Demographic Processes Allow Echinochloa crus-galli to Compensate Seed Losses by Seed Predation
Abstract
:1. Introduction
- Targeting the seed stage affects the density of the subsequent seedling stage.
- Density-dependent mortality in subsequent life stages partly compensates seedling abundance.
- The magnitude of the final seed production depends on seed predation.
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Determination of Number of Proportions of Different Life Stages of E. crus-galli
2.2.1. Spring Seedbank
2.2.2. Seedlings
2.2.3. Adult Plants
2.2.4. Seed Production
2.2.5. Seed Predation
2.2.6. Statistical Analysis
- the spring seedbank m−2 to seedlings m−2 (seedling emergence)
- seedlings m−2 to adult plants m−2 (seedling survival)
- adult plants m−2 to seed production m−2 (seed production m−2).
- field (1, 2, and 3)
- seed predation (+/−) as factor variable
- initial density (log) of the relevant life stage and the second-degree polynomial
- interspecific competition with other weeds (+/−) as factor variable
- first order interactions.
3. Results
4. Discussion
4.1. Targeting the Seed Stage Affects the Density of the Subsequent Seedling Stage
4.2. Density-Dependent Mortality Compensates a Low Abundance of Seedlings
4.3. The Amount of the Final Seed Production Did Not Depend on Seed Predation
4.4. Implications for Weed Management
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Life-Stage Parameter | Explaining Parameter | df | F Value | p Value |
---|---|---|---|---|
log(seedlings m−2) | ||||
R² = 81% | intercept | 1 | 5.938 | 0.016 |
field | 2 | 11.470 | <0.001 | |
log(spring seedbank m−2) | 1 | 80.576 | <0.001 | |
predation | 1 | 20.037 | <0.001 | |
field × log(spring seedbank m−2) | 2 | 7.153 | 0.001 | |
field × predation | 2 | 4.909 | 0.009 | |
residuals | 135 | |||
log(adult plants m−2) | ||||
R² = 81% | intercept | 1 | 10.123 | 0.001 |
field | 2 | 2.645 | 0.075 | |
log(seedlings m−2) | 1 | 63.533 | <0.001 | |
field × log(seedlings m−2) | 2 | 7.388 | <0.001 | |
residuals | 138 | |||
log(fecundity) | ||||
R² = 92% | intercept | 1 | 358.929 | <0.001 |
field | 2 | 18.224 | <0.001 | |
log(adult plants m−2) | 1 | 75.644 | <0.001 | |
predation | 1 | 6.780 | 0.010 | |
log(adult plants m−2)2 | 1 | 24.489 | <0.001 | |
log(adult plants m−2)2 × predation | 1 | 4.197 | 0.043 | |
field × log(adult plants m−2) | 2 | 5.243 | 0.006 | |
field × predation | 2 | 8.150 | <0.001 | |
residuals | 133 | |||
log(seed production m−2) | ||||
R² = 64% | intercept | 1 | 1028.152 | <0.001 |
field | 2 | 94.102 | <0.001 | |
log(adult plants m−2) | 1 | 8.547 | 0.004 | |
predation | 1 | 1.799 | 0.182 | |
field × predation | 2 | 12.162 | <0.001 | |
residuals | 137 |
References
- Cousens, R.; Mortimer, M. Dynamics of Weed Populations; Cambridge University Press: Cambridge, CA, USA, 1995. [Google Scholar]
- Davis, A.S. When does it make sense to target the weed seed bank? Weed Sci. 2006, 54, 558–565. [Google Scholar] [CrossRef]
- Gallandt, E.R. How can we target the weed seedbank? Weed Sci. 2006, 54, 588–596. [Google Scholar] [CrossRef]
- Westerman, P.R.; Dixon, P.M.; Liebman, M. Burial rates of surrogate seeds in arable fields. Weed Res. 2009, 49, 142–152. [Google Scholar] [CrossRef]
- Davis, A.S.; Daedlow, D.; Schutte, B.J.; Westerman, P.R. Temporal scaling of episodic point estimates of seed predation to long-term predation rates. Methods Ecol. Evol. 2011, 2, 682–890. [Google Scholar] [CrossRef]
- Westerman, P.R.; Wes, J.S.; Kropff, M.J.; van der Werf, W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 2003, 40, 824–836. [Google Scholar] [CrossRef]
