovsky, J.; Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 2007, 316, 1862–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, H.-Q.; Ma, B.; Shi, X.; Liu, H.; Dong, L.; Sun, H.; Cao, Y.; Gao, Q.; Zheng, S.; Li, Y.; et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018, 557, 424–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcussen, T.; Sandve, S.R.; Heier, L.; Spannagl, M.; Pfeifer, M.; Jakobsen, K.S.; Wulff, B.B.H.; Steuernagel, B.; Mayer, K.F.X.; Olsen, O.-A.; et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 2014, 345, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Charmet, G. Wheat domestication: Lessons for the future. Comptes Rendus Biol. 2011, 334, 212–220. [Google Scholar] [CrossRef]
- Feldman, M.; Kislev, M.E. Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel J. Plant Sci. 2007, 55, 207–221. [Google Scholar] [CrossRef]
- Feldman, M. Origin of cultivated wheat. In The World Wheat Book: A History of Wheat Breeding; Bonjean, A.P., Angus, W.J., Eds.; Lavoisier Publishing: Paris, France, 2001; pp. 3–56. [Google Scholar]
- Peng, J.H.; Sun, D.; Nevo, E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011, 28, 281–301. [Google Scholar] [CrossRef]
- Jaradat, A.A. Wheat Landraces: Genetic Resources for Sustenance and Sustainability; USDA-ARS: Morris, MN, USA, 2012; pp. 1–20. [Google Scholar]
- Kronstad, W.E. Agricultural development and wheat breeding in the 20th Century. In Wheat: Prospects for Global Improvement. Developments in Plant Breeding; Braun, H.J., Altay, F., Kronstad, W.E., Beniwal, S.P.S., McNab, A., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Waines, J.G.; Ehdaie, B. Domestication and crop physiology: Roots of green-revolution wheat. Ann. Bot. 2007, 100, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haudry, A.; Cenci, A.; Ravel, C.; Bataillon, T.; Brunel, D.; Poncet, C.; Hochu, I.; Poirier, S.; Santoni, S.; Glémin, S.; et al. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 2007, 24, 1506–1517. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S.; Grando, S.; Maatougui, M.; Michael, M.; Slash, M.; Haghparast, R.; Rahmanian, M.; Taheri, A.; Al-Yassin, A.; Benbelkacem, A.; et al. Plant breeding and climate changes. J. Agric. Sci. 2010, 148, 627–637. [Google Scholar] [CrossRef]
- Matthews, R.B.; Rivington, M.; Muhammed, S.; Newton, A.C.; Hallett, P.D. Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Glob. Food Secur. 2013, 2, 24–28. [Google Scholar] [CrossRef]
- Tuberosa, R.; Graner, A.; Varshney, R.K. Genomics of plant genetic resources: An introduction. Plant Genet. Resour. 2011, 9, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Kyratzis, A.C.; Nikoloudakis, N.; Katsiotis, A. Genetic variability in landraces populations and the risk to lose genetic variation. The example of landrace ‘Kyperounda’ and its implications for ex situ conservation. PLoS ONE 2019, 14, e0224255. [Google Scholar] [CrossRef] [PubMed]
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary plant breeding in cereals into a new era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Rutkoski, J.E.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzman, C.G.; Bhavani, S.; Lan, C.; He, X.; Singh, R.P. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 2016, 7, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef]
- Jain, S.K.; Qualset, C.O.; Bhatt, G.M.; Wu, K.K. Geographical patterns of phenotypic diversity in a world collection of durum wheats. Crop Sci. 1975, 15, 700–704. [Google Scholar] [CrossRef]
- Peccetti, L.; Annicchiarico, P. Grain yield and quality of durum wheat landraces in a dry Mediterranean region of Northern Syria. Plant Breed. 1993, 110, 243–249. [Google Scholar] [CrossRef]
- Moragues, M.; Zarco-Hernández, J.; Moralejo, M.A.; Royo, C. Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean Basin. Gen. Res. Crop Evol. 2006, 53, 993–1002. [Google Scholar] [CrossRef]
