The Pros and Cons of Rye Chromatin Introgression into Wheat Genome
Abstract
:1. Introduction
2. Wheat Genome Evolution and Gene Pools
3. Rye General Description
4. Rye Chromosomes as a Source of Desirable Genes and Alleles for Wheat
4.1. Chromosome 1R
4.1.1. Introgression Types
4.1.2. Resistance to Biotic Factors
4.1.3. Resistance to Abiotic Factors
4.1.4. Agronomic Traits
4.1.5. End-Use Quality
4.2. Chromosome 2R
4.2.1. Resistance to Biotic Factors
4.2.2. Resistance to Abiotic Factors
4.2.3. Agronomic Traits
4.2.4. End-Use Quality
4.3. Chromosome 3R
4.3.1. Resistance to Biotic Factors
4.3.2. Resistance to Abiotic Factors
4.3.3. Agronomic Traits
4.3.4. End-Use Quality
4.4. Chromosome 4R
4.4.1. Resistance to Biotic Factors
4.4.2. Resistance to Abiotic Factors
4.4.3. Agronomic Traits
4.4.4. End-Use Quality
4.5. Chromosome 5R
4.5.1. Resistance to Biotic Factors
4.5.2. Resistance to Abiotic Factors
4.5.3. Agronomic Traits
4.5.4. End-Use Quality
4.5.5. Others
4.6. Chromosome 6R
4.6.1. Resistance to Biotic Factors
4.6.2. Agronomic Traits
4.7. Chromosome 7R
5. Rye Genetic Resources and Perspective for Their Use in Wheat Breeding
6. Future in the Hands of Molecular Biologist
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tadesse, W.; Amri, A.; Ogbonnaya, F.C.; Sanchez-Garcia, M.; Sohail, Q.; Baum, M. Wheat. In Genetic and Genomic Resources for Grain Cereals Improvement; Singh, M., Upadhyaya, H.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–124. [Google Scholar]
- Nuttonson, M. Wheat-Climatic Relationships and the Use of Phenology in Ascertaining the Thermal and Photo-thermal Requirements of Wheat; American Institute of Crop Ecology: Washington, DC, USA, 1955. [Google Scholar]
- Baum, M.; Tadesse, W.; Nachit, M.; Abdalla, O.; Rajaram, S.; Singh, R.; Payne, T.; Ammar, K.; Morgounov, A.; Braun, H. Global crop improvement networks to bridge technology gaps. In Advances in Wheat Genetics: From Genome to Field; Springer: Tokyo, Japan, 2015; pp. 387–399. [Google Scholar]
- Feldman, M.; Levy, A.A. Genome evolution due to allopolyploidization in wheat. Genetics 2012, 192, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.-C.; Gu, Y.Q.; Puiu, D.; Wang, H.; Twardziok, S.O.; Deal, K.R.; Huo, N.; Zhu, T.; Wang, L.; Wang, Y. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017, 551, 498–502. [Google Scholar] [CrossRef]
- Feldman, M.; Lupton, F.; Miller, T. Evolution of Crop Plants; Smartt, J., Simmonds, N.W., Eds.; Longman Scientific & Technical: Harlow Essex, UK, 1995; pp. 184–192. [Google Scholar]
- Huang, S.; Sirikhachornkit, A.; Su, X.; Faris, J.; Gill, B.; Haselkorn, R.; Gornicki, P. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aeg+ilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 2002, 99, 8133–8138. [Google Scholar] [CrossRef] [Green Version]
- Sears, E.R. The Aneuploids of Common Wheat. Research Bulletin 572; University of Missouri, College of Agriculture, Agricultural Experiment Station: Columbia, MO, USA, 1954; pp. 3–54. [Google Scholar]
- Flavell, R. Sequence amplification, deletion and rearrangement: Major sources of variation during species divergence. In Genome Evolution; Dover, G.A., Flavell, R.B., Eds.; Published for the Systematics Association by Academic Press: London, UK, 1982; pp. 301–323. [Google Scholar]
- Wicker, T.; Mayer, K.F.; Gundlach, H.; Martis, M.; Steuernagel, B.; Scholz, U.; Šimková, H.; Kubaláková, M.; Choulet, F.; Taudien, S. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 2011, 23, 1706–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, J.; Friebe, B.; Gill, B. Wheat genomics: Exploring the polyploid model. Curr. Genom. 2002, 3, 577–591. [Google Scholar] [CrossRef]
- Matsuoka, Y. Evolution of polyploid Triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 2011, 52, 750–764. [Google Scholar] [CrossRef] [Green Version]
- Middleton, C.P.; Senerchia, N.; Stein, N.; Akhunov, E.D.; Keller, B.; Wicker, T.; Kilian, B. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 2014, 9, e85761. [Google Scholar] [CrossRef] [Green Version]
- Sears, E.R. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 1976, 10, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Harlan, J.R.; de Wet, J.M. Toward a rational classification of cultivated plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Jiang, J.; Friebe, B.; Gill, B.S. Recent advances in alien gene transfer in wheat. Euphytica 1993, 73, 199–212. [Google Scholar] [CrossRef]
- Feuillet, C.; Langridge, P.; Waugh, R. Cereal breeding takes a walk on the wild side. Trends Genet. 2008, 24, 24–32. [Google Scholar] [CrossRef]
