A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Texture, Plant Material, and Growth Conditions
2.2. Biostimulant Characteristics and Application
2.3. Soil Chemical Composition, Microbial Activity, and Organic Matter
2.4. Soil Enzyme Activity Measurement
2.5. Root Growth
2.6. Statistical Analysis
3. Results
3.1. Effect of the Biostimulant on Soil Chemical Composition
3.2. Changes in Soil Organic Matter and Microbial Activity
3.3. Effect of the Biostimulant on Soil Enzyme Activity
3.4. Root Growth Evaluation
3.5. Relationships between the Growth Parameters and Soil Organic Matter, Microbial and Enzymatic Activities under Biostimulant Application
3.6. Relationships between Root Growth and Chemical Soil Properties
3.7. Canonical Multivariable Analysis
4. Discussion
4.1. Effect of Biostimulant on Soil Fertility and Microbial Activity
4.2. Biostimulants and Soil Enzyme Activity
4.3. Improving Root Growth with Biostimulant Application
4.4. Biostimulant and Soil Texture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.; Mobin, M.; Abbas, Z.; Alamri, S. Fertilizers and Their Contaminants in Soils, Surface and Groundwater. In Encyclopedia of the Anthropocene; DellaSala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2018; Volume 5, pp. 225–240. [Google Scholar]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Leroy, B.L.M.; Herath, H.M.S.K.; Sleutel, S.; De Neve, S.; Gabriëls, D.; Reheul, D.; Moens, M. The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use Manag. 2008, 24, 139–147. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Zhang, H.; Wei, G.; Li, Z. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol. 2020, 20, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Optimal schemes and correlation analysis between soil nutrient, pH and microorganism population in orchard of Beijing suburb. Fruit Sci. 2020, 28, 15–19. [Google Scholar]
- Bell, C.W.; Asao, S.; Calderon, F.; Wolk, B.; Wallenstein, M.D. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol. Biochem. 2015, 85, 170–182. [Google Scholar] [CrossRef]
- Singh, J.S.; Gupta, V.K. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Sci. Total Environ. 2018, 634, 497–500. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, Y.; Zhao, F.; He, X.; Liu, H.; Yu, K. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Sci. Rep. 2020, 10, 9568. [Google Scholar] [CrossRef]
- John, K.; Isong, I.A.; Kebonye, N.M.; Ayito, E.O.; Agyeman, P.C.; Afu, S.M. Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil. Land 2020, 9, 487. [Google Scholar] [CrossRef]
- Randeep, K.; Ravendra, K.; Om, P. The Impact of Chemical Fertilizers in Our Environment and Ecosystem. Available online: https://www.researchgate.net/publication/331132826 (accessed on 17 March 2021).
- Zhang, X.; Schmidt, R. Biostimulating turfgrasses. Grounds Maint. 1999, 34, 14–15. [Google Scholar]
- Schmidt, R.E.; Ervin, E.H.; Zhang, X. Questions and answers about biostimulants. Golf Course Manag. 2003, 71, 91–94. [Google Scholar]
- Du Jardin, P. The Science of Plant Biostimulants. A Bibliographic Analysis, Adhoc Study Report; European Commission: Brussels, Belgium, 2012; Available online: http://hdl.handle.net/2268/169257 (accessed on 17 March 2021).
