Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review
Abstract
:1. Introduction
1.1. The Need for Slow-Release Fertilizers
1.2. Short History and Broad Classification of Slow-Release Fertilizers
1.3. A Brief Overview of the Study
2. Fertilizers Inhibitors and Their Importance in Agriculture
2.1. Urease Inhibitors (UI)
2.2. Nitrification Inhibitors (NI)
2.3. Combination of Nitrate and Urease Inhibitors (UI and NI)
3. Nitrogen Indices
3.1. Nitrogen Use Efficiency (NUE)
- N uptakefert = total N (in shoots and seeds) under applied N fertilization,
- N uptakecontrol = total N (in shoots and seeds) without fertilizer.
3.2. Nitrogen Utilization Efficiency (NUtE)
3.3. N Yield and Protein Yield
3.4. Aboveground N Uptake
3.5. Nitrogen Harvest Index (NHI)
- N seed = nitrogen content in seeds,
- N uptake = nitrogen content in whole plant.
3.6. Nitrogen Agronomic Efficiency (NAE)
4. Factors Affecting Nitrogen Indices
5. Impact of N Inhibitors on Fertilizer N Indices of Field Crops
5.1. Wheat
5.2. Maize
5.3. Rice
5.4. Cotton
5.5. Other Field Crops
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Trostle, R. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices; Diane Publishing; United States Department of Agriculture: Washington, DC, USA, 2010.
- Hertel, T.W. The global supply and demand for agricultural land in 2050: A perfect storm in the making? Am. J. Agric. Econ. 2011, 93, 259–275. [Google Scholar] [CrossRef]
- Valizadeh, N.; Bijani, M. Agricultural Research: Applications and Future Orientations. In Zero Hunger; Springer: Cham, Switzerland, 2020; pp. 71–79. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03; Global Perspective Studies Unit, Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G.; Durand, J.L.; Louarn, G. Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In Crop Physiology, 2nd ed.; Sandras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 161–206. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Malhi, S.S. Interactions of nitrogen with other nutrients and water: Effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution. Adv. Agron. 2005, 86, 341–409. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzetti, B.; de Vries, W.; van Grinsven, H.J.M.; Abrol, Y.P.; Adhya, T.K.; Billen, G.; et al. Our Nutrient World: The Challenge to Produce More Food & Energy with Less Pollution; NERC/Centre for Ecology & Hydrology: Edinburgh, Scotland, UK, 2013. [Google Scholar]
- Savci, S. Investigation of effect of chemical fertilizers on environment. Apcbee Proc. 2012, 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. In Eutrophication: Causes, Consequences and Control; Springer: Dordrecht, The Netherlands, 2014; pp. 1–15. [Google Scholar] [CrossRef]
- Neset, T.S.S.; Bader, H.P.; Scheidegger, R.; Lohm, U. The flow of phosphorus in food production and consumption-Linköping, Sweden, 1870–2000. Sci. Total Environ. 2008, 396, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Fan, Y.; Yang, P.; Wang, X.; Wang, Y.; Tian, J.; Xu, L.; Wang, C. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma 2014, 213, 87–94. [Google Scholar] [CrossRef]
- Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Sedláček, J.; Hawkins, E.; Knutti, R. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 2014, 41, 8554–8562. [Google Scholar] [CrossRef] [Green Version]
- McArthur, J.W.; McCord, G.C. Fertilizing growth: Agricultural inputs and their effects in economic development. J. Dev. Econ. 2017, 127, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.S. Enhanced nitrogen fertiliser technologies support the ‘4R’concept to optimise crop production and minimise environmental losses. Soil Res. 2017, 55, 463–472. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Turchenek, L.W.; Carter, M.R.; Angers, D.A. Soil and Environmental Science Dictionary, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; International Fertilizer Industry Association (IFA): Paris, France, 2010. [Google Scholar]
- Fu, J.; Wang, C.; Chen, X.; Huang, Z.; Chen, D. Classification research and types of slow controlled release fertilizers (SRFs) used-a review. Commun. Soil Sci. Plant Anal. 2018, 49, 2219–2230. [Google Scholar] [CrossRef]
- Association of American Plant Food Control Officials—AAPFCO. Official Documents 57; AAPFCO: West Lafayette, IN, USA, 1997. [Google Scholar]
- Yamamoto, C.F.; Pereira, E.I.; Mattoso, L.H.C.; Mattoso, T.; Ribeiro, C. Slow release fertilizers based on urea/urea–Formaldehyde polymer nanocomposites. Chem. Eng. J. 2016, 287, 390–397. [Google Scholar] [CrossRef]
- Kakabouki, I.; Togias, T.; Folina, A.E.; Karydogianni, S.; Zisi, C.; Bilalis, D. Evaluation of yield and nitrogen utilisation with urease and nitrification inhibitors in sweet potato crop (Ipomoea batatas L.). Folia Hortcult. 2020, 32, 147–157. [Google Scholar] [CrossRef]
- Oertli, J.J. Controlled-release fertilizers. Fertil. Res. 1980, 1, 103–123. [Google Scholar] [CrossRef]
- Rudmin, M.; Banerjee, S.; Makarov, B. Evaluation of the effects of the application of glauconitic fertilizer on oat development: A two-year field-based investigation. Agronomy 2020, 10, 872. [Google Scholar] [CrossRef]
- Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous Overview on the Controlled Release Fertilizers. Adv. Chem. 2014, 1–16. [Google Scholar] [CrossRef]
- Al-Rawajfeh, A.E.; Alrbaihat, M.R.; AlShamaileh, E.M. Characteristics and types of slow-and controlled-release fertilizers. In Controlled Release Fertilizers for Sustainable Agriculture, 1st ed.; Lewu, F.B., Volova, T., Sabu, T., Rakhimol, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 57–78. [Google Scholar]
- Van Eerd, L.L. Use of a nitrogen budget to predict nitrogen losses in processing butternut squash with different nitrogen fertilization strategies. HortScience 2010, 45, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- Congreves, K.A.; Van Eerd, L.L. Nitrogen cycling and management in intensive horticultural systems. Nutr. Cycl. Agroecosyst. 2015, 102, 299–318. [Google Scholar] [CrossRef]
- Romero, C.M.; Engel, R.E.; Chen, C.; Wallander, R.; Jones, C.A. Late-fall, winter, and spring broadcast applications of urea to no-till winter wheat II. Fertilizer N recovery, yield, and protein as affected by NBPT. Soil Sci. Soc. Am. J. 2017, 81, 331–340. [Google Scholar] [CrossRef]
- Cox, M.C.; Qualset, C.O.; Rains, D.W. Genetic variation for nitrogen assimilation and translocation in wheat. I. Dry matter and nitrogen accumulation. Crop. Sci. 1985, 25, 430–435. [Google Scholar] [CrossRef]
- Papakosta, D.K.; Gagianas, A.A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron. J. 1991, 83, 864–870. [Google Scholar] [CrossRef]
- Panel, E.N.E. Nitrogen Use Efficiency (NUE) an Indicator for the Utilization of Nitrogen in Food Systems; Wageningen University, Alterra: Wageningen, The Netherlands, 2015. [Google Scholar]
- Papangkorn, J.; Isaraphan, C.; Phinhongthong, S.; Opaprakasit, M.; Opaprakasit, P. Controlled-release material for urea fertilizer from polylactic acid. Adv. Mater. Res. 2008, 55, 897–900. [Google Scholar] [CrossRef]
- Artola, E.; Cruchaga, S.; Ariz, I.; Moran, J.F.; Garnica, M.; Houdusse, F.; Garcia-Mina, J.M.; Ignacio, I.; Lasa, B.; Aparicio-Tejo, P.M. Effect of N-(n-butyl) thiophosphorictriamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L. Plant Growth Regul. 2011, 63, 73–79. [Google Scholar] [CrossRef]
- Cantarella, H.; Otto, R.; Soares, J.R.; de Brito Silva, A.G. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Upadhyay, L.S.B. Urease inhibitors: A review. Indian J. Biotechnol. 2012, 11, 381–388. [Google Scholar]
- Saggar, S.; Singh, J.; Giltrap, D.L.; Zaman, M.; Luo, J.; Rollo, M.; Kim, D.-G.; Rys, G.; Van der Weerden, T.J. Quantification of reductions in ammonia emissions from fertiliser urea and animal urine in grazed pastures with urease inhibitors for agriculture inventory: New Zealand as a case study. Sci. Total Environ. 2013, 465, 136–146. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, A.; Jaswal, A.; Singh, M.; Gaikwad, D. Nutrient use efficiency concept and interventions for improving nitrogen use efficiency. Plant Arch. 2018, 18, 1015–1023. [Google Scholar]
- Kafarski, P.; Talma, M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res. 2018, 13, 101–112. [Google Scholar] [CrossRef]
- Singh, J.; Bolan, N.S.; Saggar, S.; Zaman, M. The role of inhibitors in controlling the bioavailability and losses of nitrogen. In Chemical Bioavailability in Terrestrial Environment, 1st ed.; Naidu, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 329–362. [Google Scholar]
- Xu, J.; Liao, L.; Tan, J.; Shao, X. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: A pots experiment. Soil Tillage Res. 2013, 126, 169–176. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishiwawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. Scope and strategies for regulation of nitrification in agricultural systems–challenges and opportunities. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef] [Green Version]
- Snyder, C.S.; Davidson, E.A.; Smith, P.; Venterea, R.T. Agriculture: Sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr. Opin. Environ. Sustain. 2014, 9–10, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.R.; Cassman, N.A.; Kielak, A.M.; Pijl, A.; Carmo, J.B.; Lourenço, K.S.; Kuramae, E.E. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil. Sci. Rep. 2016, 6, 30349. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Li, Y.; Fan, X.; Geng, Y. Controlled-Release Urea Commingled with Rice Seeds Reduced Emission of Ammonia and Nitrous Oxide in Rice Paddy Soil. J. Environ. Qual. 2013, 42, 1661–1673. [Google Scholar] [CrossRef]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.C. Ammonia volatilization losses from surface-applied urea with urease and nitrifications inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Kakabouki, I.; Folina, A.E.; Zisi, C.; Karydogianni, S. Fertilization expression via nitrogen indices in soybean crop under two system tillage. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 799–813. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3, 4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Frame, W. Ammonia volatilization from urea treated with NBPT and two nitrification inhibitors. Agron. J. 2017, 109, 1–10. [Google Scholar] [CrossRef]
