The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Isolation
2.2. SSR Analysis
2.3. Data Analysis
3. Results
3.1. Genetic Diversity of the Germplasm under Investigation
3.2. Genetic Structure Analysis of the S. lycopersium Genotypes (Landraces and Contemporary Varieties)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gentilcore, D. Taste and the tomato in Italy: A transatlantic history. Food Hist. 2009, 7, 125–139. [Google Scholar] [CrossRef]
- Bergougnoux, V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014, 32, 170–189. [Google Scholar] [CrossRef]
- Gentilcore, D. Pomodoro! A History of the Tomato in Italy; Columbia University Press: New York, NY, USA, 2010. [Google Scholar]
- Astarita, T. The Italian Baroque Table: Cooking and Entertaining from the Golden Age of Naples. Medieval and Renaissance Texts and Studies; ACMRS Press: Tempe, AZ, USA, 2014; Volume 459. [Google Scholar]
- Latini, A. Lo Scalco Alla Moderna, 1993 ed.; Biblioteca Culinaria: Lodi, Italy, 1694; Volume 2. [Google Scholar]
- Acciarri, N.; Di Candilo, M.; Sanguineti, C.; Soressi, G.P. Tomato. In Italian Contribution to Plant Genetics and Breeding; Scarascia Mugnozza, G.T., Pagnotta, M.A., Eds.; Università della Tuscia: Viterbo, Italy, 1998; pp. 501–509. [Google Scholar]
- Sumalan, R.M.; Ciulca, S.I.; Poiana, M.A.; Moigradean, D.; Radulov, I.; Negrea, M.; Crisan, M.E.; Copolovici, L.; Sumalan, R.L. The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value. Agronomy 2020, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Landi, S.; De Lillo, A.; Nurcato, R.; Grillo, S.; Esposito, S. In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol. Biochem. 2017, 118, 150–160. [Google Scholar] [CrossRef]
- Digilio, M.C.; Corrado, G.; Sasso, R.; Coppola, V.; Iodice, L.; Pasquariello, M.; Bossi, S.; Maffei, M.E.; Coppola, M.; Pennacchio, F. Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. New Phytol. 2010, 187, 1089–1101. [Google Scholar] [CrossRef]
- Corrado, G.; Rao, R. Towards the genomic basis of local adaptation in landraces. Diversity 2017, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Fullana-Pericàs, M.; Conesa, M.À.; Douthe, C.; El Aou-ouad, H.; Ribas-Carbó, M.; Galmés, J. Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agric. Water Manag. 2019, 223, 105722. [Google Scholar] [CrossRef]
- Carillo, P.; Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; dell’Aversana, E.; D’Amelia, L.; Colla, G.; Caruso, G.; De Pascale, S.; Rouphael, Y. Sensory and functional quality characterization of protected designation of origin ‘Piennolo del Vesuvio’cherry tomato landraces from Campania-Italy. Food Chem. 2019, 292, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Casals, J.; Rull, A.; Segarra, J.; Schober, P.; Simó, J. Participatory Plant Breeding and the Evolution of Landraces: A Case Study in the Organic Farms of the Collserola Natural Park. Agronomy 2019, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- Grandillo, S.; Mustilli, A.C.; Parisi, M.; Morelli, G.; Giordano, I.; Bowler, C. Tecniche avanzate per la valutazione qualitativa del pomodoro: Il caso Campania. Agroindustria 2004, 3, 151–159. [Google Scholar]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Resour. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, D.A.; Daniela, S.; Smith, S.E. A biological framework for understanding farmers’ plant breeding. Econ. Bot. 2000, 54, 377–394. [Google Scholar] [CrossRef]
- Rao, R.; Corrado, G.; Bianchi, M.; Di Mauro, A. (GATA) 4 DNA fingerprinting identifies morphologically characterized ‘San Marzano’tomato plants. Plant Breed. 2006, 125, 173–176. [Google Scholar] [CrossRef]
