Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of Artemisia ordosica in the Desert Region of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Data Analyses
3. Results
3.1. Seed Emergence
3.2. Growth Properties in 2016
3.3. Effects of CSL on Plant Growth in Time Series
3.4. Comprehensive Evaluation on the Effects of CSL
4. Discussion
4.1. Influence of CSL on Seed Emergence Properties of Artemisia ordosica
4.2. Influence of CSL on Growth Properties of Artemisia ordosica
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gad, A.; Abdel-Samie, A.G. Study on desertification of irrigated arable lands in Egypt. II-Salinization. Egypt. J. Soil Sci. 2000, 40, 373–384. [Google Scholar]
- Pye, N.; Middleton, N.J.; Thomas, D.S.G. World Atlas of Desertification. Geogr. J. 1994, 160, 210. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, Z.; Wu, W. Sandy desertification in the north of China. Sci. China Ser. D Earth Sci. 2002, 45, 23–34. [Google Scholar] [CrossRef]
- Wang, T.; Wu, W.; Xue, X.; Sun, Q.; Chen, G. Study of spatial distribution of sandy desertification in North China in recent 10 years. Sci. China Ser. D Earth Sci. 2004, 47, 78–88. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Zhou, R.-L.; Zhang, T.-H.; Zhao, X.-Y. Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China. Soil Tillage Res. 2006, 87, 175–185. [Google Scholar] [CrossRef]
- Zhou, R.-L.; Li, Y.-Q.; Zhao, H.-L.; Drake, S. Desertification effects on C and N content of sandy soils under grassland in Horqin, northern China. Geoderma 2008, 145, 370–375. [Google Scholar] [CrossRef]
- Zhao, H.-L.; He, Y.-H.; Zhou, R.-L.; Su, Y.-Z.; Li, Y.-Q.; Drake, S. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 2009, 77, 187–191. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; El Salmawi, K.M.; Zahran, A.H. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hy-drogels through electron-beam irradiation. J. Appl. Polym. Sci. 2007, 104, 2003–2008. [Google Scholar] [CrossRef]
- Niu, J.; Yang, K.; Tang, Z.; Wang, Y. Relationships between Soil Crust Development and Soil Properties in the Desert Region of North China. Sustainability 2017, 9, 725. [Google Scholar] [CrossRef] [Green Version]
- Pietrasiak, N.; Regus, J.U.; Johansen, J.R.; Lam, D.; Sachs, J.L.; Santiago, L.S. Biological soil crust community types differ in key ecological functions. Soil Biol. Biochem. 2013, 65, 168–171. [Google Scholar] [CrossRef]
- Hawkes, C.V. Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecol. 2004, 170, 121–134. [Google Scholar] [CrossRef]
- Drahorad, S.; Felix-Henningsen, P.; Eckhardt, K.-U.; Leinweber, P. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J. Arid. Environ. 2013, 94, 18–26. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Q.; Li, P.; Zhao, L.; Wang, L.; Zheng, X.; Ma, H. Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau. J. Arid. Land 2014, 6, 742–752. [Google Scholar] [CrossRef]
- Wu, Y.W.; Rao, B.Q.; Liu, Y.D.; LI, G.B.; LI, D.H. Effects of different habitats on artificial crust development and surface soil nitrogen, phosphorus contents and enzymes activities. Soils 2013, 45, 52–59. [Google Scholar]
- Pandey, V.C.; Singh, N. Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ. 2010, 136, 16–27. [Google Scholar] [CrossRef]
- Wigley, F.; Williamson, J. Modelling fly ash generation for pulverised coal combustion. Prog. Energy Combust. Sci. 1998, 24, 337–343. [Google Scholar] [CrossRef]
- Jala, S.; Goyal, D. Fly ash as a soil ameliorant for improving crop production—A review. Bioresour. Technol. 2006, 97, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Bezdicek, D.; Fauci, M. Effects of compost, coal ash, and straw amendments on restoring the quality of eroded Palouse soil. Biol. Fertil. Soils 2001, 33, 365–372. [Google Scholar] [CrossRef]
- Riehl, A.; Elsass, F.; Duplay, J.; Huber, F.; Trautmann, M. Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash. Geoderma 2010, 155, 67–74. [Google Scholar] [CrossRef]
- Gangloff, W.J.; Ghodrati, M.; Sims, J.T.; Vasilas, B.L. Impact of Fly Ash Amendment and Incorporation Method on Hydraulic Properties of a Sandy Soil. Water Air Soil Pollut. 2000, 119, 231–245. [Google Scholar] [CrossRef]
- Pathan, S.M.; Aylmore, L.A.G.; Colmer, T.D. Properties of several fly ash materials in relation to use as soil amendments. J. Environ. Qual. 2003, 32, 687–693. [Google Scholar] [CrossRef]
- Mishra, L.; Shukla, K. Effects of fly ash deposition on growth, metabolism and dry matter production of maize and soybean. Environ. Pollut. Ser. A Ecol. Biol. 1986, 42, 1–13. [Google Scholar] [CrossRef]