- Gioacchini, P.; Nastri, A.; Marzadori, C.; Giovannini, C.; Antisari, L.V.; Gessa, C. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biol. Fertil. Soils 2002, 36, 129–135. [Google Scholar] [CrossRef]
- Kakabouki, I.; Karydogianni, S.; Zisi, C.; Folina, A.E. Effect of fertilization with N-inhibitors on root and crop development of flaxseed crop (Linumusitatissimum L.). AGRIVITA J. Agric. Sci. 2020, 42. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. B Biol Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Merrill, A.L.; Watt, B.K. Energy value of foods: Basis and derivation. In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1973; p. 74. [Google Scholar]
- Ye, Q.; Zhang, H.; Wei, H.; Zhang, Y.; Wang, B.; Xia, K.; Huo, Z.; Dai, Q.; Xu, K. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Front. Agric. China 2007, 1, 30–36. [Google Scholar] [CrossRef]
- Craswell, E.T.; Godwin, D.C. The Efficiency of Nitrogen Fertilizers Applied to Cereals Grown in Different Climates; No. REP-3326; CIMMYT: El Batán, Mexico, 1984. [Google Scholar]
- Raza, S.; Zhou, J.; Aziz, T.; Afzal, M.R.; Ahmed, M.; Javaid, S.; Chen, Z. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: A challenge not challenged (1961–2013). Environ. Res. Lett. 2018, 13, 034012. [Google Scholar] [CrossRef]
- Shi, Z.; Li, D.; Jing, Q.; Cai, J.; Jiang, D.; Cao, W.; Dai, T. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice–wheat rotation. Field Crop. Res. 2012, 127, 241–247. [Google Scholar] [CrossRef]
- Lian, H.; Qin, C.; He, Z.; Niu, J.; Zhang, C.; Sang, T.; Li, H.; Zhang, S. A synergistic increase in water and nitrogen use efficiencies in winter wheat cultivars released between the 1940s and the 2010s for cultivation in the drylands of the shaanxi Province in China. Agric. Water Manag. 2020, 240, 106308. [Google Scholar] [CrossRef]
- Kumar, R.; Prakash, N.R.; Padhan, B.K. An inside into the nitrogen use efficiency and its importance in crop production. J. Pharmacogn. Phytochem. 2019, 8, 2652–2657. [Google Scholar]
- Hocking, M.D.; Reynolds, J.D. Nitrogen uptake by plants subsidized by Pacific salmon carcasses: A hierarchical experiment. Can. J. For. Res. 2012, 42, 908–917. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesström, I.; Brito, R.; Messing, I. Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand. Agric. Water Manag. 2016, 168, 68–77. [Google Scholar] [CrossRef]
- Hao, Q.N.; Zhou, X.A.; Ai, H.S.; Wang, C.; Zhou, R.; Chen, S.L. Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genome 2011, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Attia, A.; Shapiro, C.; Kranz, W.; Mamo, M.; Mainz, M. Improved yield and nitrogen use efficiency of corn following soybean in irrigated sandy loams. Soil Sci. Soc. Am. J. 2015, 79, 1693–1703. [Google Scholar] [CrossRef] [Green Version]
- López-Bellido, R.J.; López-Bellido, L. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization. Field Crop. Res. 2001, 71, 31–46. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crop. Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J.; Cao, P.; Hatfield, J.L. Are we getting better in using nitrogen? Variations in nitrogen use efficiency of two cereal crops across the United States. Earth’s Future 2019, 7, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Cormier, F.; Faure, S.; Dubreuil, P.; Heumez, E.; Beauchêne, K.; Lafarge, S.; Praud, S.; Le Gouis, J. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2013, 126, 3035–3048. [Google Scholar] [CrossRef]
- Weih, M.; Hamnér, K.; Pourazari, F. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 2018, 430, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Szumigalski, A.R.; Van Acker, R.C. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agron. J. 2006, 98, 1030–1040. [Google Scholar] [CrossRef]
- Haile, D.; Nigussie, D.; Ayana, A. Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Plant Nutr. 2012, 12, 389–410. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.; Kronzucker, H.J.; Wang, Y.; Shi, W. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems. Agric. Ecosyst. Environ. 2021, 307, 107227. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Ding, W.X.; Chen, Z.M.; Yu, H.Y.; Luo, J.F.; Yoo, G.Y.; Xiang, J.; Zhang, H.J.; Yuan, J.J. Nitrous oxide emission and nitrogen use efficiency in response to nitrophosphate, N-(n-butyl) thiophosphorictriamide and dicyandiamide of a wheat cultivated soil under sub-humid monsoon conditions. Biogeosciences 2015, 12, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, F.; Deng, A.; Feng, X.; Fang, F.; Zhang, W. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agric. Ecosyst. Environ. 2016, 231, 218–228. [Google Scholar] [CrossRef]
- Li, T.; Zhang, W.; Yin, J.; Chadwick, D.; Norse, D.; Lu, Y.; Liu, X.; Chen, X.; Zhang, F.; Powlson, D.; et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Chang. Biol. 2018, 24, e511–e521. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, X.; Tenuta, M.; Gui, D.; Li, X.; Xue, W.; Zeng, F. Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China. Sci. Total Environ. 2020, 748, 141543. [Google Scholar] [CrossRef]