- Caramante, M.; Rao, R.; Monti, L.M.; Corrado, G. Discrimination of ‘San Marzano’accessions: A comparison of minisatellite, CAPS and SSR markers in relation to morphological traits. Sci. Hortic. 2009, 120, 560–564. [Google Scholar] [CrossRef]
- Muñoz-Falcón, J.E.; Vilanova, S.; Plazas, M.; Prohens, J. Diversity, relationships, and genetic fingerprinting of the Listada de Gandía eggplant landrace using genomic SSRs and EST-SSRs. Sci. Hortic. 2011, 129, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Muthoni, J.; Nyamongo, D. Seed systems in Kenya and their relationship to on-farm conservation of food crops. J. New Seeds 2008, 9, 330–342. [Google Scholar] [CrossRef]
- Louwaars, N.P. Plant breeding and diversity: A troubled relationship? Euphytica 2018, 214, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Bauchet, G.; Causse, M. Genetic diversity in tomato (Solanum lycopersicum) and its wild relatives. Genet. Divers. Plants 2012, 8, 134–162. [Google Scholar]
- García-Martínez, S.; Andreani, L.; Garcia-Gusano, M.; Geuna, F.; Ruiz, J.J. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: Utility for grouping closely related traditional cultivars. Genome 2006, 49, 648–656. [Google Scholar] [CrossRef]
- Hammer, K.; Laghetti, G.; Perrino, P. Collection of plant genetic resources in South Italy, 1988. Die Kult. 1989, 37, 401–414. [Google Scholar] [CrossRef]
- Causse, M.; Giovannoni, J.; Bouzayen, M.; Zouine, M. The Tomato Genome; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zhivotovsky, L.A.; Rosenberg, N.A.; Feldman, M.W. Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am. J. Hum. Genet. 2003, 72, 1171–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornuet, J.-M.; Ravigné, V.; Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1. 0). BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulos, P.; Bebeli, P. DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Sci. Hortic. 2008, 116, 354–361. [Google Scholar] [CrossRef]
- Henareh, M.; Dursun, A.; Abdollahi-Mandoulakani, B.; Haliloğlu, K. Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika 2016, 48, 25–35. [Google Scholar] [CrossRef]
- Parisi, M.; Aversano, R.; Graziani, G.; Ruggieri, V.; Senape, V.; Sigillo, L.; Barone, A. Phenotypic and molecular diversity in a collection of ‘Pomodoro di Sorrento’Italian tomato landrace. Sci. Hortic. 2016, 203, 143–151. [Google Scholar] [CrossRef]
- Castellana, S.; Ranzino, L.; Beritognolo, I.; Cherubini, M.; Luneia, R.; Villani, F.; Mattioni, C. Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum lycopersicum L.) landraces through SSR markers and application for varietal identification. Genet. Resour. Crop Evol. 2020, 67, 1807–1820. [Google Scholar] [CrossRef]
- Mazzucato, A.; Papa, R.; Bitocchi, E.; Mosconi, P.; Nanni, L.; Negri, V.; Picarella, M.E.; Siligato, F.; Soressi, G.P.; Tiranti, B. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor. Appl. Genet. 2008, 116, 657–669. [Google Scholar] [CrossRef]
- Cattáneo, R.A.; McCarthy, A.N.; Feingold, S.E. Evidence of genetic diversity within Solanum Lycopersicum L.‘Platense’landrace and identification of various subpopulations. Genet. Resour. Crop Evol. 2020, 67, 2057–2069. [Google Scholar] [CrossRef]
- Scarano, D.; Rubio, F.; Ruiz, J.J.; Rao, R.; Corrado, G. Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Sci. Hortic. 2014, 180, 72–78. [Google Scholar] [CrossRef]