- Gaba, S.; Deroulers, P.; Bretagnolle, F.; Bretagnolle, V. Lipid content drives weed seed consumption by ground beetles (Coleopterea, Carabidae) within the smallest seeds. Weed Res. 2019, 59, 170–179. [Google Scholar] [CrossRef]
- Moles, A.T.; Warton, D.I.; Westoby, M. Do small-seeded species have higher survival through seed predation than large-seeded species? Ecology 2003, 84, 3148–3161. [Google Scholar] [CrossRef] [Green Version]
- Westerman, P.R.; Borza, J.K.; Andjelkovic, J.; Liebman, M.; Danielson, B. Density-dependent predation of weed seeds in maize fields. J. Appl. Ecol. 2008, 45, 1612–1620. [Google Scholar] [CrossRef]
- Daedlow, D.; Westerman, P.R.; Baraibar, B.; Rouphael, S.; Gerowitt, B. Weed seed predation rate in cereals as a function of seed density and patch size, under high predation pressure by rodents. Weed Res. 2014, 54, 186–195. [Google Scholar] [CrossRef]
- Baraibar, B.; Daedlow, D.; de Mol, F.; Gerowitt, B. Density dependence of weed seed predation by invertebrates and vertebrates in winter wheat. Weed Res. 2012, 52, 79–87. [Google Scholar] [CrossRef]
- Pannwitt, H.; Westerman, P.R.; de Mol, F.; Selig, C.; Gerowitt, B. Biological control of weed patches by seed predators; responses to seed density and exposure time. Biol. Control 2017, 108, 1–8. [Google Scholar] [CrossRef]
- Hulme, P.E. Post-dispersal seed predation in grassland: Its magnitude and sources of variation. J. Ecol. 1994, 82, 645. [Google Scholar] [CrossRef]
- Trichard, A.; Alignier, A.; Biju-Duval, L.; Petit, S. The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic Appl. Ecol. 2013, 14, 235–245. [Google Scholar] [CrossRef]
- Petit, S.; Trichard, A.; Biju-Duval, L.; McLaughlin, Ó.; Bohan, D.A. Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric. Ecosyst. Environ. 2017, 240, 45–53. [Google Scholar] [CrossRef]
- Fischer, C.; Thies, C.; Tscharntke, T. Mixed effects of landscape complexity and farming practice on weed seed removal. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 297–303. [Google Scholar] [CrossRef]
- Westerman, P.R.; Liebman, M.; Menalled, F.D.; Heggenstaller, A.H.; Hartzler, R.G.; Dixon, P.M. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 2005, 53, 382–392. [Google Scholar] [CrossRef]
- Firbank, L.G.; Watkinson, A.R. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 1985, 22, 503. [Google Scholar] [CrossRef]
- White, S.S.; Renner, K.A.; Menalled, F.D.; Landis, D.A. Feeding preferences of weed seed predators and effect on weed emergence. Weed Sci. 2007, 55, 606–612. [Google Scholar] [CrossRef]
- Blubaugh, C.K.; Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 2016, 64, 80–86. [Google Scholar] [CrossRef]
- Petit, S.; Cordeau, S.; Chauvel, B.; Bohan, D.A.; Guillemin, J.-P.; Steinberg, C. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 2018, 38, 551. [Google Scholar] [CrossRef] [Green Version]
- Larios, L.; Pearson, D.E.; Maron, J.L. Incorporating the effects of generalist seed predators into plant community theory. Funct. Ecol. 2017, 31, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Post-dispersal seed predation: Consequences for plant demography and evolution. Perspect. Plant Ecol. Evol. Syst. 1998, 1, 32–46. [Google Scholar] [CrossRef]
- Holst, N.; Rasmussen, I.A.; Bastiaans, L. Field weed population dynamics: A review of model approaches and applications. Weed Res. 2007, 47, 1–14. [Google Scholar] [CrossRef]
- Watkinson, A.R.; Freckleton, R.P.; Forrester, L. Population dynamics of Vulpia ciliata: Regional, patch and local dynamics. J. Ecol. 2000, 88, 1012–1029. [Google Scholar] [CrossRef]
- Palmblad, I.G. Competition in experimental populations of weeds with emphasis on the regulation of population size. Ecology 1968, 49, 26–34. [Google Scholar] [CrossRef]