- Guardia, G.; Sanz-Cobena, A.; Sanchez-Martín, L.; Fuertes-Mendizábal, T.; González-Murua, C.; Álvarez, J.M.; Chadwick, D.; Vallejo, A. Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agric. Ecosyst. Environ. 2018, 265, 421–431. [Google Scholar] [CrossRef]
- Rose, T.J.; Wood, R.H.; Rose, M.T.; Van Zwieten, L. A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agric. Ecosyst. Environ. 2018, 252, 69–73. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Hina, M.; Tahir, M.M. Effect of Azadirachta indica (neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions. Chemosphere 2011, 82, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K.; Tewari, S.K.; Patra, D.D. Natural nitrification inhibitors for higher nitrogen use efficiency, crop yield, and for curtailing global warming. J. Trop. Agric. 2011, 49, 19–24. [Google Scholar]
- Migliorati, M.D.A.; Bell, M.J.; Grace, P.R.; Rowlings, D.W.; Scheer, C.; Strazzabosco, A. Assessing agronomic and environmental implications of different N fertilisation strategies in subtropical grain cropping systems on Oxisols. Nutr. Cycl. Agroecosyst. 2014, 100, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhang, X.; Gao, H.; Li, B.; Wang, H.; Yan, Q.; Ollenburger, M.; Zhang, W. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. J. Clean. Prod. 2019, 241, 118295. [Google Scholar] [CrossRef]
- Janke, C.K.; Moody, P.; Bell, M.J. Three-dimensional dynamics of nitrogen from banded enhanced efficiency fertilizers. Nutr. Cycl. Agroecosyst. 2020, 118, 227–247. [Google Scholar] [CrossRef]
- Souza, E.F.; Soratto, R.P.; Sandaña, P.; Venterea, R.T.; Rosen, C.J. Split application of stabilized ammonium nitrate improved potato yield and nitrogen-use efficiency with reduced application rate in tropical sandy soils. Field Crop. Res. 2020, 254, 107847. [Google Scholar] [CrossRef]
- Linquist, B.A.; Liu, L.; van Kessel, C.; van Groenigen, K.J. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crop. Res. 2013, 154, 246–254. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.; Buzetti, S.; Pagliari, P.H.; Santini, J.M.; Alves, C.J.; Megda, M.M.; Nogueira, T.A.R.; Andreotti, M.; Arf, O. Maize yield response to nitrogen rates and sources associated with Azospirillumbrasilense. Agron. J. 2019, 111, 1985–1997. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, L.M.; Bhogal, A.; Chadwick, D.R.; McGeough, K.; Misselbrook, T.; Rees, R.M.; Thorman, R.E.; Watson, C.J.; Williams, J.R.; Smith, K.A.; et al. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Sci. Total Environ. 2019, 661, 696–710. [Google Scholar] [CrossRef]
- Kubota, H.; Iqbal, M.; Quideau, S.; Dyck, M.; Spaner, D. Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems. Renew. Agric. Food Syst. 2018, 33, 443–466. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Parkin, T.B. Enhanced efficiency fertilizers: Effect on agronomic performance of corn in Iowa. Agron. J. 2014, 106, 771–780. [Google Scholar] [CrossRef]
- Shaviv, A.; Hagin, J.; Neumann, P.M. Effects of a nitrification inhibitor on efficiency of nitrogen utilization by wheat and millet. Commun. Soil Sci. Plant Anal. 1987, 18, 815–833. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Hu, B.; Shah, J.A.; Chu, G. A 2-year study of the impact of reduced nitrogen application combined with double inhibitors on soil nitrogen transformation and wheat productivity under drip irrigation. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef] [PubMed]
- Guardia, G.; Gonzalez-Murua, C.; Fuertes-Mendizabal, T.; Vallejo, A. The scarcity and distribution of rainfall drove the performance (ie, mitigation of N oxide emissions, crop yield and quality) of calcium ammonium nitrate management in a wheat crop under rainfed semiarid conditions. Arch. Agron. Soil Sci. 2020, 66, 1827–1844. [Google Scholar] [CrossRef]
- Recio, J.; Montoya, M.; Ginés, C.; Sanz-Cobena, A.; Vallejo, A.; Alvarez, J.M. Joint mitigation of NH3 and N2O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma 2020, 373, 114423. [Google Scholar] [CrossRef]
- Rekowski, A.; Wimmer, M.A.; Hitzmann, B.; Hermannseder, B.; Hahn, H.; Zörb, C. Application of urease inhibitor improves protein composition and bread-baking quality of urea fertilized winter wheat. J. Plant Nutr. Soil Sci. 2020, 183, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Mousavi Shalmani, M.A.; Lakzian, A.; Khorassani, R.; Khavazi, K.; Zaman, M. Interaction of Different Wheat Genotypes and Nitrification Inhibitor 3, 4-Dimethylpyrazole Phosphate Using 15N Isotope Tracing Techniques. Commun. Soil Sci. Plant Anal. 2017, 48, 1247–1258. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Pagliari, P.H.; Santini, J.M.K. Can NBPT urease inhibitor in combination with Azospirillumbrasilense inoculation improve wheat development? Nutr. Cycl. Agroecosyst. 2020, 1–13. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Rodrigues, W.L.; Santini, J.M.K.; Alves, C.J. Nitrogen fertilisation efficiency and wheat grain yield affected by nitrogen doses and sources associated with Azospirillumbrasilense. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 606–617. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy. Eur. J. Agron. 2013, 44, 38–45. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Luo, J.; Lindsey, S.; Bolan, N.; Ding, W. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci. Total Environ. 2018, 628, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.B.; Thapa, S.B.; Fan, Y.; Park, S. Agronomic and economic effects of two enhanced-efficiency urea fertilizer technologies on Southern Great Plains winter wheat. Agron. J. 2018, 110, 1097–1102. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zheng, X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Ayuso, M.; Gabriel, J.L.; Quemada, M. Nitrogen use efficiency and residual effect of fertilizers with nitrification inhibitors. Eur. J. Agron. 2016, 80, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.; Sawyer, J. Evaluation of nitrogen fertilizer additives for enhanced efficiency in corn on Iowa soils. Crop. Soils 2017, 50, 52–58. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Du, J.; He, A.; Yang, H.; Xue, G.; Zhang, Y. Adding NBPT to urea increases N use efficiency of maize and decreases the abundance of N-cycling soil microbes under reduced fertilizer-N rate on the North China Plain. PLoS ONE 2020, 15, e0240925. [Google Scholar] [CrossRef]
- Guardia, G.; Vallejo, A.; Cardenas, L.M.; Dixon, E.R.; García-Marco, S. Fate of 15N-labelled ammonium nitrate with or without the new nitrification inhibitor DMPSA in an irrigated maize crop. Soil Biol. Biochem. 2018, 116, 193–202. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air andwater quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- MohdZuki, M.M.; Sakimin, S.Z.; Yusop, M.K. N-(n-Butyl) ThiophosphoricTriamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil. Sustainability 2020, 12, 8780. [Google Scholar] [CrossRef]
- Rinaldi, L.F.; Garcia, P.L.; Sermarini, R.A.; Trivelin, P.C.O. 15N-Urea efficiency in maize as influenced by humic substances and urease inhibitors treatments. Commun. Soil Sci. Plant Anal. 2019, 50, 198–208. [Google Scholar] [CrossRef]
- Woodley, A.L.; Drury, C.F.; Yang, X.Y.; Phillips, L.A.; Reynolds, D.W.; Calder, W.; Oloya, T.O. Ammonia volatilization, nitrous oxide emissions, and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers. Soil Sci. Soc. Am. J. 2020, 84, 1327–1341. [Google Scholar] [CrossRef]
- Silva, D.R.G.; Pereira, A.F.; Dourado, R.L.; Silva, F.P.D.; Ávila, F.W.; Faquin, V. Productivity and efficiency of nitrogen fertilization in maize under different levels of urea and NBPT-treated urea. Ciênc. Agrotecnol. 2011, 35, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.F.; Greer, K.D.; Villamil, M.B.; Nafziger, E.D.; Pittelkow, C.M. Enhanced-Efficiency Fertilizer Impacts on Yield-Scaled Nitrous Oxide Emissions in Maize. Soil Sci. Soc. Am. J. 2018, 82, 1469–1481. [Google Scholar] [CrossRef]
- Yang, M.; Fang, Y.; Sun, D.; Shi, Y. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Sci. Rep. 2016, 6, 22075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Mi, W.; Xie, Y.; Ma, Q.; Wu, L.; Hu, Z.; Dai, F. Nitrapyrin affects the abundance of ammonia oxidizers rather than community structure in a yellow clay paddy soil. J. Soils Sediments 2019, 19, 872–882. [Google Scholar] [CrossRef]
- Yang, G.; Ji, H.; Sheng, J.; Zhang, Y.; Feng, Y.; Guo, Z.; Chen, L. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Sci. Total Environ. 2020, 743, 140799. [Google Scholar] [CrossRef]
- Mi, W.; Zheng, S.; Yang, X.; Wu, L.; Liu, Y.; Chen, J. Comparison of yield and nitrogen use efficiency of different types of nitrogen fertilizers for different rice cropping systems under subtropical monsoon climate in China. Eur. J. Agron. 2017, 90, 78–86. [Google Scholar] [CrossRef]
- Yao, H.; Huang, S.; Qiu, Q.; Li, Y.; Wu, L.; Mi, W.; Dai, F. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil. Appl. Microbiol. Biotechnol. 2016, 100, 6815–6826. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Ni, K.; Zaman, M.; Luo, J.; Ding, W. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agric. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Sun, Y.; Zhang, M.; Li, C.; Yang, Y.; Liu, Z.; Li, S. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crop. Res. 2015, 184, 65–73. [Google Scholar] [CrossRef]
- Karydogianni, S.; Darawsheh, M.K.; Kakabouki, I.; Zisi, C.; Folina, A.E.; Roussis, I.; Tselia, Z.; Bilalis, D. Effect of nitrogen fertilizations, with and without inhibitors, on cotton growth and fiber quality. Agron. Res. 2020, 18, 432–449. [Google Scholar] [CrossRef]
- Bronson, K.F.; Hunsaker, D.J.; Mon, J.; Andrade-Sanchez, P.; White, J.W.; Conley, M.M.; Barnes, E.M. Improving nitrogen fertilizer use efficiency in surface-and overhead sprinkler-irrigated cotton in the desert Southwest. Soil Sci. Soc. Am. J. 2017, 81, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Giannoulis, K.D.; Bartzialis, D.; Skoufogianni, E.; Danalatos, N.G. Innovative Nitrogen Fertilizers Effect on Cotton Cultivation. Commun. Soil Sci. Plant Anal. 2020, 51, 869–882. [Google Scholar] [CrossRef]
- Ma, Z.; Gao, X.; Tenuta, M.; Kuang, W.; Gui, D.; Zeng, F. Urea fertigation sources affect nitrous oxide emission from a drip-fertigated cotton field in northwestern China. Agric. Ecosyst. Environ. 2018, 265, 22–30. [Google Scholar] [CrossRef]
- Zareabyaneh, H.; Bayatvarkeshi, M. Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environ. Earth Sci. 2015, 74, 3385–3393. [Google Scholar] [CrossRef]