- Smulders, M.; Bredemeijer, G.; Rus-Kortekaas, W.; Arens, P.; Vosman, B. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 1997, 94, 264–272. [Google Scholar] [CrossRef]
- He, C.; Poysa, V.; Yu, K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 2003, 106, 363–373. [Google Scholar] [CrossRef]
- Verdone, M.; Rao, R.; Coppola, M.; Corrado, G. Identification of zucchini varieties in commercial food products by DNA typing. Food Control 2018, 84, 197–204. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevosti, A.; Ocana, J.; Alonso, G. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor. Appl. Genet. 1975, 45, 231–241. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 344. [Google Scholar]
- Dieringer, D.; Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 2003, 3, 167–169. [Google Scholar] [CrossRef]
- Verity, R.; Nichols, R.A. What is genetic differentiation, and how should we measure it—GST, D, neither or both? Mol. Ecol. 2014, 23, 4216–4225. [Google Scholar] [CrossRef]
- Mariette, S.; Tavaud, M.; Arunyawat, U.; Capdeville, G.; Millan, M.; Salin, F. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet. 2010, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Miskoska-Milevska, E.; Popovski, Z.T.; Nestorovski, T. Usefulness of a locus LeEF1a in the genetic differentiation of tomato varieties. J. Agric. Food Environ. Sci. 2018, 72, 56–61. [Google Scholar]
- Scarano, D.; Rao, R.; Masi, P.; Corrado, G. SSR fingerprint reveals mislabeling in commercial processed tomato products. Food Control 2015, 51, 397–401. [Google Scholar] [CrossRef]
- Ruiz, J.J.; García-Martínez, S.; Picó, B.; Gao, M.; Quiros, C.F. Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers. J. Am. Soc. Hortic. Sci. 2005, 130, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Piffanelli, P.; Caramante, M.; Coppola, M.; Rao, R. SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genom. 2013, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.-C.; Van Deynze, A.; Stoffel, K.; Douches, D.S.; Zarka, D.; Ganal, M.W.; Chetelat, R.T.; Hutton, S.F.; Scott, J.W.; Gardner, R.G. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 2012, 7, e45520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonias, E.D.; Ganopoulos, I.; Mellidou, I.; Bibi, A.C.; Kalivas, A.; Mylona, P.V.; Osanthanunkul, M.; Tsaftaris, A.; Madesis, P.; Doulis, A.G. Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genet. Resour. Crop Evol. 2019, 66, 1295–1309. [Google Scholar] [CrossRef]
- Boccacci, P.; Aramini, M.; Valentini, N.; Bacchetta, L.; Rovira, M.; Drogoudi, P.; Silva, A.; Solar, A.; Calizzano, F.; Erdoğan, V. Molecular and morphological diversity of on-farm hazelnut (Corylus avellana L.) landraces from southern Europe and their role in the origin and diffusion of cultivated germplasm. Tree Genet. Genomes 2013, 9, 1465–1480. [Google Scholar] [CrossRef]
- Mercati, F.; Longo, C.; Poma, D.; Araniti, F.; Lupini, A.; Mammano, M.M.; Fiore, M.C.; Abenavoli, M.R.; Sunseri, F. Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genet. Resour. Crop. Evol. 2015, 62, 721–732. [Google Scholar] [CrossRef]
- Foroni, I.; Baptista, C.; Monteiro, L.; Lopes, M.S.; Mendonça, D.; Melo, M.; Carvalho, C.; Monjardino, P.; Lopes, D.J.; da Câmara Machado, A. The use of microsatellites to analyze relationships and to decipher homonyms and synonyms in Azorean apples (Malus × domestica Borkh.). Plant Syst. Evol. 2012, 298, 1297–1313. [Google Scholar] [CrossRef]