- Kawalekar, J.S. Role of biofertilisers and biopesticides for sustainable agriculture. J. Biol. Innov. 2013, 2, 73–78. [Google Scholar]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The Use of Biostimulants for Enhancing Nutrient Uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphae, Y. Renewable sources of plant biostimulation as a sustainable means to improve crop performance. Front. Plant Sci. 2018, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Strachel, R.; Wyszkowska, J.; Baćmaga, M. The Role of Compost in Stabilizing the Microbiological and Biochemical Properties of Zinc-Stressed Soil. Water Air Soil Pollut. 2017, 228, 349. [Google Scholar] [CrossRef] [Green Version]
- Javaid, A. Foliar application of effective microorganisms on pea as an alternative fertilizer. Agron. Sustain. Dev. 2006, 26, 257–262. [Google Scholar] [CrossRef]
- Vassileva, M.; Flor-Peregrin, E.; Malusá, E.; Vassilev, N. Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. Front. Plant Sci. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Quilty, J.R.; Cattle, S.R. Use and understanding of organic amendments in Australian agriculture: A review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Seyedbagheri, M.-M. Influence of Humic Products on Soil Health and Potato Production. Potato Res. 2010, 53, 341–349. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Saviozzi, A.; Levi-Minzi, R.; Cardelli, R.; Riffaldi, R. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 2001, 233, 251–259. [Google Scholar] [CrossRef]
- Gezerman, A.O.; Çorbacıoglu, B.D. Effects of Calcium Lignosulfonate and Silicic Acid on Ammonium Nitrate Degradation. J. Chem. 2014, 2014, 426014. [Google Scholar] [CrossRef]
- Karol, R.H. Chemical Grouting and Soil Stabilization, 3rd ed.; Marcel Dekker: New York, NY, USA, 2003; pp. 25–37. [Google Scholar]
- Tejada, M.; Benítez, C.; Gómez, I.; Parrado, J. Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2011, 49, 11–17. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances, in biophysicochemical processes involving natural nonliving organic matter in environmental systems. In Part I. Fundamentals and Impact of Mineral-Organic-Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM); Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Giannattasio, M.; Vendramin, E.; Fornasier, F.; Alberghini, S.; Zanardo, M.; Stellin, F.; Concheri, G.; Stevanato, P.; Ertani, A.; Nardi, S.; et al. Microbiological features and bioactivity of a fermented manure product (Preparation 500) used in biodynamic agriculture. J. Microbiol. Biotechnol. 2013, 23, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-K.; Subler, S.; Edwards, C.A. Effects of agricultural biostimulants on soil microbial activity and nitrogen dynamics. Appl. Soil Ecol. 2002, 19, 249–259. [Google Scholar] [CrossRef]
- European Biostimulants Industry Council, EBIC. 2012. Available online: http://www.biostimulants.eu/ (accessed on 27 September 2014).
- Dick, R.P.; Rasmussen, P.E.; Kerle, E.A. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soils 1988, 6, 159–164. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Dick, W.A. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.; Kizilkaya, R. Soil enzymes as indication of soil quality. In Soil Enzymology; Springer: Berlin/Heidelberg, Germany, 2010; Available online: https://www.researchgate.net/publication/226037282 (accessed on 17 March 2021).
- Masciandaro, G.; Ceccanti, B.; Ronchi, V.; Benedicto, S.; Howard, L. Humic substances to reduce salt effect on plant germination and growth. Commun. Soil Sci. Plant Anal. 2002, 33, 365–378. [Google Scholar] [CrossRef]
- Burns, R.G. Enzyme activity in soil. Soil Biol. Biochem. 1982, 14, 423–427. [Google Scholar] [CrossRef]
- Lemanowicz, J. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environ. Sci. Pollut. Res. 2018, 25, 33773–33782. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; DiMattia, E.; El-Nakhel, C.; Cardarelli, M. Coinoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 2015, 95, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Pizzeghello, D.; Baglieri, A.; Cadili, V.; Tambone, F.; Gennari, M.; Nardi, S. Agro-industrial residues and their biological activity on maize (Zea mays L.) metabolism. J. Geochem. Explor. 2012, 129, 103–111. [Google Scholar] [CrossRef]
- Malik, K.A.; Azam, F. Effect of humic acid on wheat (Triticum aestivum L.) seedling growth. Environ. Exp. Bot. 1985, 25, 245–252. [Google Scholar] [CrossRef]