- Gonzaga, L.C.; Carvalho, J.L.N.; de Oliveira, B.G.; Soares, J.R.; Cantarella, H. Crop residue removal and nitrification inhibitor application as strategies to mitigate N2O emissions in sugarcane fields. Biomass Bioenergy 2018, 119, 206–216. [Google Scholar] [CrossRef]
- Antille, D.L.; Hoekstra, N.J.; Lalor, S.T. Field-scale evaluation of calcium ammonium nitrate, urea, and urea treated with N-(n-butyl) thiophosphorictriamide applied to grassland in Ireland. Commun. Soil Sci. Plant Anal. 2015, 46, 1345–1361. [Google Scholar] [CrossRef]
- Afshar, R.K.; Mohammed, Y.A.; Chen, C. Enhanced efficiency nitrogen fertilizer effect on camelina production under conventional and conservation tillage practices. Ind. Crop. Prod. 2016, 94, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Suter, H.C.; Sultana, H.; Davies, R.; Walker, C.; Chen, D. Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture. Soil Res. 2016, 54, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Rowlings, D.W.; Scheer, C.; Liu, S.; Grace, P.R. Annual nitrogen dynamics and urea fertilizer recoveries from a dairy pasture using 15N; effect of nitrification inhibitor DMPP and reduced application rates. Agric. Ecosyst. Environ. 2016, 216, 216–225. [Google Scholar] [CrossRef]
- Lester, D.W.; Bell, M.J.; Bell, K.L.; Migliorati, M.D.A.; Scheer, C.; Rowlings, D.; Grace, P.R. Agronomic responses of grain sorghum to DMPP-treated urea on contrasting soil types in north-eastern Australia. Soil Res. 2016, 54, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Sloan, J.J.; Anderson, W.B. Bermudagrass response to surface-applied urea amended with calcium chloride or ammonium thiosulfate. Commun. Soil Sci. Plant Anal. 2001, 32, 1915–1929. [Google Scholar] [CrossRef]
- Chao, X.; Liang-Huan, W.; XiaoTang, J.; Fu-Suo, Z. Effects of nitrogen fertilizer with nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on nitrate accumulation and quality of cabbage (Brassica campastris L. ssp. pekinesis). Agric. Sci. China 2004, 3, 622–626. [Google Scholar]
- Zhao, Z.; Wu, D.; Bol, R.; Shi, Y.; Guo, Y.; Meng, F.; Wu, W. Nitrification inhibitor’s effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils. Atmos. Environ. 2017, 166, 142–150. [Google Scholar] [CrossRef]
- Liu, T.; Liang, Y.; Chu, G. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field. PLoS ONE 2017, 12, e0176305. [Google Scholar] [CrossRef]
- Wallace, A.J.; Armstrong, R.D.; Harris, R.H.; Belyaeva, O.N.; Grace, P.R.; Partington, D.L.; Scheer, C. Fertiliser timing and use of inhibitors to reduce N2O emissions of rainfed wheat in a semi-arid environment. Nutr. Cycl. Agroecosyst. 2018, 112, 231–252. [Google Scholar] [CrossRef]
- Mohd, K.Y.; Radziah, O.; Samsuri, A. Field evaluation of newly-developed controlled release fertilizer on rice production and nitrogen uptake. Sains Malays. 2017, 46, 925–932. [Google Scholar] [CrossRef]
- Borges, B.M.M.N.; Peixoto, F.R.; Braga, M.D.M.; Brunozzi, B.D.B.; Silveira, M.L.; Coutinho, E.L.M. Response of bermudagrass to enhanced-efficiency fertilizers, application strategies and release under tropical conditions. Aust. J. Crop. Sci. 2020, 14, 108–115. [Google Scholar] [CrossRef]
Inhibitor | N Application Rate | Crop(s) | Yield (Approximate Upward and Downward Trends Provoked by the Utilization of Inhibitors) | NUE | NUtE | NHI | NAE (kg Seed/Tuber Increased kg N−1 Applied) | Country References | |
---|---|---|---|---|---|---|---|---|---|
Nitrification inhibitors (NI) | Compared to unfertilized control | Compared to fertilized control without inhibitors | Compared to fertilized control without inhibitors | Compared to unfertilized control | |||||
CP | Urea: 180 kg N ha−1 | tomato | ↑ 120% | ↑ 21% | ↑ 55% | - | - | - | China [77] |
DMPP | Ammonium sulphate nitrate: 160 kg N ha−1 (split-applied) | potato | ↑ 104% | ↑ 13.9% (urea at 160 kg N ha−1) | ↑ 50% | 48–51 (at maturation) | - | - | Brazil [90] |
DMPP | Urea: 180 kg N ha−1 (single application) | maize | ↑ 34.4% | ↑ 1.7% (urea at 225 kg N ha−1) | ↑ 4.8% (grain NUE) | - | 0.79 | 14.6 | China [110] |
DMPP | Urea: 300 kg N ha−1 (split-applied 50:50) | maize | ↑ 70.4% | ↑ 7% (urea at 300 kg N ha−1 split-applied) | ↑ 4.3% (three-year average) | - | - | 12.7 | China [139] |
Nitrapyrin | Urea: 225 kg N ha−1 (split-applied) | cotton | ↑ 35% (lint yield) | ↑ 4% (lint yield; urea at 225 kg N ha−1 split-applied) | ↑ 5.7% | 7 | - | - | China [140] |
DCD | Urea: 160 kg N ha−1 (split-applied) | cotton | ↑ 3.2-fold (lint yield) ↑ 3-fold (seed cotton yield) | ↑ 13% (lint yield) ↑ 8.2% (seed cotton yield; urea at 160 kg N ha−1) | - | 12–21 | 0.72 | 20.6 (seed cotton) | Greece [126] |
CP | Urea: 180 kg N ha−1 (single application) | rice (early and late) | ↑ 129% (five-year average; early rice) ↑ 56.7% (five-year average; late rice) | ↑ 9.7% (five-year average; early rice; split-applied urea at 180 kg N ha−1) ↑ 9.6% (five-year average; late rice; split-applied urea at 180 kg N ha−1) | ↑ 10.3% (early rice) ↑ 8.8% (late rice) | - | - | 20.8 (early rice) 17.9 (late rice) | China [121] |