- Odong, T.; Van Heerwaarden, J.; Jansen, J.; van Hintum, T.J.; Van Eeuwijk, F. Determination of genetic structure of germplasm collections: Are traditional hierarchical clustering methods appropriate for molecular marker data? Theor. Appl. Genet. 2011, 123, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 5. [Google Scholar]
- Janes, J.K.; Miller, J.M.; Dupuis, J.R.; Malenfant, R.M.; Gorrell, J.C.; Cullingham, C.I.; Andrew, R.L. The K = 2 conundrum. Mol. Ecol. 2017, 26, 3594–3602. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, S.; Corrado, G.; Ruiz, J.J.; Rao, R. Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genet. Resour. Crop Evol. 2013, 60, 789–798. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, S.E.J.D.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kim, M.; Jung, J.-K.; Shim, E.-J.; Chung, S.-M.; Park, Y.; Lee, G.P.; Sim, S.-C. Genome-wide SNP discovery and core marker sets for DNA barcoding and variety identification in commercial tomato cultivars. Sci. Hortic. 2021, 276, 109734. [Google Scholar] [CrossRef]
SSR | Na | NaSl | Ne | Ho | PIC | I | F | Ev | ALC |
---|---|---|---|---|---|---|---|---|---|
LE20592 | 5 | 3 | 3.35 | 0.25 | 0.70 | 1.30 | 0.64 | 0.88 | 8 |
LELE25 | 2 | 2 | 1.07 | 0.00 | 0.06 | 0.15 | 1.00 | 0.44 | 2 |
LE21085 | 5 | 3 | 2.34 | 0.19 | 0.57 | 1.11 | 0.67 | 0.66 | 8 |
LEEF1Aa | 11 | 11 | 5.22 | 0.16 | 0.81 | 1.99 | 0.81 | 0.66 | 13 |
LEta003 | 8 | 5 | 3.39 | 0.25 | 0.71 | 1.45 | 0.65 | 0.75 | 9 |
LEat002 | 4 | 2 | 1.95 | 0.13 | 0.49 | 0.85 | 0.74 | 0.71 | 6 |
LEga003 | 6 | 4 | 1.78 | 0.28 | 0.44 | 0.94 | 0.36 | 0.50 | 7 |
LEtat002 | 5 | 3 | 3.35 | 0.25 | 0.70 | 1.30 | 0.64 | 0.88 | 9 |
LEaat002 | 5 | 3 | 2.42 | 0.13 | 0.59 | 1.04 | 0.79 | 0.78 | 7 |
LEcaa001 | 2 | 1 | 1.03 | 0.03 | 0.03 | 0.08 | −0.02 | 0.38 | 2 |
LEaat007 | 5 | 3 | 2.42 | 0.13 | 0.59 | 1.04 | 0.79 | 0.77 | 7 |
LEct001 | 4 | 3 | 2.32 | 0.00 | 0.57 | 0.98 | 1.00 | 0.78 | 5 |
LEctt001 | 6 | 5 | 2.05 | 0.38 | 0.51 | 1.05 | 0.27 | 0.56 | 7 |
LEta015 | 7 | 6 | 3.80 | 0.19 | 0.74 | 1.54 | 0.74 | 0.77 | 9 |
Source of Variation | df | SS | MS | Var | % |
---|---|---|---|---|---|
Between Pops | 1 | 31.583 | 31.583 | 0.884 | 22 |
Between samples within Pop | 28 | 141.667 | 5.060 | 1.938 | 30 |
Within samples | 30 | 35.500 | 1.183 | 1.183 | 48 |
Total | 59 | 208.750 | 4.006 | 100 |
Fst | p Value | Gst | p Value | |
---|---|---|---|---|
All loci | 0.22 | 0.000 | 0.15 | 0.000 |
LE20592 | 0.34 | 0.000 | 0.23 | 0.000 |
LE21085 | 0.08 | 0.102 | 0.15 | 0.002 |
LEaat007 | 0.05 | 0.237 | 0.05 | 0.239 |
LEat002 | 0.04 | 0.284 | 0.05 | 0.284 |
LEctt001 | 0.20 | 0.001 | 0.60 | 0.000 |
LEEF1Aa | 0.15 | 0.002 | 0.11 | 0.002 |
LEga003 | 0.12 | 0.031 | 0.08 | 0.031 |
LELE25 | 0.00 | 1.000 | 0.03 | 1.000 |
LEta003 | 0.08 | 0.075 | 0.07 | 0.074 |
LEta003 | 0.08 | 0.075 | 0.07 | 0.074 |
LEta015 | 0.15 | 0.008 | 0.11 | 0.006 |
LEtat002 | 0.05 | 0.237 | 0.05 | 0.239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caramante, M.; Rouphael, Y.; Corrado, G. The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity. Agronomy 2021, 11, 564. https://doi.org/10.3390/agronomy11030564
Caramante M, Rouphael Y, Corrado G. The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity. Agronomy. 2021; 11(3):564. https://doi.org/10.3390/agronomy11030564
Chicago/Turabian StyleCaramante, Martina, Youssef Rouphael, and Giandomenico Corrado. 2021. "The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity" Agronomy 11, no. 3: 564. https://doi.org/10.3390/agronomy11030564
APA StyleCaramante, M., Rouphael, Y., & Corrado, G. (2021). The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity. Agronomy, 11(3), 564. https://doi.org/10.3390/agronomy11030564