The Water Needs of Grapevines in Central Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bokwa, A.; Klimek, M. Warunki klimatyczne Pogórza Wielickiego dla potrzeb uprawy winorośli [Climate conditions of the Wieliczka Foothills for the purposes of viticulture]. In Człowiek i Rolnictwo [Man and Agriculture]; Zborowski, A., Górka, Z., Eds.; IGiGP UJ: Kraków, Poland, 2009; pp. 103–111. [Google Scholar]
- Kopeć, B. Uwarunkowania termiczne wegetacji winorośli na obszarze południowo-wschodniej Polski [Thermal conditions of grape’s vegetation in south-eastern Poland]. Infrastruct. Ecol. Rural Areas 2009, 4, 251–262. [Google Scholar]
- Myśliwiec, R. Uprawa Winorośli [Viticulture]; PWRiL: Warszawa, Poland, 2013. [Google Scholar]
- Adamczewska-Sowińska, K.; Bąbelewski, P.; Chohura, P.; Czaplicka-Pędzich, M.; Gudarowska, E.; Krężel, J.; Mazurek, J.; Sosna, I.; Szewczuk, A. Agrotechniczne Aspekty Uprawy Winorośli [Agrotechnical Aspects of Viticulture]; Druk-24h: Wrocław, Poland, 2016. [Google Scholar]
- Koźmiński, C.; Michalska, B. Atlas Klimatycznego Ryzyka Uprawy Roślin w Polsce [Atlas of Climatic Risk to Crop Cultivation in Poland]; USz: Szczecin, Poland, 2001; pp. 17–18. [Google Scholar]
- Szymanowski, M.; Smaza, M. Zmiana zasobów klimatycznych a możliwości uprawy winorośli na Dolnym Śląsku [Change of climatic resources and possibilities of viticulture in Lower Silesia]. In Proceedings of the XXXII National Congress of Agrometeorologists and Climatologists, Kołobrzeg, Poland, 13–15 September 2007; pp. 69–70. [Google Scholar]
- Łabędzki, L. Foreseen climate changes and irrigation development in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 7–18. [Google Scholar]
- Łabędzki, L. Expected development of irrigation in Poland in the context of climate change. J. Water Land Dev. 2009, 13, 17–29. [Google Scholar] [CrossRef]
- Lisek, J. Winorośl w Uprawie Przydomowej i Towarowej [Vines in Home and Commercial Cultivation]; Hortpress: Warszawa, Poland, 2011. [Google Scholar]
- Kapłan, M. Możliwości uprawy winorośli w Polsce [Possibilities of viticulture in Poland]. Nauk. Przyr. 2013, 2, 4–12. [Google Scholar]
- Bąk, B.; Łabędzki, L. Thermal conditions in Bydgoszcz region in growing seasons 2011–2050 in view of expected climate change. J. Water Land Dev. 2014, 23, 21–29. [Google Scholar] [CrossRef]
- Pink, M. Polska jako kraj winiarski? Od tradycji do rodzących się możliwości [Poland as a wine country? From tradition to emerging possibilities]. Probl. Drob. Gospod. Rol. 2015, 2, 37–56. [Google Scholar]
- Rolbiecki, S.; Piszczek, P. Effect of the forecast climate change on the grapevine water requirements in the Bydgoszcz region. Infrastruct. Ecol. Rural Areas 2016, 4, 1847–1856. [Google Scholar]
- Rojek, M. Potrzeby nawadniania w Polsce [Irrigation needs in Poland]. In Nawadnianie Roślin [Plant Irrigation]; Karczmarczyk, S., Nowak, L., Eds.; PWRiL: Poznań, Poland, 2006; pp. 91–108. [Google Scholar]
- Rzekanowski, C. Kształtowanie się potrzeb nawodnieniowych roślin sadowniczych w Polsce [Shaping of irrigation needs for fruit plants in Poland]. Infrastruct. Ecol. Rural Aeas 2009, 3, 19–27. [Google Scholar]
- Lisek, J. Climatic factors affecting development and yielding of grapevine in Central Poland. J. Fruit Ornam. Plant Res. 2008, 16, 286–293. [Google Scholar]
- Myśliwiec, R. Winorośl i Wina [Vines and Wines]; PWRiL: Warszawa, Poland, 2006; p. 22. [Google Scholar]
- Grabowski, J.; Kopytowski, J. Czas aktywnego wzrostu roślin w Polsce północno-wschodniej, a warunki uprawy winorośli [The time of active plant growth in north-eastern Poland and the conditions of viticulture]. Zesz. Probl. Postep. Nauk Roln. 2009, 536, 87–94. [Google Scholar]
- Słowik, K. Deszczowanie Roślin Sadowniczych [Sprinkling of Fruit Plants]; PWRiL: Warszawa, Poland, 1973. [Google Scholar]
