HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Materials
2.2. Seed Germination
2.3. Plant Extractions
2.4. Determination of Total Phenolic Content (TPC)
2.5. Determination of Total Flavonoid Content (TFC)
2.6. Antioxidant Activities
2.6.1. 2,2-diphenyl-1-picrylhydrazyl Assay
2.6.2. 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Assay
2.7. HPLC-DAD Polyphenols and Flavonoids Quantification
2.8. Statistical Analysis
3. Results
3.1. Total Phenolic Content (TPC)
3.2. Total Flavonoid Content (TFC)
3.3. Antioxidant Activity Evaluation of Sorghum bicolor Extracts
3.4. HPLC-DAD Poliphenols and Flavonoids Quantification of Sorghum bicolor Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, J.; He, L.; Li, T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE 2019, 14, e0220340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, A.; Condei, R. Some considerations on the prospects of Sorghum crop. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2014, 14, 295–304. [Google Scholar]
- Istrati, D.I.; Constantin, O.E.; Vizireanu, C.; Dinică, R.; Furdui, B. Sorghum as source of functional compounds and their importance in human nutrition. Ann. Univ. Dunarea Galati Fascicle VI-Food Technol. 2019, 43, 189–205. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Lee, H.A.; Lee, H.Y.; Seo, E.; Lee, J.; Kim, S.B.; Oh, S.; Choi, E.; Choi, E.; Lee, S.E.; Choi, D. Current understandings of plant nonhost resistance. Mol. Plant-Microbe Interact. 2017, 30, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Hutzler, P.; Fischbach, R.; Heller, W.; Jungblut, T.P.; Reuber, S.; Schmitz, R.; Veit, M.; Weissenbock, G.; Schnitzler, J.P. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 1998, 49, 953–965. [Google Scholar] [CrossRef]
- André, C.M.; Schafleitner, R.; Legay, S.; Lefèvre, I.; Aliaga, C.A.A.; Nomberto, G.; Hoffmann, L.; Hausman, J.-F.; Larondelle, Y.; Evers, D. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 2009, 70, 1107–1116. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as biofactories: Glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue. J. Agric. Food Chem. 2012, 60, 11378–11386. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; De la Rosa, L.A. Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. Int. J. Mol. Sci. 2016, 17, 1002. [Google Scholar] [CrossRef] [Green Version]
- Menezes, R.; Foito, A.; Jardim, C.; Costa, I.; Garcia, G.; Rosado-Ramos, R.; Freitag, S.; Alexander, C.J.; Outeiro, T.F.; Stewart, D.; et al. Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants 2020, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, H.; Keikhaei, B.; Mottaghi, S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother. Res. 2019, 33, 2002–2014. [Google Scholar] [CrossRef]
- Rooney, L.W. Overview: Sorghum and Millet Food Research Failures and Successes; Food Science Faculty, Cereal Quality Laboratory, Soil and Crop Science Department, Texas A&M University: College Station, TX, USA, 2003; Available online: http://www.afripo.org.uk/papers/paper09.rooney.pdf15/10/03 (accessed on 15 January 2020).
- Ciacci, C.; Maiuri, L.; Caporaso, N.; Bucci, C.; Del Giudice, L.; Massardo, D.R.; Pontieri, P.; Di Fonzo, N.; Bean, S.R.; Ioerger, B.; et al. Celiac disease: In vitro and in vivo safety and palatability of wheat-free sorghum food products. Clin. Nutr. 2007, 26, 799–805. [Google Scholar] [CrossRef]
- Salazar-Lopez, N.J.; Gonzales-Aguilar, G.; Rouzaud-Sandez, O.; Robles-Sanchez, M. Technologies applied to sorghum (Sorghum bicolor L. Moench): Changes in phenolic compounds and antioxidant capacity. Food Sci. Technol. 2018, 38, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, D.; Gheysen, L.; Muylaert, K.; Foubert, I. Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum. Sep. Purif. Technol. 2018, 194, 362–367. [Google Scholar] [CrossRef]
- Bradwell, J.; Hurd, M.; Pangloli, P.; McClure, A.; Dia, V.P. Storage stability of sorghum phenolic extracts’ flavones luteolin and apigenin. LWT Food Sci. Technol. 2018, 97, 787–793. [Google Scholar] [CrossRef]
- Cudalbeanu, M.; Ghinea, I.O.; Furdui, B.; Dah-Nouvlessounon, D.; Raclea, R.; Costache, T.; Cucolea, I.E.; Urlan, F.; Dinica, R.M. Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere. Molecules 2018, 23, 1247. [Google Scholar] [CrossRef] [Green Version]