- Schlegel, R.H. Rye: Genetics, Breeding, and Cultivation; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Lukaszewski, A.J. Introgressions between wheat and rye. In Alien Introgression in Wheat; Springer: Cham, Switzerland, 2015; pp. 163–189. [Google Scholar]
- Molnár-Láng, M.; Molnár, I.; Szakács, É.; Linc, G.; Bedö, Z. Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In Genomics of Plant Genetic Resources; Springer: Dordrecht, The Netherlands, 2014; pp. 255–283. [Google Scholar]
- Endo, T. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res. 2007, 15, 67–75. [Google Scholar] [CrossRef]
- Rather, S.A.; Sharma, D.; Pandey, I.; Joshi, N. Alien gene introgression in wheat. In Wheat a Premier Food Crop; Kumar, A., Kumar, A., Prasad, B., Eds.; Kalyani Publishers: Delhi, India, 2017; pp. 90–109. [Google Scholar]
- Bauer, E.; Schmutzer, T.; Barilar, I.; Mascher, M.; Gundlach, H.; Martis, M.M.; Twardziok, S.O.; Hackauf, B.; Gordillo, A.; Wilde, P. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 2017, 89, 853–869. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, T.; Fernández-Rueda, P. Homoeology of rye chromosome arms to wheat. Theor. Appl. Genet. 1991, 82, 577–586. [Google Scholar] [CrossRef]
- Devos, K.M.; Atkinson, M.; Chinoy, C.; Francis, H.; Harcourt, R.; Koebner, R.; Liu, C.; Masojć, P.; Xie, D.; Gale, M. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 1993, 85, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Dundas, I.S.; Frappell, D.E.; Crack, D.M.; Fisher, J.M. Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci. 2001, 41, 1771–1778. [Google Scholar] [CrossRef] [Green Version]
- Lukaszewski, A.J.; Porter, D.R.; Baker, C.A.; Rybka, K.; Lapinski, B. Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat. Crop Sci. 2001, 41, 1743–1749. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Seo, B.; Suh, D.; Do, G.; Park, D.; Kwack, Y. Production of a new wheat line possessing the 1BL. 1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor. Appl. Genet. 2002, 104, 171–176. [Google Scholar] [CrossRef]
- Braun, H.; Payne, T.; Morgounov, A.; Van Ginkel, M.; Rajaram, S. The challenge: One billion tons of wheat by 2020. In Proceedings of the 9th International Wheat Genetic Symposium, Saskatoon, SK, Canada, 2–7 August 1998; pp. 2–7. [Google Scholar]
- Kőszegi, B.; Linc, G.; Juhász, L.; Lang, L.; Molnar-Lang, M. Occurrence of the 1Rs/1Bl wheat–rye translocation in Hungarian wheat varieties. Acta Agron. Hung. 2000, 48, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Rabinovich, S.V. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica 1998, 100, 323–340. [Google Scholar] [CrossRef]
- Yediay, F.E.; Baloch, F.S.; Kilian, B.; Özkan, H. Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL. RS and 1BL. RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces. Genet. Resour. Crop Evol. 2010, 57, 119–129. [Google Scholar] [CrossRef]
- Schlegel, R.; Korzun, V. About the origin of 1RS. 1BL wheat-rye chromosome translocations from Germany. Plant Breed. 1997, 116, 537–540. [Google Scholar] [CrossRef]
- Friebe, B.; Zeller, F.; Kunzmann, R. Transfer of the 1BL/1RS wheat-rye-translocation from hexaploid bread wheat to tetraploid durum wheat. Theor. Appl. Genet. 1987, 74, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Zeller, F.J.; Hsam, S.L. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In Proceedings of the Sixth International Wheat Genetics Symposium, Kyoto, Japan, 28 November–3 December 1983. [Google Scholar]
- Martin, T.; Harvey, T.; Bender, C.; Seifers, D.; Hatchett, J. Wheat curl mite resistant wheat germplasm. Crop Sci. 1983, 23, 809. [Google Scholar] [CrossRef]
- Ren, T.; Ren, Z.; Yang, M.; Yan, B.; Tan, F.; Fu, S.; Tang, Z.; Li, Z. Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol. Breed. 2018, 38, 101. [Google Scholar] [CrossRef]
- Ren, T.; Tang, Z.; Fu, S.; Yan, B.; Tan, F.; Ren, Z.; Li, Z. Molecular cytogenetic characterization of novel wheat-rye T1RS. 1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant Sci. 2017, 8, 799. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.-H.; Chen, F.; Yan, B.-J.; Zhang, H.-Q.; Ren, Z.-L. Genetic diversity of wheat–rye 1BL. 1RS translocation lines derived from different wheat and rye sources. Euphytica 2012, 183, 133–146. [Google Scholar] [CrossRef]
- Schlegel, R. Current List of Wheats with Rye and Alien Introgression; V08–19. Available online: http://www.rye-gene-map.de/rye-introgression/ (accessed on 15 January 2021).