- Dzieżyc, J. Rolnictwo w Warunkach Nawadniania [Irrigationin Agriculture]; PWN: Warszawa, Poland, 1988. [Google Scholar]
- Łabędzki, L.; Szajda, J.; Szuniewicz, J. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania. Przegląd stanu wiedzy [Evapotranspiration of agricultural crops—Terminology, definitions, calculation methods. Review]. IMUZ Falenty 1996, 33, 1–15. [Google Scholar]
- Żakowicz, S. Podstawy Technologii Nawadniania Rekultywowanych Składowisk Odpadów Komunalnych [Fundamentals of Irrigation Technology for Reclaimed Municipal Waste Dumas]; SGGW: Warszawa, Poland, 2010. [Google Scholar]
- Rolbiecki, S. O szacowaniu potrzeb wodnych drzew owocowych w Polsce na podstawie temperatury powietrza [Comparison of sour cherry-tree water requirements in the regions of Bydgoszcz and Wrocław]. Infrastruct. Ecol. Rural Areas 2018, II, 393–406. [Google Scholar]
- Jagosz, B.; Rolbiecki, S.; Stachowski, P.; Ptach, W.; Łangowski, A.; Kasperska-Wołowicz, W.; Sadan, H.A.; Rolbiecki, R.; Prus, P.; Kazula, M.J. Assessment of water needs of grapevines in western Poland from the perspective of climate change. Agriculture 2020, 10, 477. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper 24; Food and Agriculture Organization: Rome, Italy, 1977. [Google Scholar]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Żakowicz, S.; Hewelke, P. Wybrane Materiały Meteorologiczne [Selected Meteorological Materials]; SGGW: Warszawa, Poland, 1995; p. 356. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Produkcyjnej [Basics of Technical Infrastructure in Production Space]; SGGW: Warszawa, Poland, 2009; p. 192. [Google Scholar]
- Rolbiecki, S.; Rzekanowski, C. Influence of sprinkler and drip irrigation on the growth and yield of strawberries grown on sandy soils. Acta Hortic. 1997, 439, 669–672. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of apple trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 929–936. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of stone fruit-bearing trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 937–942. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Response of black currant (Ribes nigrum L.) cv. ‘Titania’ to micro-irrigation under loose sandy soil conditions. Acta Hortic. 2002, 585, 649–652. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Effect of micro-irrigation on the growth and yield of raspberry (Rubus idaeus L.) cv. ‘Polana’ grown in very light soil. Acta Hortic. 2002, 585, 653–657. [Google Scholar] [CrossRef]
- Stachowski, P.; Markiewicz, J. The need of irrigation in central Poland on the example of Kutno county. Annu. Set Environ. Prot. 2011, 13, 1453–1472. [Google Scholar]
- Treder, W.; Pacholak, E. Nawadnianie roślin sadowniczych [Irrigation of fruit plants]. In Nawadnianie Roślin [Plant Irrigation]; Karczmarczyk, S., Nowak, L., Eds.; PWRiL: Poznań, Poland, 2006; pp. 333–365. [Google Scholar]
- Ruiz-Sanchez, M.C.; Domingo, R.; Castel, J.R. Deficit irrigation in fruit trees and vines in Spain. Span. J. Agric. Res. 2010, 8, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Yunusa, I.A.M.; Walker, R.R.; Loveys, B.R.; Blackmore, D.H. Determination of transpiration in irrigated grapevines: Comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrig. Sci. 2000, 20, 1–8. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Phyisological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Burg, P. The influence of drip irrigation on the quality of vine grapes. Acta Univ. Agric. Silvic. Mendel Brun. 2008, 56, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.S.; Castel, J.R. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am. J. Enol. Viticult. 2008, 59, 30–38. [Google Scholar]