- Fahima, T.; Sun, G.L.; Beharav, A.; Krugman, T.; Beiles, A.; Nevo, E. RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 1999, 98, 434–447. [Google Scholar] [CrossRef]
- Altıntas, S.; Toklu, F.; Kafkas, S.; Kilian, B.; Brandolini, A.; Ozkan, H. Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breed. 2008, 127, 9–14. [Google Scholar] [CrossRef]
- Zhuang, P.; Ren, Q.; Li, W.; Chen, G. Genetic diversity of Persian wheat (Triticum turgidum ssp. carthlicum) accessions by EST-SSR markers. Am. J. Biochem. Mol. Biol. 2011, 1, 223–230. [Google Scholar] [CrossRef]
- Peleg, Z.; Saranga, Y.; Suprunova, T.; Ronin, Y.; Röder, M.S.; Kilian, A.; Korol, A.B.; Fahima, T. High-density genetic map of durum wheat x wildemmer wheat based on SSR and DArTmarkers. Theor. Appl. Genet. 2008, 117, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Rufo, R.; Alvaro, F.; Royo, C.; Soriano, J.M. From landraces to improvedcultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS ONE 2019, 14, e0219867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.; Wolfe, M. Evolutionary plant breeding for low input systems. J. Agric. Sci. 2005, 143, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Masoni, A.; Calamai, A.; Marini, L.; Benedettelli, S.; Palchetti, E. Constitution of Composite Cross Maize (Zea mays L.) Populations Selected for the Semi-Arid Environment of South Madagascar. Agronomy 2020, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, S.; Grando, S.; Baum, M. Participatory plant breeding in water-limited environments. Exp. Agric. 2007, 43, 411–435. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.; Álvaro, F.; Martín-Sánchez, J.A.; Sillero, J.C.; Escribano, J.; Royo, C. Breeding effects on the genotype x environment interaction for yield of bread wheat grown in Spain during the 20th century. Field Crops Res. 2012, 126, 79–86. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Guimarães, E.P.; Weltzien, E. Plant Breeding and Farmer Participation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phyt. Bull. 1987, 19, 11–15. [Google Scholar]
- Allen, A.M.; Winfield, M.O.; Burridge, A.J.; Downie, R.C.; Benbow, H.R.; Barker, G.L.; Wilkinson, P.A.; Coghil, J.; Waterfall, C.; Davassi, A.; et al. Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 2017, 15, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, S.; Grando, S. Plant breeding with farmers requires testing the assumptions of conventional plant breeding: Lessons from the ICARDA barley program. In Farmers, Scientists and Plant Breeding: Integrating Knowledge and Practice; David, D.A.C., Soleri, D., Eds.; CAB I Publishing International: Wallingford, UK, 2002; pp. 297–332. [Google Scholar]
- Winfield, M.O.; Allen, A.M.; Burridge, A.J.; Barker, G.L.A.; Benbow, H.R.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; Scopes, G.; et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 2016, 14, 1195–1206. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Bio. Evol. 2013, 2013, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Paradis, C.J.; Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.K.; Ramasamy, S.; Bindroo, B.B.; Naik, V.G. STRUCTURE PLOT: A program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 2014, 3, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T.; Collins, C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.0.0; Imperial College London: London, UK, 2015. [Google Scholar]
- Chen, S.; Gopalakrishnan, P. Speaker, environment and channel change detection and clustering via the Bayesian Information Criterion. In Proceedings of the DARPA BroadcastNews Transcription and Understanding Workshop, Landsdowne, VA, USA, 8–11 February 1998. [Google Scholar]