- Sebesta, E.; Wood, E., Jr.; Porter, D.; Webster, J.; Smith, E. Registration of amigo wheat germplasms resistant to greenbug. Crop Sci. 1995, 35, 293. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Raupp, W.; McIntosh, R.; Gill, B. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 1996, 91, 59–87. [Google Scholar] [CrossRef]
- Porter, D.; Webster, J.; Burton, R.; Smith, E. Registration of GRS1201 greenbug multi-biotype-resistant wheat germplasm. Crop Sci. 1993, 33, 1115. [Google Scholar] [CrossRef]
- Kim, W.; Johnson, J.; Baenziger, P.; Lukaszewski, A.; Gaines, C. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004, 44, 1254–1258. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS. 1BL translocation of ’Kavkaz’origin. Genome 1993, 36, 821–824. [Google Scholar] [CrossRef]
- Hanušová, R.; Hsam, S.; Bartoš, P.; Zeller, F. Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L.(common wheat) cultivars carrying wheat-rye tranlocation T1BL·1RS. Heredity 1996, 77, 383–387. [Google Scholar] [CrossRef]
- Qi, W.; Tang, Y.; Zhu, W.; Li, D.; Diao, C.; Xu, L.; Zeng, J.; Wang, Y.; Fan, X.; Sha, L. Molecular cytogenetic characterization of a new wheat-rye 1BL• 1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta 2016, 244, 405–416. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Huerta-Espino, J.; Kinyua, M.G.; Wanyera, R.; Njau, P.; Ward, R.W. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. Cab Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2006, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011, 49, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.; Li, G.; Li, L.; Zhang, Z.; Yang, W.; Peng, Y.; Zhu, Y.; Yang, Z.; Rosewarne, G.M. Characterization of stripe rust resistance genes in the wheat cultivar Chuanmai45. Int. J. Mol. Sci. 2016, 17, 601. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Tang, Z.; Qiu, L.; Wang, Y.; Tang, S.; Fu, S. Identification and physical mapping of new PCR-based markers specific for the long arm of rye (Secale cereale L.) chromosome 6. J. Genet. Genom. 2016, 43, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Lapitan, N.L.; Peng, J.; Sharma, V. A high-density map and PCR markers for Russian wheat aphid resistance gene Dn7 on chromosome 1RS/1BL. Crop Sci. 2007, 47, 811–818. [Google Scholar] [CrossRef]
- Mohler, V.; Hsam, S.; Zeller, F.; Wenzel, G. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 2001, 120, 448–450. [Google Scholar] [CrossRef]
- Malik, R.; Brown-Guedira, G.; Smith, C.; Harvey, T.; Gill, B. Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci. 2003, 43, 644–650. [Google Scholar] [CrossRef]
- Lu, H.; Rudd, J.C.; Burd, J.; Weng, Y. Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL. 1RS wheat-rye translocations. Plant Breed. 2010, 129, 472–476. [Google Scholar]
- Crespo-Herrera, L.A.; Smith, C.M.; Singh, R.P.; Åhman, I. Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines. Arthropod-Plant Interact. 2013, 7, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Mago, R.; Zhang, P.; Vautrin, S.; Šimková, H.; Bansal, U.; Luo, M.-C.; Rouse, M.; Karaoglu, H.; Periyannan, S.; Kolmer, J. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 2015, 1, 1–3. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci. 2006, 46, 2183–2194. [Google Scholar] [CrossRef] [Green Version]
- Bertholdsson, N.O.; Andersson, S.C.; Merker, A. Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. Plant Breed. 2012, 131, 75–80. [Google Scholar] [CrossRef]
- Lei, M.; Li, G.; Zhang, S.; Liu, C.; Yang, Z. Molecular cytogenetic characterization of a new wheat Secale africanum 2R a (2D) substitution line for resistance to stripe rust. J. Genet. 2011, 90, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.-P.; Li, G.-R.; Liu, C.; Yang, Z.-J. Characterization of wheat–Secale africanum introgression lines reveals evolutionary aspects of chromosome 1R in rye. Genome 2012, 55, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tang, H.; Ding, P.; Mu, Y.; Habib, A.; Liu, Y.; Jiang, Q.; Chen, G.; Kang, H.; Wei, Y. Effects of the 1BL/1RS translocation on 24 traits in a recombinant inbred line population. Cereal Res. Commun. 2020, 48, 225–232. [Google Scholar] [CrossRef]
- Ludlow, M.; Muchow, R. A critical evaluation of traits for improving crop yields in water-limited environments. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1990; Volume 43, pp. 107–153. [Google Scholar]
- Sharma, S.; Xu, S.; Ehdaie, B.; Hoops, A.; Close, T.J.; Lukaszewski, A.J.; Waines, J.G. Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor. Appl. Genet. 2011, 122, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Sheikh, I.; Kumar, R.; Kumar, K.; Vyas, P.; Dhaliwal, H. Evaluation of end use quality and root traits in wheat cultivars associated with 1RS. 1BL translocation. Euphytica 2018, 214, 62. [Google Scholar] [CrossRef]