- Cudalbeanu, M.; Furdui, B.; Cârâc, G.; Barbu, V.; Iancu, A.V.; Marques, F.; Leitão, J.H.; Sousa, S.A.; Dinica, R.M. Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Chokki, M.; Cudalbeanu, M.; Zongo, C.; Dah-Nouvlessounon, D.; Ghinea, I.O.; Furdui, B.; Raclea, R.; Savadogo, A.; Baba-Moussa, L.; Avramescu, S.M.; et al. Exploring Antioxidant and Enzymes (A-Amylase and B-Glucosidase) Inhibitory Activity of Morindalucida and Momordicacharantia Leaves from Benin. Foods 2020, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, S.; Johnson, P.C.; Schielzeth, H. The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [Green Version]
- Przybylska-Balcerek, A.; Frankowski, J.; Stuper-Szablewska, K. Bioactive compounds in sorghum. Eur. Food Res. Technol. 2019, 245, 1075–1080. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 2021. [Google Scholar] [CrossRef]
- Pochiscanu, S.F.; Buburuz, A.A.; Popa, L.D. Influence of Some Crop Management Sequences on the Grain Yield and Quality at Sorghum Bicolor L. Under the Center of Moldavia Conditions. Rom. Agric. Res. 2017, 34, 287–291. [Google Scholar]
- Przybylska-Balcerek, A.; Frankowski, J.; Stuper-Szablewska, K. The influence of weather conditions on bioactive compound content in sorghum grain. Eur. Food Res. Technol. 2020, 246, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- Kaufman, P.B.; Duke, J.A.; Brielmann, H.; Boik, J.; Hoyt, J.E. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health. J. Altern. Complementary Med. 1997, 3, 7–12. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006, 44, 236–251. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dykes, L.; Rooney, L.W.; Waniska, R.D.; Rooney, W.L. Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem. 2005, 53, 6813–6818. [Google Scholar] [CrossRef]
- Arouna, N.; Gabriele, M.; Pucci, L. The Impact of Germination on Sorghum Nutraceutical Properties. Foods 2020, 9, 1218. [Google Scholar] [CrossRef] [PubMed]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.; van Berkel, W.J. Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol. Mol. Biol. Rev. 2006, 1, 21–38. [Google Scholar]
- Habeanu, M.; Lefter, N.; Gheorghe, A.; Taranu, I. Assessment of the effects of dietary Albanus sorghum on some biochemical parameter in weaning piglets. Arch. Zootech. 2017, 20, 25–32. [Google Scholar]
Sample Name | IC50 (mg/mL) | |
---|---|---|
DPPH | ABTS | |
SS 1m | 0.900 ± 0.006 | 0.027 ± 0.003 |
SG 24m | 0.750 ± 0.005 | 0.087 ± 0.006 |
SG 36m | 0.300 ± 0.002 | 0.018 ± 0.001 |
SG 48m | 0.600 ± 0.004 | 0.022 ± 0.002 |
SS 1e | 1.500 ± 0.010 | <0.002 |
SG 24e | 1.900 ± 0.015 | <0.002 |
SG 36e | 0.550 ± 0.004 | 0.063 ± 0.003 |
SG 48e | 0.350 ± 0.003 | <0.002 |
Concentration (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|
Compound | SS1e | SG24e | SG36e | SG48e | SS1m | SG24m | SG36m | SG48m |
Caffeic acid | 0.09 | 0.05 | ND | ND | 0.25 | 0.29 | 0.04 | ND |
Catechin | ND | ND | ND | ND | ND | 0.23 | ND | ND |
Chlorogenic acid | 0.03 | 0.02 | ND | 0.05 | 0.11 | 0.09 | 0.04 | 0.26 |
Daidzein | 0.03 | 0.01 | ND | ND | 0.08 | 0.09 | 0.03 | 0.22 |
Epicatechin | 0.85 | 0.35 | 0.16 | 0.58 | 2.65 | 3.37 | 0.55 | 2.72 |
Gallic acid | ND | ND | 0.05 | ND | 0.33 | 0.38 | ND | ND |
Genistein | 0.15 | 0.08 | 0.06 | 0.23 | 0.40 | 0.23 | 0.17 | 1.15 |
Hyperoside | ND | ND | ND | ND | 0.32 | ND | ND | ND |
Naringenin | 0.12 | 0.06 | 0.05 | 0.19 | 0.34 | ND | 0.14 | 0.96 |
p-Coumaric acid | 0.15 | 0.08 | 0.04 | 0.23 | 0.41 | 0.47 | 0.17 | ND |
Quercetin | 0.06 | 0.03 | 0.02 | 0.06 | 0.12 | 0.11 | 0.05 | 0.28 |
Rutin | ND | 0.06 | ND | ND | 0.31 | ND | ND | ND |
Tannic acid | ND | ND | ND | ND | 0.21 | 0.24 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghinea, I.O.; Ionica Mihaila, M.D.; Blaga, G.-V.; Avramescu, S.M.; Cudalbeanu, M.; Isticioaia, S.-F.; Dinica, R.M.; Furdui, B. HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination. Agronomy 2021, 11, 417. https://doi.org/10.3390/agronomy11030417
Ghinea IO, Ionica Mihaila MD, Blaga G-V, Avramescu SM, Cudalbeanu M, Isticioaia S-F, Dinica RM, Furdui B. HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination. Agronomy. 2021; 11(3):417. https://doi.org/10.3390/agronomy11030417
Chicago/Turabian StyleGhinea, Ioana Otilia, Maria Daniela Ionica Mihaila, Giorgiana-Valentina Blaga (Costea), Sorin Marius Avramescu, Mihaela Cudalbeanu, Simona-Florina Isticioaia, Rodica Mihaela Dinica, and Bianca Furdui. 2021. "HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination" Agronomy 11, no. 3: 417. https://doi.org/10.3390/agronomy11030417
APA StyleGhinea, I. O., Ionica Mihaila, M. D., Blaga, G. -V., Avramescu, S. M., Cudalbeanu, M., Isticioaia, S. -F., Dinica, R. M., & Furdui, B. (2021). HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination. Agronomy, 11(3), 417. https://doi.org/10.3390/agronomy11030417