- Yoda, K.; Kira, T.; Ogawa, H.; Hozumi, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 1963, 14, 107–129. [Google Scholar]
- Buckley, Y.M.; Hinz, H.L.; Matthies, D.; Rees, M. Interactions between density-dependent processes, population dynamics and control of an invasive plant species, Tripleurospermum perforatum (scentless chamomile). Ecol. Lett. 2001, 4, 551–558. [Google Scholar] [CrossRef]
- Von Redwitz, C.; Gerowitt, B. Maize-dominated crop sequences in northern Germany: Reaction of the weed species communities. Appl. Veg. Sci. 2018, 21, 431–441. [Google Scholar] [CrossRef]
- Maun, M.A.; Barrett, S.C.H. The Biology of Canadian Weeds.: 77. Echinochloa crus-galli (L.) Beauv. Can. J. Plant Sci. 1986, 66, 739–759. [Google Scholar] [CrossRef]
- Norris, R.F. Case history for weed competition/population ecology: Barnyardgrass (Echinochloa crus-galli) in sugarbeets (Beta vulgaris). Weed Technol. 1992, 220–227. [Google Scholar] [CrossRef]
- Pannwitt, H.; Westerman, P.R.; de Mol, F.; Gerowitt, B. Using panicle dry weight to estimate seed production in Echinochloa crus-galli. Weed Res. 2019, 150, 717. [Google Scholar] [CrossRef] [Green Version]
- Claerhout, S.; Reheul, D.; de Cauwer, B. Sensitivity of Echinochloa crus-galli populations to maize herbicides: A comparison between cropping systems. Weed Res. 2015, 55, 470–481. [Google Scholar] [CrossRef]
- Wiles, L.J.; Barlin, D.H.; Schweizer, E.E.; Duke, H.R.; Whitt, D.E. A new soil sampler and elutriator for collecting and extracting weed seeds from soil. Weed Technol. 1996, 10, 35–41. [Google Scholar] [CrossRef]
- Thompson, K.; Bakker, J.P.; Bekker, R.M. Soil Seedbank of North West Europe: Methodology, Density and Longevity; Cambridge University Press: Cambridge, CA, USA, 1997; ISBN 0521495199. [Google Scholar]
- Begon, M.; Townsend, C.R.; Harper, J.L. Ecology: From Individuals to Ecosystems, 4th ed.; Blackwell: Malden, MA, USA, 2006; ISBN 9781405111171. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 2 March 2018).
- Garren, J.M.; Strauss, S.Y. Population-level compensation by an invasive thistle thwarts biological control from seed predators. Ecol. Appl. 2009, 19, 709–721. [Google Scholar] [CrossRef]
- García de León, D.; Freckleton, R.P.; Lima, M.; Navarrete, L.; Castellanos, E.; González-Andújar, J.L. Identifying the effect of density dependence, agricultural practices and climate variables on the long-term dynamics of weed populations. Weed Res. 2014, 54, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Wortman, S.E.; Davis, A.S.; Schutte, B.J.; Lindquist, J.L.; Cardina, J.; Felix, J.; Sprague, C.L.; Dille, J.A.; Ramirez, A.H.M.; Reicks, G.; et al. Local conditions, not regional gradients, drive demographic variation of giant ragweed (Ambrosia trifida) and common sunflower (Helianthus annuus) across Northern U.S. maize Belt. Weed Sci. 2012, 60, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Selig, C.; de Mol, F.; Gerowitt, B. Echinochloa kompensiert Keimlingsverluste durch erhöhte Biomasseproduktion. Jul. Kühn Arch. 2018, 458, 435–441. [Google Scholar] [CrossRef]
- Wiese, A.F.; Vandiver, C.W. Soil Moisture Effects on Competitive Ability of Weeds. Weed Sci. 1970, 18, 518–519. [Google Scholar] [CrossRef]
- Thompson, B.K.; Weiner, J.; Warwick, S.I. Size-dependent reproductive output in agricultural weeds. Can. J. Bot. 1991, 69, 442–446. [Google Scholar] [CrossRef]
- Weiner, J.; Campbell, L.G.; Pino, J.; Echarte, L. The allometry of reproduction within plant populations. J. Ecol. 2009, 97, 1220–1233. [Google Scholar] [CrossRef]
- Lfl Bayern. Unkraut-Steckbriefe—Hühner-Hirse. Available online: https://www.lfl.bayern.de/ips/unkraut/u_steckbriefe/053955/index.php (accessed on 3 May 2019).