- Carver, B.; Rayburn, A.; Hunger, R.; Smith, E.; Whitmore, W. Registration of 1B versus 1RS. 1BL near-isoline genetic stocks from two hard red winter wheat populations. Crop Sci. 1993, 33, 1120. [Google Scholar] [CrossRef]
- Hoffmann, B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res. Commun. 2008, 36, 269–278. [Google Scholar] [CrossRef]
- Jang, J.H.; Jung, W.J.; Kim, D.Y.; Seo, Y.W. cDNA-AFLP analysis of 1BL. 1RS under water-deficit stress and development of wheat-rye translocation-specific markers. N. Zeal. J. Crop Hortic. Sci. 2017, 45, 150–164. [Google Scholar] [CrossRef]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Golkari, S.; Hasaniani, A. Molecular evaluation of 1RS-rye translocation distribution in the Iranian dryland wheat cultivars and elite promising lines. Iran. J. Field Crop Sci. 2017, 48, 119–128. [Google Scholar]
- Henry, Y.; Bernard, S.; Bernard, M.; Gay, G.; Marcotte, J.-L.; Buyser, J.D. Nuclear gametophytic genes from chromosome arm 1RS improve regeneration of wheat microspore-derived embryos. Genome 1993, 36, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Langridge, P.; Lazzeri, P.; Lörz, H. A segment of rye chromosome 1 enhances growth and embryogenesis of calli derived from immature embryos of wheat. Plant Cell Rep. 1991, 10, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, T.B.; Pankou, C.I.; Xynias, I.; Roupakias, D. Effect of the 1BL. 1RS wheat-rye translocation on the androgenic response in spring bread wheat. Cytol. Genet. 2017, 51, 485–490. [Google Scholar] [CrossRef]
- Agache, S.; Bachelier, B.; De Buyser, J.; Henry, Y.; Snape, J. Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theor. Appl. Genet. 1989, 77, 7–11. [Google Scholar] [CrossRef]
- Graybosch, R.A. Mini review: Uneasy unions: Quality effects of rye chromatin transfers to wheat. J. Cereal Sci. 2001, 33, 3–16. [Google Scholar] [CrossRef]
- Zhao, C.; Cui, F.; Wang, X.; Shan, S.; Li, X.; Bao, Y.; Wang, H. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crop. Res. 2012, 127, 79–84. [Google Scholar] [CrossRef]
- Villareal, R.L.; Mujeeb-Kazi, A.; Rajaram, S.; Del Toro, E. Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Jpn. J. Breed. 1994, 44, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Q.; Tang, H.P.; Zhang, H.; Mu, Y.; Lan, X.J.; Ma, J. A 1BL/1RS translocation contributing to kernel length increase in three wheat recombinant inbred line populations. Czech J. Genet. Plant Breed. 2020, 56, 43–51. [Google Scholar] [CrossRef]
- Moreno-Sevilla, B.; Baenziger, P.; Peterson, C.; Graybosch, R.; McVey, D. The 1BL/1RS translocation: Agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci. 1995, 35, 1051–1055. [Google Scholar] [CrossRef]
- McKendry, A.; Tague, D.; Miskin, K. Effect of 1BL. 1RS on agronomic performance of soft red winter wheat. Crop Sci. 1996, 36, 844–847. [Google Scholar] [CrossRef]
- Singh, R.; Huerta-Espino, J.; Rajaram, S.; Crossa, J. Agronomic effects from chromosome translocations 7DL. 7Ag and 1BL. 1RS in spring wheat. Crop Sci. 1998, 38, 27–33. [Google Scholar] [CrossRef]
- Xynias, I.N.; Tasios, I.E.; Korpetis, E.G.; Pankou, C.; Avdikos, I.; Mavromatis, A.G. Effect OF the 1BL. 1RS wheat-rye chromosomal translocation on yield potential in bread wheat. Agric. For. 2020, 66, 15–22. [Google Scholar] [CrossRef]
- Xynias, I.N.; Mavromatis, A.G.; Pankou, C.I.; Koutsoura, T.; Kyparissas, D.; Liliopoulou, E.; Priami, M.; Tasios, I.; Trakosiaris, D.; Papathanasiou, F. Effect of the 1BL. 1RS wheat-rye translocation on qualitative traits in bread wheat. Agric. For. 2018, 64, 15. [Google Scholar] [CrossRef]
- Kumlay, A.; Baenziger, P.S.; Gill, K.; Shelton, D.; Graybosch, R.A.; Lukaszewski, A.; Wesenberg, D. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003, 43, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Zhang, H.; Shu, K.; Wu, X.; Zhang, H.; Ren, Z. The physiological genetic effects of 1BL/1RS translocated chromosome in” stay green” wheat cultivar CN17. Can. J. Plant Sci. 2009, 89, 1–10. [Google Scholar] [CrossRef]
- Mahalakshmi, V.; Bidinger, F.R. Evaluation of stay-green sorghum germplasm lines at ICRISAT. Crop Sci. 2002, 42, 965–974. [Google Scholar]
- Howell, T.; Hale, I.; Jankuloski, L.; Bonafede, M.; Gilbert, M.; Dubcovsky, J. Mapping a region within the 1RS. 1BL translocation in common wheat affecting grain yield and canopy water status. Theor. Appl. Genet. 2014, 127, 2695–2709. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, A.; Mares, D.; Marshall, D. Effect of 1B/1R chromosome translocation on melling and quality characteristics of bread wheats. Cereal Chem. 1987, 64, 72–76. [Google Scholar]