DMPP | Urea: 50 kg N ha−1 (at sowing) | wheat | ↑ 30.2% and ↑ 26.5% (in two different locations) | ↑ 7% and ↓ 6.1% (single applied at sowing in two different locations; urea at 50 kg N ha−1) ↑ 0.3% and ↑ 15.9% (single applied at the end of tillering in two different locations; urea at 50 kg N ha−1) | ↑ 12% and ↓ 4% (single applied at sowing in two different locations; urea at 50 kg N ha−1) ↑ 13% and ↑ 49% (single applied at the end of tillering in two different locations; urea at 50 kg N ha−1) | 39.3 and 7 (in two different locations) | 0.73 and 0.69 (in two different locations) | 18.2 and 8.9 (in two different locations) | Australia [141] |
DCD + biochar | Urea: 300 kg N ha−1 (split-applied) | rice | ↑ 62.5% (in 1st year) ↑ 47.7% (in 2nd year) | ↑ 4.1% (in 1st year; split-applied urea at 300 kg N ha−1) ↑ 10% (in 2nd year; split-applied urea at 300 kg N ha−1) | ↑ 4.6% and ↑ 7.2% (in 1st and 2nd year) | 46.3 and 44.9 (in 1st and 2nd year) | - | 11 and 10.3 (in 1st and 2nd year) | China [123] |
DMPP | Urea: 120 kg N ha−1 (split-applied; Palm stearin coated urea DMPP 100% 0.464 g/100 g urea) | rice | - | ↑ 12.9% (split-applied urea at 120 kg N ha−1) | - | - | - | - | Malaysia [142] |
Nitrapyrin | Urea: 120 kg N ha−1 (single application at tillering) | wheat | ↑ 39.9% | ↑ 3.2% (applied at tillering; urea at 120 kg N ha−1) ↑ 4.6% (split-applied; urea at 120 kg N ha−1) | ↓ 5% (applied at tillering; urea at 120 kg N ha−1) ↑ 5.7% (split-applied; urea at 120 kg N ha−1) | - | - | 7.3 | Spain [83] |
DMPSA | Urea: 120 kg N ha−1 (single application at tillering) | wheat | ↑ 34.6% | ↓ 0.7% (applied at tillering; urea at 120 kg N ha−1) ↑ 0.6% (split-applied; urea at 120 kg N ha−1) | ↑ 1.6% (applied at tillering; urea at 120 kg N ha−1) ↑ 12.3% (split-applied; urea at 120 kg N ha−1) | - | - | 6.3 | Spain [83] |
DMPP | Urea: 300 kg N ha−1 (split-applied 50:50) | wheat | ↑ 88.6% | ↑ 6.4% (urea at 300 kg N ha−1 split-applied) | ↑ 2.4% (three-year average) | - | - | 10.3 | China [139] |
DMPP | Ammonium sulphate: 120 kg N ha−1 | wheat | ↑ 14.4% | ↑ 6.3% (ammonium sulphate at 120 kg N ha−1) | ↑ 3.6% | - | - | 3.2 | Iran [101] |
Inhibitor | N Application Rate | Crop(s) | Yield (Approximate Upward and Downward Trends Provoked by the Utilization of Inhibitors) | NUE | NUtE | NHI | NAE (kg Seed/Tuber Increased kg N−1 Applied) | Country References | |
---|---|---|---|---|---|---|---|---|---|
Urease inhibitors (UI) | Compared to unfertilized control | Compared to fertilized control without inhibitors | Compared to fertilized control without inhibitors | Compared to unfertilized control | |||||
NBPT | Urea: 96 kg N ha−1 | maize | ↑ 203% or 3.03-fold | ↑ 49% (urea at 120 kg N ha−1) | ↑ 45% | - | - | - | Malaysia [113] |
NBPT | Urea: 178.4 kg N ha−1 | maize | ↑ 85% (urea: 28.4 kg N ha−1) | ↑ 5.6% (urea at 178.4 kg N ha−1) | - | - | - | 29.4 | Canada [115] |
NBPT | Urea: 180 kg N ha−1 (single application) | maize | ↑ 36% | ↑ 3% (urea at 225 kg N ha−1) | ↑ 7.1% (grain NUE) | - | 0.79 | 15.3 | China [110] |
NBPT | Urea: 300 kg N ha−1 (split-applied 50:50) | maize | ↑ 64.8% | ↑ 3.5% (urea at 300 kg N ha−1 split-applied) | ↑ 2.5% (three-year average) | - | - | 11.7 | China [139] |
NBPT | Urea: 270 kg N ha−1 | rice | ↑ 55% | ↑ 2% | ↑ 4% | - | - | 10.7 | China [120] |
2-NPT | Urea: 180 kg N ha−1 (split-applied) | wheat | ↑ 59% | ↑ 2.1% (urea at 180 kg N ha−1) | ↑ 2.3% | - | - | - | Germany [100] |
NBPT | Urea: 160 kg N ha−1 (split-applied) | cotton | ↑ 3.3-fold (lint yield) ↑ 3.2-fold (seed cotton yield) | ↑ 18.7% (lint yield) ↑ 14.5% (seed cotton yield; urea at 160 kg N ha−1) | - | 13–21.5 | 0.72 | 22.4 (seed cotton) | Greece [126] |
NBPT | Urea: 120 kg N ha−1 (single application at planting) | sweet potato | ↑ 34% | ↑ 6.9% (urea at 120 kg N ha−1) | ↑ 1.7-fold | - | 0.84 | 36.3 | Greece [52] |
NBPT | Urea: 150 kg N ha−1 (split-applied) | wheat (inoculated with Azospirillumbrasilense) | - | ↑ 18% | ↑ 24% | - | - | - | Brazil [102] |
NBPT | Urea: experimentation on 0–200 kg N ha−1 rates | wheat | - | ↑ 0.76% | ↑ 24.5% (1st year) ↓ 35.4% (2nd year) | - | 0.62–0.69 | 8–12 | Brazil [103] |
NBPT | Urea: 300 kg N ha−1 (split-applied 50:50) | wheat | ↑ 85.7% | ↑ 4.8% (urea at 300 kg N ha−1 split-applied) | ↑ 2.3% (three-year average) | - | - | 10 | China [139] |
NBPT | Urea: 400 kg N ha−1 (either single or split-applied) | bermudagrass | - | ↑ 27% (total herbage accumulation) | ↑ 14% | - | - | 23 | Brazil [140] |
NBPT | Urea: 50 kg N ha−1 (at the end of tillering) | wheat | ↑ 29% and ↑12% (in two different locations) | ↑ 6% and ↓ 16.9% (single applied at sowing in two different locations; urea at 50 kg N ha−1) ↓ 0.6% and ↑ 2.6% (single applied at the end of tillering in two different locations; urea at 50 kg N ha−1) | ↓ 3% and ↓ 43% (single applied at sowing in two different locations; urea at 50 kg N ha−1) ↓ 2% and ↑ 10% (single applied at the end of tillering in two different locations; urea at 50 kg N ha−1) | 41.5 and 42.2 (in two different locations) | 0.74 and 0.83 (in two different locations) | 17.5 and 4 (in two different locations) | Australia [143] |