- Yoshihiro, M. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification. Plant Cell Physiol. 2011, 52, 750–764. [Google Scholar]
- Feldman, M.; Sears, E.R. The wild gene resources of wheat. Sci. Am. 1981, 244, 102–113. [Google Scholar] [CrossRef]
- Mac Key, J. Wheat: Its concept, evolution, and taxonomy. In Durum Wheat Breeding: Current Approaches and Future Strategies, 1st ed.; Royo, C., Nachit, M., Difonzo, N., Araus, J., Pfeiffer, W., Slafer, G., Eds.; The Haworth Press: New York, NY, USA, 2005; pp. 3–61. [Google Scholar]
- Harlan, J.R. Ethiopia: A center of diversity. Econ. Bot. 1969, 23, 309–314. [Google Scholar] [CrossRef]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickman, G. The corn supply of ancient Rome; Oxford University Press: Oxford, UK, 1980; p. 304. [Google Scholar]
- De Cillis, U. I frumenti Siciliani, 9th ed.; Stazione sperimentale di granicoltura per la Sicilia: Caltagirone, Italy, 1942; pp. 1–323. [Google Scholar]
- De Vita, P.; Matteu, L.; Mastrangelo, A.M.; Di Fonzo, N.; Cattivelli, L. Effects of breeding activity on durum wheat traits breed in Italy during the 20th century. Ital. J. Agron. 2007, 451–462. [Google Scholar] [CrossRef] [Green Version]
- De Vita, P.; Nicosia, O.L.D.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agric. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Fu, Y.B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laidò, G.; Mangini, G.; Taranto, F.; Gadaleta, A.; Blanco, A.; Cattivelli, L.; Marone, D.; Matrangelo, A.; Papa, R.; de Vita, P. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) estimated by SSR, DArT and Pedigree Data. PLoS ONE 2013, 8, e67280. [Google Scholar]
- Murphy, K.; Lammer, D.; Lyon, S.; Carter, B.; Jones, S.S. Breeding for organic and low-input farming systems: An evolutionary-participatory breeding method for inbred cereal grains. Renew. Agric. Food. Syst. 2005, 20, 48–55. [Google Scholar] [CrossRef]
- Ruiz, M.; Aguiriano, E.; Carrillo, J. Effects of N fertilization on yield for low-input production in Spanish wheat landraces (Triticum turgidum L. and Triticum monococcum L.). Plant Breed. 2008, 127, 20–23. [Google Scholar] [CrossRef]
- Stagnari, F.; Onofri, A.; Codianni, P.; Pisante, M. Durum wheat varieties in N-deficient environments and Organic farming: A comparison of yield, quality and stability performances. Plant Breed. 2013, 132, 266–275. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganugi, P.; Palchetti, E.; Gori, M.; Calamai, A.; Burridge, A.; Biricolti, S.; Benedettelli, S.; Masoni, A. Molecular Diversity within a Mediterranean and European Panel of Tetraploid Wheat (T. turgidum subsp.) Landraces and Modern Germplasm Inferred Using a High-Density SNP Array. Agronomy 2021, 11, 414. https://doi.org/10.3390/agronomy11030414
Ganugi P, Palchetti E, Gori M, Calamai A, Burridge A, Biricolti S, Benedettelli S, Masoni A. Molecular Diversity within a Mediterranean and European Panel of Tetraploid Wheat (T. turgidum subsp.) Landraces and Modern Germplasm Inferred Using a High-Density SNP Array. Agronomy. 2021; 11(3):414. https://doi.org/10.3390/agronomy11030414
Chicago/Turabian StyleGanugi, Paola, Enrico Palchetti, Massimo Gori, Alessandro Calamai, Amanda Burridge, Stefano Biricolti, Stefano Benedettelli, and Alberto Masoni. 2021. "Molecular Diversity within a Mediterranean and European Panel of Tetraploid Wheat (T. turgidum subsp.) Landraces and Modern Germplasm Inferred Using a High-Density SNP Array" Agronomy 11, no. 3: 414. https://doi.org/10.3390/agronomy11030414
APA StyleGanugi, P., Palchetti, E., Gori, M., Calamai, A., Burridge, A., Biricolti, S., Benedettelli, S., & Masoni, A. (2021). Molecular Diversity within a Mediterranean and European Panel of Tetraploid Wheat (T. turgidum subsp.) Landraces and Modern Germplasm Inferred Using a High-Density SNP Array. Agronomy, 11(3), 414. https://doi.org/10.3390/agronomy11030414