- Graybosch, R.; Peterson, C.; Hansen, L.; Mattern, P. Relationships between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germ plasm. Cereal Chem. 1990, 67, 342–349. [Google Scholar]
- Oak, M.D.; Tamhankar, S.A. 1BL/1RS translocation in durum wheat and its effect on end use quality traits. J. Plant Biochem. Biotechnol. 2017, 26, 91–96. [Google Scholar] [CrossRef]
- Lundh, G.; MacRitchie, F. Size exclusion HPLC characterisation of gluten protein fractions varying in breadmaking potential. J. Cereal Sci. 1989, 10, 247–253. [Google Scholar] [CrossRef]
- Finney, K.F. A ten-gram mixograph for determining and predicting functional properties of wheat flours. Bak. Dig. 1972, 46, 32–35, 38–42, 77. [Google Scholar]
- Lee, J.; Graybosch, R.; Peterson, C. Quality and biochemical effects of a IBL/IRS wheat-rye translocation in wheat. Theor. Appl. Genet. 1995, 90, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dvořáček, V.; Bradová, J.; Stehno, Z. Effect of 1B/1R translocation on selected grain quality parameters in a set of doubled haploid wheat lines. Czech J. Genet. Plant Breed 2006, 42, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Blechl, A.; Beecher, B.; Vensel, W.; Tanaka, C.; Altenbach, S. RNA interference targeting rye secalins alters flour protein composition in a wheat variety carrying a 1BL. 1RS translocation. J. Cereal Sci. 2016, 68, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.C. Dough un-mixing time, and the sticky dough problem associated with Sr31 wheats. Euphytica 1990, 47, 49–55. [Google Scholar] [CrossRef]
- Martin, D.; Stewart, B. Dough mixing properties of a wheat-rye derived cultivar. Euphytica 1986, 35, 225–232. [Google Scholar] [CrossRef]
- Graybosch, R.; Peterson, C.; Hansen, L.; Worrall, D.; Shelton, D.; Lukaszewski, A. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocation lines. J. Cereal Sci. 1993, 17, 95–106. [Google Scholar] [CrossRef]
- Graybosch, R.A.; Peterson, C.J.; Shelton, D.R.; Baenziger, P.S. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality. Crop Sci. 1996, 36, 296–300. [Google Scholar] [CrossRef]
- Graybosch, R.; Peterson, C.; Chung, O. Quality Effects of Rye (Secale cerealeL.) Chromosome Arm 1RL Transferred to Wheat (Triticum aestivumL.). J. Cereal Sci. 1999, 29, 211–216. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Manipulation of the 1RS. 1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 2000, 40, 216–225. [Google Scholar] [CrossRef]
- Koebner, R.; Shepherd, K. Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis. Theor. Appl. Genet. 1986, 73, 197–208. [Google Scholar] [CrossRef]
- Anugrahwati, D.R.; Shepherd, K.W.; Verlin, D.C.; Zhang, P.; Mirzaghaderi, G.; Walker, E.; Francki, M.G.; Dundas, I.S. Isolation of wheat–rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome 2008, 51, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Sears, E.; Gustafson, J. Use of radiation to transfer alien chromosome segments to wheat. Crop Sci. 1993, 33, 897–901. [Google Scholar] [CrossRef]
- Lei, M.-P.; Li, G.-R.; Zhou, L.; Li, C.-H.; Liu, C.; Yang, Z.-J. Identification of wheat-Secale africanum chromosome 2R afr introgression lines with novel disease resistance and agronomic characteristics. Euphytica 2013, 194, 197–205. [Google Scholar] [CrossRef]
- Singh, A.; Pallavi, J.; Gupta, P.; Prabhu, K. Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat. J. Appl. Genet. 2012, 53, 19–25. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.; Friebe, B.; Jiang, J.; Gill, B. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 1995, 82, 141–147. [Google Scholar] [CrossRef]
- Hysing, S.-C.; Hsam, S.L.; Singh, R.P.; Huerta-Espino, J.; Boyd, L.A.; Koebner, R.M.; Cambron, S.; Johnson, J.W.; Bland, D.E.; Liljeroth, E. Agronomic Performance and Multiple Disease Resistance in T2BS. 2RL Wheat-Rye Translocation Lines. Crop Sci. 2007, 47, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Rahmatov, M.; Rouse, M.N.; Nirmala, J.; Danilova, T.; Friebe, B.; Steffenson, B.J.; Johansson, E. A new 2DS· 2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor. Appl. Genet. 2016, 129, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Henriksson, T.; Prieto-Linde, M.L.; Andersson, S.; Ashraf, R.; Rahmatov, M. Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat. Front. Plant Sci. 2020, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Sun, L.; Li, A.; Chen, T.; Qi, Z. Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Mol. Breed. 2011, 27, 455–465. [Google Scholar] [CrossRef]