- Acevedo-Opazoa, C.; Ortega-Fariasa, S.; Fuentes, S. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W.; Kammerer, G.; Himmelbauer, M.L. Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control. Soil Water Res. 2016, 11, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Nolz, R.; Loiskandl, W. Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control. Soil Water Res. 2017, 12, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, É.; Pieri, F.H.P. Grapevine and climate change: What adaptations of plant material and training systems should we anticipate? Spéc. Laccave J. Int. Sci. Vigne Vin 2014, 3, 61–69. [Google Scholar]
- Kartschall, T.; Wodinski, M.; von Bloh, W.; Oesterle, H.; Rachimow, C.; Hoppmann, D. Changes in phenology and frost risks in Vitis vinifera (cv Riesling) between 1901 and 2100. Meteorol. Z. 2015, 24, 189–200. [Google Scholar] [CrossRef]
- Eccel, E.; Zollo, A.L.; Mercogliano, P.; Zorer, R. Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Comput. Electron. Agric. 2016, 127, 92–100. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Duchene, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Neumann, P.A.; Matzarakis, A. Viticulture in southwest Germany under climate change conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Goergen, K.; Beersma, L.; Hoffmann, L.; Junk, J. ENSEMBLES-based assessment of regional climate effects in Luxembourg and their impact on vegetation. Clim. Chang. 2013, 119, 761–773. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Piszczek, P.; Chmura, K. Attempt at comparison of the grapevine water requirements in the regions of Bydgoszcz and Wrocław. Infrastruct. Ecol. Rural Areas 2017, III, 1157–1166. [Google Scholar]
- Irimia, L.M.; Patriche, C.V.; Rosca, B. Climate change impact on suitability for wine production in Romania. Theor. Appl. Climatol. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate change impacts assessment on wine-growing bioclimatic transition areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B.; Liszewska, M. Wpływ przewidywanej zmiany klimatu na zapotrzebowanie ziemniaka późnego na wodę [Impact of climate change on water demand of late potato]. Infrastruct. Ecol. Rural Areas 2013, 2, 155–165. [Google Scholar]
- Kuchar, L.; Iwański, S. Rainfall simulation for the prediction of crop irrigation in future climate. Infrastruct. Ecol. Rural Areas 2011, 5, 7–18. [Google Scholar]
- Kuchar, L.; Iwański, S. Rainfall evaluation for crop production until 2050-2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2013, 2, 187–200. [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Simulation of hydrothermal conditions for crop production purpose until 2050–2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2015, II, 319–334. [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Assessment of meteorological drought in 2015 for North Central part of Poland using hydrothermal coefficient (HTC) in the context of climate change. Infrastruct. Ecol. Rural Areas 2017, I, 257–273. [Google Scholar]
- Serra, I.; Strever, A.; Myburgh, P.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
Province | Station | Altitude a | Longitude | Latitude |
---|---|---|---|---|
Kuyavian–Pomeranian | Bydgoszcz | 46 | 18°01′ | 53°08′ |
Masovian | Warszawa | 106 | 20°59′ | 52°09′ |
Greater Poland | Poznań | 86 | 16°50′ | 52°25′ |
Lodz | Łódź | 184 | 19°24′ | 51°44′ |
Period | Trend Equation | R2 | Tendency (°C·Decade−1) |
---|---|---|---|
Kuyavian–Pomeranian Province | |||
May–October | y = 0.0272x + 15.070 | R² = 0.2007 *** | 0.3 |
June–August | y = 0.0406x + 17.874 | R² = 0.1952 *** | 0.4 |
July | y = 0.0262x + 19.006 | R² = 0.0339 n.s. | 0.3 |
Masovian Province | |||
May–October | y = 0.0396x + 14.987 | R² = 0.3887 *** | 0.4 |
June–August | y = 0.0577x + 17.720 | R² = 0.3848 *** | 0.6 |
July | y = 0.0477x + 18.813 | R² = 0.1277 ** | 0.5 |
Greater Poland Province | |||
May–October | y = 0.055x + 14.310 | R² = 0.4967 *** | 0.6 |
June–August | y = 0.0739x + 16.813 | R² = 0.448 *** | 0.7 |
July | y = 0.0607x + 17.906 | R² = 0.1516 ** | 0.6 |
