Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Preparation and Treatments
2.2. Measurements of Hyperspectral and Biological Response Data
2.3. Data Analysis Methods
2.3.1. Spectral Ratio Curves
- 1.
- Recoverability spectral indices of plant damage from glyphosate
- 2.
- Crop damage severity detection based on selected spectral bands
2.3.2. Determination of Crop Damage Severity
3. Results
3.1. Spectral Characteristics and Biological Response of Crop Damage
3.2. Differentiating Recoverable and Unrecoverable Plants
3.3. Evaluation of Crop Damage Severity with SPA-Selected Feature Spectral Bands
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef]
- Reddy, K.N.; Bellaloui, N.; Zablotowicz, R.M. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn. J. Agric. Food Chem. 2010, 58, 3646–3650. [Google Scholar] [CrossRef]
- Payne, N.J.; Thompson, D.G. Off-target glyphosate deposits from aerial silvicultural applications under various meteorological conditions. Pest Manag. Sci. 2010, 34, 53–59. [Google Scholar] [CrossRef]
- Reddy, K.N.; Ding, W.; Zablotowicz, R.M.; Thomson, S.J.; Huang, Y.B.; Krutz, L.J. Biological responses to glyphosate drift from aerial application in non-glyphosate-resistant corn. Pest Manag. Sci. 2010, 66, 1148–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, R.L. Hyperspectral Remote Sensing: Fundamentals and Practices; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Xie, Q.; Liang, D.; Huang, W.; Chen, P.; Wu, C.; Yang, G.; Zhang, J.; Huang, L.; Zhang, D. Leaf Area Index Estimation Using Vegetation Indices Derived from Airborne Hyperspectral Images in Winter Wheat. IEEE J.-Stars. 2017, 7, 3586–3594. [Google Scholar] [CrossRef]
- Vigneau, N.; Ecarnot, M.; Rabatel, G.; Roumet, P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crop. Res. 2011, 122, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, Y.; Xiao, H.; Gu, X.; Pan, L.; Tu, K. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content. Food Chem. 2017, 235, 194–202. [Google Scholar] [CrossRef]
- Piyush, P.; Yufeng, G.; Vincent, S.; James, C.S. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging. Front Plant Sci. 2017, 8, 1348. [Google Scholar]
- Zhang, J.C.; Huang, Y.B.; Pu, R.L.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.H.; Huang, W.J. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Kokaly, F.; Clark, N.; Swayze, A.; Livo, E.; Hoefen, M.; Pearson, C.; Wise, A.; Benzel, M.; Lowers, A.; Driscoll, L.; et al. USGS Spectral Library Version 7. US Geol. Surv. 2017. [Google Scholar]
- Awad, M.M.; Alawar, B.; Jbeily, R. A New Crop Spectral Signatures Database Interactive Tool (CSSIT). Data 2019, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Rathod, P.H.; Rossiter, D.G.; Noomen, M.F.; Meer, F.D.V.D. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. Int. J. Phytoremediat. 2013, 15, 405–426. [Google Scholar] [CrossRef]
- Sytar, O.; Brestic, M.; Zivcak, M.; Olsovska, K.; Kovar, M.; Shao, H.; He, X. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci. Total Environ. 2017, 578, 90–99. [Google Scholar] [CrossRef]
- Jan, B.; Jörg, S.; Lutz, P. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. 2014, 93, 98–111. [Google Scholar]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Yao, H.; Huang, Y.; Hruska, Z.; Thomson, S.J.; Reddy, K.N. Using vegetation index and modified derivative for early detection of soybean plant damage from glyphosate. Comput. Electron. Agric. 2012, 89, 145–157. [Google Scholar] [CrossRef]
- Kong, W.; Liu, F.; Zhang, C.; Zhang, J.F.; Feng, H.L. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Sci. Rep. 2016, 6, 35393. [Google Scholar] [CrossRef]
- Scholten, R.C.; Hill, J.; Werner, W.; Buddenbaum, H.; Dash, J.P.; Gallego, M.G.; Rolando, C.A.; Pearse, G.D.; Hartley, R.; Estarija, H.J.; et al. Hyperspectral VNIR-spectroscopy and imagery as a tool for monitoring herbicide damage in wilding conifers. Biol. Invasions 2019, 21, 3395–3413. [Google Scholar] [CrossRef] [Green Version]
- Bloem, E.; Gerighausen, H.; Chen, X.J.; Schnug, E. The Potential of Spectral Measurements for Identifying Glyphosate Application to Agricultural Fields. Agronomy 2020, 10, 1409. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Y.; Reddy, K.N.; Zhang, J. In-situ plant hyperspectral sensing for early detection of soybean damage from dicamba. Biosyst. Eng. 2016, 149, 51–59. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 260–3272. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Ullah, S.; Groen, T.A.; Schlerf, M.; Skidmore, A.K.; Nieuwenhuis, W.; Vaiphasa, C. Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5–14 μm) to discriminate vegetation species. Sensors 2012, 12, 8755–8769. [Google Scholar] [CrossRef]
- John, H.; Graham, H. Linear discriminant analysis in image restoration and the prediction of error rate. Lect. Notes-Monogr. Ser. 1991, 20, 112–129. [Google Scholar]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 1, 48–62. [Google Scholar]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Alimjan, G.; Sun, T.; Liang, Y.; Jumahun, H.; Guan, Y. A new technique for remote sensing image classification based on combinatorial algorithm of SVM and KNN. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1859012. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chi, M.; Rui, F.; Bruzzone, L. Classification of hyperspectral remote sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 2008, 41, 1793–1799. [Google Scholar] [CrossRef]
- Herbicide Injury Symptoms on Corn and Soybeans. Available online: https://extension.sdstate.edu/sites/default/files/2019-09/S-0003-42-Corn.pdf (accessed on 10 October 2020).