- An, D.G.; Li, L.H.; Li, J.M.; Li, H.J.; Zhu, Y.G. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. J. Integr. Plant Biol. 2006, 48, 838–847. [Google Scholar] [CrossRef]
- Friebe, B.; Hatchett, J.; Sears, R.; Gill, B. Transfer of Hessian fly resistance from ‘Chaupon’rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 1990, 79, 385–389. [Google Scholar] [CrossRef]
- Lahsaiezadeh, M.; Ting, I.; Waines, J. Drought resistance in Chinese Spring wheat/Imperial rye addition and substitution lines. In Proceedings of the Sixth International Wheat Genetics Symposium/edited by Sadao Sakamoto, Kyoto, Japan, 28 November–3 December 1983. [Google Scholar]
- Ehdaie, B.; Hall, A.; Farquhar, G.; Nguyen, H.; Waines, J. Water-use efficiency and carbon isotope discrimination in wheat. Crop Sci. 1991, 31, 1282–1288. [Google Scholar] [CrossRef]
- Ehdaie, B.; Whitkus, R.; Waines, J. Root biomass, water-use efficiency, and performance of wheat–rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci. 2003, 43, 710–717. [Google Scholar] [CrossRef]
- Fritz, A.; Sears, R. The effect of the Hamlet (2BS/2RL) translocation on yield components of hard red winter wheat. In Agronomy Abstracts; ASA: Madison, WI, USA, 1991; p. 94. [Google Scholar]
- Nguyen, V.; Fleury, D.; Timmins, A.; Laga, H.; Hayden, M.; Mather, D.; Okada, T. Addition of rye chromosome 4R to wheat increases anther length and pollen grain number. Theor. Appl. Genet. 2015, 128, 953–964. [Google Scholar] [CrossRef]
- Knackstedt, M.; Sears, R.; Rogers, D.; Lookhart, G. Effects of T2BS. 2RL Wheat-Rye Translocation on Breadmaking Quality in Wheat. Crop Sci. 1994, 34, 1066–1070. [Google Scholar] [CrossRef]
- Boros, D.; Lukaszewski, A.; Aniol, A.; Ochodzki, P. Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. Euphytica 2002, 128, 1–8. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Cao, L.; Liu, P.; Geng, M.; Zhang, Q.; Qiu, L.; Sun, Q.; Xie, C. Simultaneous transfer of leaf rust and powdery mildew resistance genes from hexaploid triticale cultivar Sorento into bread wheat. Front. Plant Sci. 2018, 9, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marais, G.; Marais, A. The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica 1994, 79, 75–80. [Google Scholar] [CrossRef]
- Miller, T. The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can. J. Genet. Cytol. 1984, 26, 578–589. [Google Scholar] [CrossRef]
- Rahmatov, M.; Rouse, M.N.; Steffenson, B.J.; Andersson, S.C.; Wanyera, R.; Pretorius, Z.A.; Houben, A.; Kumarse, N.; Bhavani, S.; Johansson, E. Sources of stem rust resistance in wheat-alien introgression lines. Plant Dis. 2016, 100, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Andersson, S.C.; Johansson, E.; Baum, M.; Rihawi, F.; El Bouhssini, M. New resistance sources to Russian wheat aphid (Diuraphis noxia) in Swedish wheat substitution and translocation lines with rye (Secale cereale) and Leymus mollis. Czech J. Genet. Plant Breed. 2015, 51, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Salvador-Moreno, N.; Ryan, P.; Holguín, I.; Delhaize, E.; Benito, C.; Gallego, F. Transcriptional profiling of wheat and wheat-rye addition lines to identify candidate genes for aluminum tolerance. Biol. Plant. 2018, 62, 741–749. [Google Scholar] [CrossRef]
- Marais, G. An evaluation of three Sr27-carrying wheat× rye translocations. South Afr. J. Plant Soil 2001, 18, 135–136. [Google Scholar] [CrossRef]
- Klocke, B. Virulenzstruktur und -Dynamik des Roggenbraunrostes (Puccinia recondita f. sp. secalis) in der Bundesrepublik Deutschland. Ph.D. Thesis, Martin Luther University, Halle-Wittenberg, Germany, 2004. [Google Scholar]
- Roux, S.; Hackauf, B.; Ruge-Wehling, B.; Linz, A.; Wehling, P. Exploitation and comprehensive characterization of leaf-rust resistance in rye. Vortr. Pflanz. 2007, 71, 144–150. [Google Scholar]
- Jurkowski, A.; Bujak, H. A search for 4 specific markers linked to Pm3 alleles for resistance to powdery mildew (Blumeria graminis) in rye (Secale cereale). Biol. Lett. 2019, 54, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Dhariwal, R.; Fedak, G.; Dion, Y.; Pozniak, C.; Laroche, A.; Eudes, F.; Randhawa, H.S. High density single nucleotide polymorphism (SNP) mapping and quantitative trait loci (QTL) analysis in a biparental spring triticale population localized major and minor effect Fusarium head blight resistance and associated traits QTL. Genes 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, D.; Zheng, Q.; Zhou, Y.; Ma, P.; Lv, Z.; Li, L.; Li, B.; Luo, Q.; Xu, H.; Xu, Y. Molecular cytogenetic characterization of a new wheat–rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res. 2013, 21, 419–432. [Google Scholar] [CrossRef]