Lodz Province | |||
May–October | y = 0.0351x + 14.312 | R² = 0.3518 *** | 0.3 |
June–August | y = 0.0572x + 16.821 | R² = 0.3726 *** | 0.6 |
July | y = 0.0490x + 17.794 | R² = 0.1123 ** | 0.5 |
Characteristic | Province | Months of the Growing Season | |||||
---|---|---|---|---|---|---|---|
May | June | July | August | September | October | ||
Minimum (mm) | K–P a | 39 | 80 | 103 | 91 | 51 | 19 |
M | 41 | 79 | 101 | 92 | 52 | 21 | |
G–P | 37 | 76 | 98 | 90 | 50 | 20 | |
L | 37 | 75 | 96 | 88 | 48 | 19 | |
Maximum (mm) | K–P | 57 | 109 | 133 | 119 | 70 | 34 |
M | 55 | 106 | 132 | 121 | 68 | 34 | |
G–P | 54 | 106 | 133 | 121 | 86 | 35 | |
L | 52 | 103 | 127 | 118 | 67 | 35 | |
Median (mm) | K–P | 48 | 89 | 116 | 104 | 60 | 27 |
M | 48 | 88 | 115 | 105 | 61 | 28 | |
G–P | 47 | 85 | 114 | 103 | 60 | 28 | |
L | 45 | 84 | 110 | 102 | 58 | 27 | |
Standard deviation (mm) | K–P | 3.5 | 5.3 | 6.9 | 5.6 | 4.4 | 3.7 |
M | 3.1 | 5.2 | 6.4 | 5.4 | 4.4 | 3.5 | |
G–P | 3.4 | 5.8 | 7.5 | 6.2 | 6.3 | 3.7 | |
L | 3.2 | 5.2 | 7.0 | 5.4 | 4.6 | 3.6 | |
Variability coefficient (%) | K–P | 7.4 | 6.0 | 6.0 | 5.4 | 7.4 | 14.2 |
M | 6.5 | 5.9 | 5.6 | 5.1 | 7.3 | 12.6 | |
G–P | 7.4 | 6.8 | 6.7 | 6.0 | 10.3 | 13.1 | |
L | 7.0 | 6.2 | 6.3 | 5.3 | 7.8 | 13.5 |
Period | Provinces | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
Linear Correlation Coefficient (r) | ||||
May–October | 0.191 n.s. | 0.450 *** | 0.194 n.s. | 0.196 n.s. |
June–August | 0.080 n.s. | 0.261 n.s. | 0.028 n.s. | 0.068 n.s. |
July | 0.117 n.s. | 0.185 n.s. | 0.127 n.s. | 0.030 n.s. |
Tendency of Rainfall (mm decade−1) | ||||
May–October | 15.5 | 38.3 | 14.9 | 15.2 |
June–August | 5.1 | 16.5 | 1.7 | –3.9 |
July | 4.1 | 8.7 | 5.5 | –1.2 |
Period | Provinces | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
Linear Correlation Coefficient (r) | ||||
May–October | 0.456 *** | 0.644 *** | 0.701 *** | 0.610 *** |
June–August | 0.429 *** | 0.614 *** | 0.660 *** | 0.598 *** |
July | 0.184 n.s. | 0.357 ** | 0.389 ** | 0.335 ** |
Tendency of Water Needs (mm decade−1) | ||||
May–October | 5.8 | 8.4 | 11.5 | 7.6 |
June–August | 4.6 | 6.6 | 8.4 | 6.5 |
July | 1.1 | 2.0 | 2.5 | 2.0 |
Probability of Rainfall Deficit Occurrence | Provinces | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
May–October | ||||
N50% = normal years | 133 | 100 | 126 | 103 |
N25% = medium dry years | 254 | 251 | 262 | 232 |
N10% = very dry years | 330 | 363 | 296 | 300 |
June–August | ||||
N50% = normal years | 117 | 92 | 106 | 95 |
N25% = medium dry years | 200 | 194 | 194 | 175 |
N10% = very dry years | 260 | 303 | 225 | 242 |
July | ||||
N50% = normal years | 37 | 35 | 31 | 30 |
N25% = medium dry years | 95 | 87 | 81 | 88 |
N10% = very dry years | 129 | 122 | 99 | 132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Łangowski, A.; Sadan, H.A.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Liberacki, D. The Water Needs of Grapevines in Central Poland. Agronomy 2021, 11, 416. https://doi.org/10.3390/agronomy11030416
Jagosz B, Rolbiecki S, Rolbiecki R, Łangowski A, Sadan HA, Ptach W, Stachowski P, Kasperska-Wołowicz W, Pal-Fam F, Liberacki D. The Water Needs of Grapevines in Central Poland. Agronomy. 2021; 11(3):416. https://doi.org/10.3390/agronomy11030416
Chicago/Turabian StyleJagosz, Barbara, Stanisław Rolbiecki, Roman Rolbiecki, Ariel Łangowski, Hicran A. Sadan, Wiesław Ptach, Piotr Stachowski, Wiesława Kasperska-Wołowicz, Ferenc Pal-Fam, and Daniel Liberacki. 2021. "The Water Needs of Grapevines in Central Poland" Agronomy 11, no. 3: 416. https://doi.org/10.3390/agronomy11030416
APA StyleJagosz, B., Rolbiecki, S., Rolbiecki, R., Łangowski, A., Sadan, H. A., Ptach, W., Stachowski, P., Kasperska-Wołowicz, W., Pal-Fam, F., & Liberacki, D. (2021). The Water Needs of Grapevines in Central Poland. Agronomy, 11(3), 416. https://doi.org/10.3390/agronomy11030416