- Zandonadi, D.B.; Santos, M.P.; Dobbss, L.B.; Olivares, F.L.; Canellas, L.P.; Binzel, M.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 2010, 231, 1025–1036. [Google Scholar] [CrossRef]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Gracía, C.; Hernandez, T. Microbial activity in degraded soils under semiarid climate. Change with their rehabilitation. In Preserving Soil Quality and Soil Biodiversity. The Role of Surrogate Indicators; Lobo, M.C., Ibañez, J.J., Eds.; Sdad Coop. De Artes Gráficas: Zaragoza, Spain, 2003; ISBN 84-451-2434-X. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Trevors, J.T.; Mayfield, C.I.; Inniss, W.E. Measurement of Electron Transport System (ETS) activity in soil. Microb. Ecol. 1982, 8, 163–168. [Google Scholar] [CrossRef] [PubMed]
- García, C.; Hernández, T.; Costa, F.; Ceccanti, B.; Masciandaro, G. The dehydrogenase activity of soil as an ecological marker in processes of perturbed system regeneration. In Proceedings of the XI International Symposium of Environmental Biochemistry, Salamanca, Spain, 27 September–1 October 1993; Gallardo-Lancho, J., Ed.; CSIC: Salamanca, Spain, 1993; pp. 89–100. [Google Scholar]
- Johnson, J.L.; Temple, K.L. Some variables affecting the measurement of “Catalase activity” in soil. Soil Sci. Soc. Am. Proc. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 4, 301–307. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Li, S.; Zhang, T.; Zhang, W.; Zhai, P. Application of Organic Amendments to a Coastal Saline Soil in North China: Effects on Soil Physical and Chemical Properties and Tree Growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef] [Green Version]
- Sootahar, M.K.; Zeng, X.; Su, S.; Wang, Y.; Bai, L.; Zhang, Y.; Li, T.; Zhang, X. The Effect of Fulvic Acids Derived from Different Materials on Changing Properties of Albic Black Soil in the Northeast Plain of China. Molecules 2019, 24, 1535. [Google Scholar] [CrossRef] [Green Version]
- Robert, E.P. Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS) 2014, Quebec City, QC, Cananda, 13–18 July 2014; pp. 1–5. [Google Scholar]
- Yuan, J.; Zhao, M.; Li, R.; Huang, Q.; Rensing, C.; Shen, Q. Lipopeptides produced by B. amyloliquefaciens NJN-6 altered the soil fungal community and non-ribosomal peptides genes harboring microbial community. Appl. Soil Ecol. 2017, 117-118, 96–105. [Google Scholar] [CrossRef]
- Xu, L.; Yi, M.; Yi, H.; Guo, E.; Zhang, A. Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World J. Microbiol. Biotechnol. 2017, 34, 8. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 2006, 287, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.; Khurshid, M.; Khan, M.; Abbasi, M.; Kazmi, M.; Tahir, M.; Khurshid, M.; Khan, M.; Abbasi, M.; Kazmi, M. Lignite-Derived Humic Acid Effect on Growth of Wheat Plants in Different Soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Macias-Benitez, S.; Garcia-Martinez, A.M.; Jimenez, P.C.; Gonzalez, J.M.; Moral, M.T.; Rubio, J.P. Rhizospheric Organic Acids as Biostimulants: Monitoring Feedbacks on Soil Microorganisms and Biochemical Properties. Front. Plant Sci. 2020, 11, 633. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-maruwka, A.; Ratajczak, K.; Waraczewska, Z.; Budka, A.; Głuchowska, K. The influence of biostimulants and foliar fertilisers on the process of biological nitrogen fixation and the level of soil biochemical activity in soybean (Glycine max L.) cultivation. Appl. Ecol. Environ. Res. 2019, 17, 12649–12666. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Pascual, J.A.; García, C.; Hernandez, T. Lasting microbiological and biochemical effects of the addition of municipal solid waste to an arid soil. Biol. Fertil. Soils 1999, 30, 1–6. [Google Scholar] [CrossRef]
- Marcote, I.; Hernández, T.; García, C.; Polo, A. Influence of one or two successive annual applications of organic fertilizers on the enzyme activities of a soil under barley cultivation. Bioresour. Technol. 2001, 79, 147–154. [Google Scholar] [CrossRef]
- Alvear, M.; Pino, M.; Castillo, C.; Trasar-Cepeda, C.; Gil-Sotres, F. Efecto de las cero labranza sobre algunas actividades biológicas en un alfisol del sur de chile. J. Soil Sci. Plant Nutr. 2006, 2, 38–53. [Google Scholar] [CrossRef]
- García-Álvarez, A.; Ibañez, J.J. Seasonal fluctuations and crop influence on microbiota and enzyme activity in fully developed soils of central Spain. Arid. Soil Res. Rehabil. 1994, 8, 161–178. [Google Scholar] [CrossRef]
- Cezairliyan, B.; Ausubel, F.M. Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl. Acad. Sci. USA 2017, 114, E7796–E7802. [Google Scholar] [CrossRef] [Green Version]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Barone, V.; Baglieri, A.; Stevanato, P.; Broccanello, C.; Bertoldo, G.; Bertaggia, M.; Cagnin, M.; Pizzeghello, D.; Moliterni, V.M.C.; Mandolino, G.; et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 2018, 30, 1061–1071. [Google Scholar] [CrossRef]
- Ferm o Feed. Fertilizantes Orgánicos. Available online: https://es.fermofeed.com/acerca-de-los-fertilizantes/%C3%A1cidos-h%C3%BAmicos-y-amino%C3%A1cidos (accessed on 17 March 2021).