- Fu, S.; Ren, Z.; Chen, X.; Yan, B.; Tan, F.; Fu, T.; Tang, Z. New wheat-rye 5DS-4RS· 4RL and 4RS-5DS· 5DL translocation lines with powdery mildew resistance. J. Plant Res. 2014, 127, 743–753. [Google Scholar] [CrossRef]
- An, D.; Ma, P.; Zheng, Q.; Fu, S.; Li, L.; Han, F.; Han, G.; Wang, J.; Xu, Y.; Jin, Y. Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor. Appl. Genet. 2019, 132, 257–272. [Google Scholar] [CrossRef]
- Sidhu, M.; Satija, C.; Sharma, I. Screening of wheat-rye addition lines for Karnal bunt resistance. Crop Improv. India 2001, 28, 214–217. [Google Scholar]
- Schneider, A.; Rakszegi, M.; Molnár-Láng, M.; Szakács, É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor. Appl. Genet. 2016, 129, 1045–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattermann, G. Zur cytologie halmbehaarter stämme aus weizenroggenbastardierung. Der Züchter 1937, 9, 196–199. [Google Scholar] [CrossRef]
- OMARA, J. The Substitution of a specific Secale-Cereale Chromosome for a Specific Triticum-Vulgare Chromosome. Genetics 1947, 32, 99–100. [Google Scholar]
- Chumanova, E.; Efremova, T.; Trubacheeva, N.; Arbuzova, V.; Rosseeva, L. Chromosome composition of wheat-rye lines and the influence of rye chromosomes on disease resistance and agronomic traits. Russ. J. Genet. 2014, 50, 1169–1178. [Google Scholar] [CrossRef]
- Rahmatov, M. Genetic Characterisation of Novel Resistance Alleles to Stem Rust and Stripe Rust in Wheat-Alien Introgression Lines. Acta Univ. Agric. Suec. 2016, 78, 1–76. [Google Scholar]
- Xi, W.; Tang, Z.; Luo, J.; Fu, S. Physical Location of New Stripe Rust Resistance Gene (s) and PCR-Based Markers on Rye (Secale cereale L.) Chromosome 5 Using 5R Dissection Lines. Agronomy 2019, 9, 498. [Google Scholar] [CrossRef]
- Li, G.; Gao, D.; La, S.; Wang, H.; Li, J.; He, W.; Yang, E.; Yang, Z. Characterization of wheat-Secale africanum chromosome 5R a derivatives carrying Secale specific genes for grain hardness. Planta 2016, 243, 1203–1212. [Google Scholar] [CrossRef]
- Andersson, S.; Johansson, E.; Henriksson, T.; Rhamatov, M. Nya resistensgener för framtidens vete. LTV-Fak. Faktabl. 2016, 2, 1–4. [Google Scholar]
- Bálint, A.; Kovács, G.; Börner, A.; Galiba, G.; Sutka, J. Substitution analysis of seedling stage copper tolerance in wheat. Acta Agron. Hung. 2003, 51, 397–404. [Google Scholar] [CrossRef]
- Owuoche, J.; Briggs, K.; Taylor, G. The efficiency of copper use by 5A/5RL wheat-rye translocation lines and wheat (Triticum aestivum L.) cultivars. Plant Soil 1996, 180, 113–120. [Google Scholar] [CrossRef]
- Schlegel, R.; Kynast, R.; Schwarzacher, T.; Römheld, V.; Walter, A. Mapping of genes for copper efficiency in rye and the relationship between copper and iron efficiency. Plant Soil 1993, 154, 61–65. [Google Scholar] [CrossRef]
- Sibikeev, S.; Sibikeeva, Y.E.; Krupnov, V. Transmission of 5R chromosomes via gametes and its influence on spring bread wheat somatic embryoidogenesis in vitro. Russ. J. Genet. 2005, 41, 1366–1371. [Google Scholar] [CrossRef]
- Du, H.; Tang, Z.; Duan, Q.; Tang, S.; Fu, S. Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat-rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. Int. J. Mol. Sci. 2018, 19, 3933. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dundas, I.; Dong, C.; Li, G.; Trethowan, R.; Yang, Z.; Hoxha, S.; Zhang, P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 2020, 133, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Friebe, B.; Heun, M.; Tuleen, N.; Zeller, F.; Gill, B. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 1994, 34, 621–625. [Google Scholar] [CrossRef]
- Hao, M.; Liu, M.; Luo, J.; Fan, C.; Yi, Y.; Zhang, L.; Yuan, Z.; Ning, S.; Zheng, Y.; Liu, D. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci. 2018, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Zheng, Q.; Luo, Q.; Ma, P.; Zhang, H.; Li, L.; Han, F.; Xu, H.; Xu, Y.; Zhang, X. Molecular cytogenetic identification of a new wheat-rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS ONE 2015, 10, e0134534. [Google Scholar] [CrossRef]
- Cui, L.; Gao, X.; Wang, X.; Jian, H.; Tang, W.; Li, H.; Li, H. Characterization of interaction between wheat roots with different resistance and Heterodera filipjevi. Acta Agron. Sin. 2012, 38, 1009–1017. [Google Scholar] [CrossRef]
- Ji-Lin, L.; Xiao-Ping, W.; Zhong, L.; Xiang-Ling, X. Study on homoeologous chromosome pairing and translocation induced by 5A/5R× 6A/6R wheat-rye substitution lines. Acta Genet. Sin. 2006, 33, 244–250. [Google Scholar]