Hydroquinone + biochar | Urea: 300 kg N ha−1 (split-applied) | rice | ↑ 69.3% (in 1st year) ↑ 49.2% (in 2nd year) | ↑ 8.4% (in 1st year; split-applied urea at 300 kg N ha−1) ↑ 11.1% (in 2nd year; split-applied urea at 300 kg N ha−1) | ↑ 10% and ↑ 12.6% (in 1st and 2nd year) | 44.4 and 42.1 (in 1st and 2nd year) | - | 12.3 and 10.6 (in 1st and 2nd year) | China [123] |
NBPT | Urea: 120 kg N ha−1 (single application at tillering) | wheat | ↑ 37.6% | ↑ 1.5% (applied at tillering; urea at 120 kg N ha−1) ↑ 2.9% (split-applied; urea at 120 kg N ha−1) | ↑ 4.4% (applied at tillering; urea at 120 kg N ha−1) ↑ 15.1% (split-applied; urea at 120 kg N ha−1) | - | - | 6.9 | Spain [83] |
NBPT | Urea: 60 kg N ha−1 (single application) | flax | ↑ 17.2% | ↑ 8.1% (single application; urea at 60 kg N ha−1) | ↑ 3-fold | - | 0.85 | 1.7 | Greece [56] |
Inhibitor | N Application Rate | Crop(s) | Yield (Approximate Upward and Downward Trends Provoked by the Utilization of Inhibitors) | NUE | NUtE | NHI | NAE (kg Seed/Tuber Increased kg N−1 Applied) | Country References | |
---|---|---|---|---|---|---|---|---|---|
Nitrification (NI) + Urease inhibitors (UI) | Compared to unfertilized control | Compared to fertilized control without inhibitors | Compared to fertilized control without inhibitors | Compared to unfertilized control | |||||
Nitrapyrin + NBPT | Urea: 240 kg N ha−1 | wheat | ↑ 78% | ↑ 7.2% (urea at 300 kg N ha−1) | ↑ 30% | - | - | 10.8 | China [97] |
DCD + Hydroquinone | Urea: 125 kg N ha−1 (split-applied) | wheat | ↑ 3.7-fold | ↑ 8.6% (split-applied urea at 125 kg N ha−1) | ↑ 9.3% | 47.5 | - | 28.6 | China [105] |
DMPSA + NBPT | Urea: 120 kg N ha−1 (single application at tillering) | wheat | ↑ 25.8% | ↓ 7.2% (applied at tillering; urea at 120 kg N ha−1) ↓ 5.9% (split-applied; urea at 120 kg N ha−1) | ↑ 16.2% (applied at tillering; urea at 120 kg N ha−1) ↑ 26.9% (split-applied; urea at 120 kg N ha−1) | - | - | 4.7 | Spain [111] |
DCD + NBPT | Urea: 31.5 kg N ha−1 at planting Urea: 70 kg N ha−1 at planting Urea: 63 kg N ha−1 split-applied | wheat | ↑ 0.6% ↑ 33.7% ↑ 17.2% | ↓ 5% (urea at 31.5 kg N ha−1 at planting) ↑ 25.6% (urea at 70 kg N ha−1 at planting) ↑ 8.2% (urea at 63 kg N ha−1 split-applied) | ↓ 94% (urea at 31.5 kg N ha−1 at planting) ↑ 3.5-fold (urea at 70 kg N ha−1 at planting) ↑ 2-fold (urea at 63 kg N ha−1 split-applied) | - | - | 0.32 8.1 4.6 | USA [106] |
DCD + NBPT | Urea: 240 kg N ha−1 (side-banded at planting) | cotton | ↑ 75% (lint yield) | ↑ 11% (lint yield; urea at 240 kg N ha−1) | 7.5 kg per kg N compared to 4.5 kg in fertilized control | - | - | - | China [82] |
DCD + NBPT | Urea: 160 kg N ha−1 (split-applied) | cotton | ↑ 3.4-fold (lint yield) ↑ 3.2-fold (seed cotton yield) | ↑ 20.5% (lint yield) ↑ 14.5% (seed cotton yield; urea at 160 kg N ha−1) | - | 14–23 | 0.72 | 22.4 | Greece [126] |
DCD + NBPT | Urea: 120 kg N ha−1 (single application at planting) | sweet potato | ↑ 37.8% | ↑9.9% (urea at 120 k g N ha−1) | ↑ 18-fold | - | 0.85 | 43 | Greece [25] |
DCD + Hydroquinone + biochar | Urea: 300 kg N ha−1 (split-applied) | rice | ↑ 81.9% (in 1st year) ↑ 45.8% (in 2nd year) | ↑ 16.5% (in 1st year; split-applied urea at 300 kg N ha−1) ↑ 8.6% (in 2nd year; split-applied urea at 300 kg N ha−1) | ↑ 12% and ↑ 11.7% (in 1st and 2nd year) | 46.3 and 41.6 (in 1st and 2nd year) | - | 14.5 and 9.9 (in 1st and 2nd year) | China [123] |
DCD + NBPT | Urea: 60 kg N ha−1 (single application) | flax | ↑ 22.7% | ↑ 13.2% (single application; urea at 60 kg N ha−1) | ↑ 4.2-fold | - | 0.85 | 4.4 | Greece [56] |
DCD + NBPT | Urea: 202 kg N ha−1 (single broadcast application) | maize | ↑ 69.4% | ↑ 0.27% (single application; urea at 202 kg N ha−1) | - | - | - | 29.4 | USA [117] |
DMPP + NBPT | Urea: 300 kg N ha−1 (split-applied 50:50) | maize | ↑ 74.6% | ↑ 9.6% (urea at 300 kg N ha−1 split-applied) | ↑ 6.8% (three-year average) | - | - | 13.4 | China [139] |
DMPP + NBPT | Urea: 300 kg N ha−1 (split-applied 50:50) | wheat | ↑ 83.7% | ↑ 3.7% (urea at 300 kg N ha−1 split-applied) | ↑ 2.7% (three-year average) | - | - | 9.8 | China [139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folina, A.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Katsenios, N.; Efthimiadou, A.; Travlos, I.S.; Roussis, I.; Darawsheh, M.K.; Papastylianou, P.; et al. Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review. Agronomy 2021, 11, 418. https://doi.org/10.3390/agronomy11030418
Folina A, Tataridas A, Mavroeidis A, Kousta A, Katsenios N, Efthimiadou A, Travlos IS, Roussis I, Darawsheh MK, Papastylianou P, et al. Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review. Agronomy. 2021; 11(3):418. https://doi.org/10.3390/agronomy11030418
Chicago/Turabian StyleFolina, Antigolena, Alexandros Tataridas, Antonios Mavroeidis, Angeliki Kousta, Nikolaos Katsenios, Aspasia Efthimiadou, Ilias S. Travlos, Ioannis Roussis, Mohammed K. Darawsheh, Panagiota Papastylianou, and et al. 2021. "Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review" Agronomy 11, no. 3: 418. https://doi.org/10.3390/agronomy11030418
APA StyleFolina, A., Tataridas, A., Mavroeidis, A., Kousta, A., Katsenios, N., Efthimiadou, A., Travlos, I. S., Roussis, I., Darawsheh, M. K., Papastylianou, P., & Kakabouki, I. (2021). Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review. Agronomy, 11(3), 418. https://doi.org/10.3390/agronomy11030418