Ht (cm) | 1 WAT | 2 WAT | 3 WAT | |||
Mean | SD | Mean | SD | Mean | SD | |
0.0X | 45.45 | 4.48 | 76.45 | 11.66 | 131.75 | 18.60 |
0.01X | 44.05 | 3.32 | 76.80 | 6.10 | 125.00 | 8.46 |
0.05X | 39.85 | 5.55 | 64.15 | 11.85 | 114.95 | 7.73 |
0.1X | 39.85 | 4.33 | 60.45 | 5.81 | 103.75 | 7.62 |
0.2X | 30.20 | 4.23 | 32.30 | 2.48 | 52.30 | 5.69 |
0.5X | 29.55 | 4.91 | 0 | 0 | 0 | 0 |
1.0X | 0 | 0 | 0 | 0 | 0 | 0 |
Dry Wt (g) | 1 WAT | 2 WAT | 3 WAT | |||
Mean | SD | Mean | SD | Mean | SD | |
0.0X | 8.62 | 2.02 | 69.37 | 38.07 | 127.89 | 7.09 |
0.01X | 9.13 | 0.91 | 51.15 | 9.90 | 95.43 | 10.62 |
0.05X | 5.53 | 0.78 | 26.11 | 4.55 | 101.12 | 20.53 |
0.1X | 6.55 | 1.98 | 21.55 | 15.37 | 89.46 | 26.57 |
0.2X | 5.51 | 0.99 | 6.079 | 1.74 | 9.95 | 3.61 |
0.5X | 3.69 | 1.18 | 1.77 | 3.07 | 0 | 0 |
1.0X | 2.32 | 1.08 | 0 | 0 | 0 | 0 |
Chl (mg/g) | 1 WAT | 2 WAT | 3 WAT | |||
Mean | SD | Mean | SD | Mean | SD | |
0.0X | 0.6634 | 0.0474 | 0.6548 | 0.1591 | 0.8403 | 0.0447 |
0.01X | 0.6273 | 0.0353 | 0.7456 | 0.0248 | 0.8555 | 0.0458 |
0.05X | 0.5783 | 0.0362 | 0.6797 | 0.0119 | 0.8567 | 0.0491 |
0.1X | 0.5982 | 0.0071 | 0.6367 | 0.0308 | 0.8555 | 0.0745 |
0.2X | 0.4816 | 0.0653 | 0.5439 | 0.0629 | 0.6349 | 0.1574 |
0.5X | 0.4914 | 0.2933 | 0.3796 | 0.0548 | 0 | 0 |
1.0X | 0 | 0 | 0 | 0 | 0 | 0 |
Yield (kg/ha) | Whole season | |||||
Mean | SD | |||||
0.0X | 4617.75 | 1577.54 | ||||
0.01X | 2545.75 | 1497.27 | ||||
0.05X | 2298.50 | 722.59 | ||||
0.1X | 4091.50 | 1735.06 | ||||
0.2X | 1606.00 | 651.43 | ||||
0.5X | 0 | 0 | ||||
1.0X | 0 | 0 |
Spray Rates | 1 WAT | 2 WAT | 3 WAT | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
0.0X | 0.1948 | 0.0199 | 0.2223 | 0.0310 | 0.1959 | 0.0264 |
0.01X | 0.1950 | 0.0126 | 0.2356 | 0.0274 | 0.1883 | 0.0183 |
0.05X | 0.1972 | 0.0265 | 0.2494 | 0.0247 | 0.1903 | 0.0235 |
0.1X | 0.1929 | 0.0160 | 0.2478 | 0.0267 | 0.1699 | 0.0197 |
0.2X | 0.1889 | 0.0155 | 0.2188 | 0.0367 | 0.1552 | 0.0137 |
0.5X | 0.2217 | 0.0187 | 0.2553 | 0.0313 | 0.1410 | 0.0185 |
1.0X | 0.2094 | 0.0217 | 0.2348 | 0.0816 | 0.1324 | 0.0313 |
Dataset | 1 WAT | 2 WAT | 3 WAT | |||
---|---|---|---|---|---|---|
Algorithms | OA | Algorithms | OA | Algorithms | OA | |
Recoverable situation | KNN | 0.25 | KNN | 0.28 | KNN | 0.25 |
RF | 0.38 | RF | 0.28 | RF | 0.75 | |
SVM | 0.13 | SVM | 0.43 | SVM | 0.62 | |
All situations | KNN | 0.17 | KNN | 0.27 | KNN | 0.17 |
RF | 0.42 | RF | 0.36 | RF | 0.58 | |
SVM | 0.50 | SVM | 0.36 | SVM | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Huang, Y.; Reddy, K.N.; Yang, P.; Zhao, X.; Zhang, J. Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy 2021, 11, 583. https://doi.org/10.3390/agronomy11030583
Zhang T, Huang Y, Reddy KN, Yang P, Zhao X, Zhang J. Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy. 2021; 11(3):583. https://doi.org/10.3390/agronomy11030583
Chicago/Turabian StyleZhang, Ting, Yanbo Huang, Krishna N. Reddy, Pingting Yang, Xiaohu Zhao, and Jingcheng Zhang. 2021. "Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability" Agronomy 11, no. 3: 583. https://doi.org/10.3390/agronomy11030583
APA StyleZhang, T., Huang, Y., Reddy, K. N., Yang, P., Zhao, X., & Zhang, J. (2021). Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy, 11(3), 583. https://doi.org/10.3390/agronomy11030583