- Gruner, P.; Schmitt, A.-K.; Flath, K.; Schmiedchen, B.; Eifler, J.; Gordillo, A.; Schmidt, M.; Korzun, V.; Fromme, F.-J.; Siekmann, D. Mapping Stem Rust (Puccinia graminis f. sp. secalis) Resistance in Self-Fertile Winter Rye Populations. Front. Plant Sci. 2020, 11, 667. [Google Scholar] [CrossRef]
- Nkongolo, K.; Quick, J.; Peairs, F.; Meyer, W. Gene location for Russian wheat aphid resistance of’Imperial’rye using wheat-rye addition lines. Cereal Res. Commun. 1990, 18, 307–313. [Google Scholar]
- Farshadfar, E.; Mohammadi, R.; Farshadfar, M.; Dabiri, S. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. Aust. J. Crop Sci. 2013, 7, 130. [Google Scholar]
- Cakmak, I.; Derici, R.; Torun, B.; Tolay, I.; Braun, H.; Schlegel, R. Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale. In Plant Nutrition for Sustainable Food Production and Environment; Springer: Berlin/Heidelberg, Germany, 1997; pp. 237–241. [Google Scholar]
- FAO. WIEWS—World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2018. [Google Scholar]
- Boczkowska, M.K.; Puchalski, J. SSR studies of genetic changes in relation to long-term storage and field regeneration of rye (Secale cereale) seeds. Seed Sci. Technol. 2012, 40, 63–72. [Google Scholar] [CrossRef]
- Hawliczek, A.; Bolibok, L.; Tofil, K.; Borzęcka, E.; Jankowicz-Cieślak, J.; Gawroński, P.; Kral, A.; Till, B.J.; Bolibok-Brągoszewska, H. Deep sampling and pooled amplicon sequencing reveals hidden genic variation in heterogeneous rye accessions. BMC Genom. 2020, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bolibok-Brągoszewska, H.; Heller-Uszyńska, K.; Wenzl, P.; Uszyński, G.; Kilian, A.; Rakoczy-Trojanowska, M. DArT markers for the rye genome-genetic diversity and mapping. BMC Genom. 2009, 10, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolibok-Brągoszewska, H.; Targońska, M.; Bolibok, L.; Kilian, A.; Rakoczy-Trojanowska, M. Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biol. 2014, 14, 184. [Google Scholar] [CrossRef] [Green Version]
- Targońska, M.; Bolibok-Brągoszewska, H.; Rakoczy-Trojanowska, M. Assessment of genetic diversity in Secale cereale based on SSR markers. Plant Mol. Biol. Report. 2016, 34, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Targońska-Karasek, M.; Bolibok-Brągoszewska, H.; Rakoczy-Trojanowska, M. DArTseq genotyping reveals high genetic diversity of polish rye inbred lines. Crop Sci. 2017, 57, 1906–1915. [Google Scholar] [CrossRef] [Green Version]
- Targonska-Karasek, M.; Boczkowska, M.; Podyma, W.; Pasnik, M.; Niedzielski, M.; Rucinska, A.; Nowak-Zyczynska, Z.; Rakoczy-Trojanowska, M. Investigation of obsolete diversity of rye (Secale cereale L.) using multiplexed SSR fingerprinting and evaluation of agronomic traits. J. Appl. Genet. 2020, 61, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Khlestkina, E.; Shumny, V. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Russ. J. Genet. 2016, 52, 676–687. [Google Scholar] [CrossRef]
- Taagen, E.; Bogdanove, A.J.; Sorrells, M.E. Counting on crossovers: Controlled recombination for plant breeding. Trends Plant Sci. 2020, 25, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Tam, S.M.; Hays, J.B.; Chetelat, R.T. Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato. Theor. Appl. Genet. 2011, 123, 1445–1458. [Google Scholar] [CrossRef]
- de Maagd, R.A.; Loonen, A.; Chouaref, J.; Pelé, A.; Meijer-Dekens, F.; Fransz, P.; Bai, Y. CRISPR/Cas inactivation of RECQ 4 increases homeologous crossovers in an interspecific tomato hybrid. Plant Biotechnol. J. 2020, 18, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Rey, M.-D.; Martín, A.C.; Smedley, M.; Hayta, S.; Harwood, W.; Shaw, P.; Moore, G. Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 Gene) mutant wheat-wild relative hybrids. Front. Plant Sci. 2018, 9, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskal, K.; Kowalik, S.; Podyma, W.; Łapiński, B.; Boczkowska, M. The Pros and Cons of Rye Chromatin Introgression into Wheat Genome. Agronomy 2021, 11, 456. https://doi.org/10.3390/agronomy11030456
Moskal K, Kowalik S, Podyma W, Łapiński B, Boczkowska M. The Pros and Cons of Rye Chromatin Introgression into Wheat Genome. Agronomy. 2021; 11(3):456. https://doi.org/10.3390/agronomy11030456
Chicago/Turabian StyleMoskal, Kinga, Sylwia Kowalik, Wiesław Podyma, Bogusław Łapiński, and Maja Boczkowska. 2021. "The Pros and Cons of Rye Chromatin Introgression into Wheat Genome" Agronomy 11, no. 3: 456. https://doi.org/10.3390/agronomy11030456
APA StyleMoskal, K., Kowalik, S., Podyma, W., Łapiński, B., & Boczkowska, M. (2021). The Pros and Cons of Rye Chromatin Introgression into Wheat Genome. Agronomy, 11(3), 456. https://doi.org/10.3390/agronomy11030456