- Parra, L.; Marin, J.; Yousfi, S.; Rincón, G.; Mauri, P.V.; Lloret, J. Edge detection for weed recognition in lawns. Comput. Electron. Agric. 2020, 176, 105684. [Google Scholar] [CrossRef]
- Marín, J.; Yousfi, S.; Mauri, P.V.; Parra, L.; Lloret, J.; Masaguer, A. RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C3 and C4 Turfgrass under Different Water Conditions. Sustainability 2020, 12, 2160. [Google Scholar] [CrossRef] [Green Version]
Soil 1 | Soil 2 | |
---|---|---|
Clay | 11% | 1% |
Silt | 21.5% | 6.5% |
Sandy | 67% | 92% |
Nitrogen | 0.01% | 0.04% |
Texture | Sandy loam | Sandy |
Soil | Treatment | pH | EC dS/m | Ca2+ (mg/kg) | Mg2+ (mg/kg) | P (mg/kg) | K+ (mg/kg) |
---|---|---|---|---|---|---|---|
Sandy loam | Control | 8.89 c ± 0.10 | 0.38 b ± 0.05 | 647.75 a ± 52.41 | 186.75 a ± 10.54 | 23.60 a ± 0.84 | 163.50 a ± 10.08 |
Biostimulant | 8.31 a ± 0.08 | 0.33 b ± 0.01 | 1146.00 b ± 53.45 | 212.00 b ± 10.15 | 24.75 b ± 0.79 | 219.00 b ± 5.27 | |
F-prob | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | |
Sandy | Control | 8.14 b ± 0.13 | 0.05 b ± 0.01 | 137.52 a ± 4.46 | 23.08 a ± 1.02 | 5.00 a ± 0.09 | 10.22 a ± 1.02 |
Biostimulant | 7.61 a ± 0.15 | 0.03 a ± 0.01 | 186.00 c ± 2.21 | 26.50 b ± 0.44 | 6.90 b ± 1.13 | 12.33 b ± 0.48 | |
F-prob | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.006 ** |
Sandy Loam Soil | Sandy Soil | |
---|---|---|
Catalase | 0.625 ** | 0.771 ** |
Dehydrogenase | 0.606 ** | 0.460 ** |
Phosphatase | 0.523 ** | 0.292 * |
Microbial activity | 0.218 ns | 0.340 * |
Organic matter | 0.369 * | 0.704 ** |
Sandy Loam Sandy Soil | Sandy Soil | |
---|---|---|
Ca2+ | 0.547 ** | 0.746 ** |
Mg2+ | 0.115 ns | 0.688 ** |
P | 0.656 ** | 0.124 ns |
K+ | 0.211 ns | 0.456 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousfi, S.; Marín, J.; Parra, L.; Lloret, J.; Mauri, P.V. A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass. Agronomy 2021, 11, 573. https://doi.org/10.3390/agronomy11030573
Yousfi S, Marín J, Parra L, Lloret J, Mauri PV. A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass. Agronomy. 2021; 11(3):573. https://doi.org/10.3390/agronomy11030573
Chicago/Turabian StyleYousfi, Salima, José Marín, Lorena Parra, Jaime Lloret, and Pedro V. Mauri. 2021. "A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass" Agronomy 11, no. 3: 573. https://doi.org/10.3390/agronomy11030573
APA StyleYousfi, S., Marín, J., Parra, L., Lloret, J., & Mauri, P. V. (2021). A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass. Agronomy, 11(3), 573. https://doi.org/10.3390/agronomy11030573