- Ramula, S.; Buckley, Y.M. Management recommendations for short-lived weeds depend on model structure and explicit characterization of density dependence. Methods Ecol. Evol. 2010, 1, 158–167. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Taylor, K.L.; Hartzler, R.G. Effect of seed sank augmentation on herbicide efficacy. Weed Technol. 2000, 14, 261–267. [Google Scholar] [CrossRef]
Model | Parameter | Field 1 | Field 2 | Field 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Estimate | SE | R2 | Estimate | SE | R2 | Estimate | SE | R2 | ||
Seedling emergencepred | Intercept | −1.489 | 0.848 | 0.718 * | 1.755 | 0.633 | 0.605 * | −1.258 | 0.690 | 0.777 * |
Slope (initial density) | 0.937 | 0.125 | 0.543 | 0.093 | 0.892 | 0.101 | ||||
Seedling emergence | Intercept | 0.003 | 0.836 | 0.675 | 1.068 | 0.415 | 0.861 | −1.705 | 0.473 | 0.918 |
Slope (initial density) | 0.834 | 0.123 | 0.718 | 0.061 | 1.102 | 0.069 | ||||
Seedling survivalpred | Intercept | 0.568 | 0.384 | 0.800 | 1.225 | 0.582 | 0.499 | 1.014 | 0.281 | 0.827 |
Slope (initial density) | 0.736 | 0.078 | 0.502 | 0.107 | 0.601 | 0.058 | ||||
Seedling survival | Intercept | 0.521 | 0.582 | 0.834 | 1.495 | 0.504 | 0.583 | 1.192 | 0.412 | 0.746 |
Slope (initial density) | 0.769 | 0.107 | 0.472 | 0.085 | 0.572 | 0.071 | ||||
Seed productionpred | Intercept | 6.759 | 0.449 | 0.674 | 11.250 | 0.099 | 11.648 | 0.104 | ||
Slope (initial density) | 0.726 | 0.107 | ||||||||
Seed production | Intercept | 10.851 | 0.079 | 11.530 | 0.104 | 11.712 | 0.121 | |||
Fecunditypred | Intercept | 6.759 | 0.449 | 0.227* | 10.528 | 1.037 | 0.307 | 11.371 | 0.804 | 0.481 |
Slope (initial density) | −0.274 | 0.107 | −0.817 | 0.262 | −0.928 | 0.206 | ||||
Fecuncity | Intercept | 11.051 | 0.600 | 0.766 | 12.427 | 1.226 | 0.454 | 10.983 | 0.936 | 0.425 |
Slope (initial density) | −1.041 | 0.122 | −1.220 | 0.285 | −0.837 | 0.208 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannwitt, H.; Westerman, P.R.; De Mol, F.; Gerowitt, B. Demographic Processes Allow Echinochloa crus-galli to Compensate Seed Losses by Seed Predation. Agronomy 2021, 11, 565. https://doi.org/10.3390/agronomy11030565
Pannwitt H, Westerman PR, De Mol F, Gerowitt B. Demographic Processes Allow Echinochloa crus-galli to Compensate Seed Losses by Seed Predation. Agronomy. 2021; 11(3):565. https://doi.org/10.3390/agronomy11030565
Chicago/Turabian StylePannwitt, Heike, Paula R. Westerman, Friederike De Mol, and Bärbel Gerowitt. 2021. "Demographic Processes Allow Echinochloa crus-galli to Compensate Seed Losses by Seed Predation" Agronomy 11, no. 3: 565. https://doi.org/10.3390/agronomy11030565
APA StylePannwitt, H., Westerman, P. R., De Mol, F., & Gerowitt, B. (2021). Demographic Processes Allow Echinochloa crus-galli to Compensate Seed Losses by Seed Predation. Agronomy, 11(3), 565. https://doi.org/10.3390/agronomy11030565