- Pathan, S.M.; Aylmore, L.A.G.; Colmer, T.D. Soil properties and turf growth on a sandy soil amended with fly ash. Plant Soil 2003, 256, 103–114. [Google Scholar] [CrossRef]
- Gupta, D.K.; Rai, U.N.; Tripathi, R.D.; Inouhe, M. Impacts of fly-ash on soil and plant responses. J. Plant Res. 2002, 115, 401–409. [Google Scholar] [CrossRef]
- Sepaskhah, A.; Shahabizad, V. Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator. Biosyst. Eng. 2010, 106, 513–520. [Google Scholar] [CrossRef]
- Armbrust, D.V. Effectiveness of polyacrylamide (PAM) for wind erosion control. J. Soil Water Conservat. 1999, 54, 557–559. [Google Scholar]
- Yu, J.; Lei, T.W.; Shainberg, I.; Mamedov, A.I.; Levy, G.J. Infiltration and erosion in soils treated with dry PAM and gypsum. Soil. Sci. Soc. Am. J. 2003, 67, 630–636. [Google Scholar] [CrossRef]
- Stern, R.; Van Der Merwe, A.J.; Laker, M.C.; Shainberg, I. Effect of soil surface treatments on runoff and wheat yields under irrigation. Agronomy J. 1992, 84, 114–119. [Google Scholar] [CrossRef]
- Levy, G.; Ben-Hur, M.; Agassi, M. The effect of polyacrylamide on runoff, erosion, and cotton yield from fields irrigated with moving sprinkler systems. Irrig. Sci. 1991, 12, 55–60. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Chaudhari, K.; Norton, L.D. Polyacrylamide soil amendment effects on runoff and sediment yield on steep slopes: Part II. natural rainfall conditions. Trans. ASAE 2002, 45, 1339. [Google Scholar] [CrossRef]
- Gomes, L.; Arrúe, J.L.; López, M.V.; Sterk, G.; Richard, D.; Gracia, R.; Sabre, M.; Gaudichet, A.; Frangi, J. Wind erosion in a semiarid agricultural area of Spain: The WELSONS project. Catena 2003, 52, 235–256. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Tang, Z. Effectiveness of Fly Ash and Polyacrylamide as a Sand-Fixing Agent for Wind Erosion Control. Water Air Soil Pollut. 2012, 223, 4065–4074. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Tang, Z.; Chen, C. The Effectiveness of the Consolidated Desert Surface by Mixing of Fly Ash and Polyacrylamide in Wind Erosion Control. Water Air Soil Pollut. 2016, 227, 429. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Tang, Z. In situ effect of combined utilization of fly ash and polyacrylamide on sand stabilization in North China. Catena 2019, 172, 170–178. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environ. Monit. Assess. 2007, 136, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Yemefack, M.; Jetten, V.; Rossiter, D. Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil Tillage Res. 2006, 86, 84–98. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Nadler, A.; Perfect, E.; Kay, B.D.K.; Kay, B.D. Effect of two polymers and water qualities on dry cohesive strength of three soil. Soil Sci. 1996, 60, 556–561. [Google Scholar]
- Zheng, Y.; Xie, Z.; Gao, Y.; Jiang, L.; Shimizu, H.; Tobe, K. Germination responses ofCaragana korshinskiiKom. to light, temperature and water stress. Ecol. Res. 2004, 19, 553–558. [Google Scholar] [CrossRef]
- Seiwa, K.; Watanabe, A.; Saitoh, T.; Kannu, H.; Akasaka, S. Effects of burying depth and seed size on seedling establishment of Japanese chestnuts, Castanea crenata. For. Ecol. Manag. 2002, 164, 149–156. [Google Scholar] [CrossRef]
- Huang, Z.; Gutterman, Y. Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel. Acta Bot. Sin. 2000, 42, 71–80. [Google Scholar]
- Carlson, C.L.; Adriano, D.C. Environmental Impacts of Coal Combustion Residues. J. Environ. Qual. 1993, 22, 227–247. [Google Scholar] [CrossRef]
- Haynes, R. Reclamation and revegetation of fly ash disposal sites—Challenges and research needs. J. Environ. Manag. 2009, 90, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C.; Weber, J.T. Influence of Fly Ash on Soil Physical Properties and Turfgrass Establishment. J. Environ. Qual. 2001, 30, 596–601. [Google Scholar] [CrossRef]
- Pandey, V.C.; Abhilash, P.; Upadhyay, R.N.; Tewari, D. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: Implication for safe utilization of fly ash for agricultural production. J. Hazard. Mater. 2009, 166, 255–259. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.K.; Agrawal, S.B. Effects of fly ash incorporation on heavy metal CSLumulation, growth and yield responses of Beta vulgaris plants. Bioresour. Technol. 2008, 99, 7200–7207. [Google Scholar] [CrossRef] [PubMed]
Treatment | Fly Ash (FA) (%, The Weight Ratio to Soil) | Polyacrylamide (PAM)(%, The Weight Ratio to Soil) |
---|---|---|
CK | 0 | 0 |
F5P1 | 5 | 0.006 |
F5P2 | 5 | 0.012 |
F10P1 | 10 | 0.006 |
F10P2 | 10 | 0.012 |
F15P1 | 15 | 0.006 |
F15P2 | 15 | 0.012 |
Element | Fly Ash | Soil |
---|---|---|
Bulk density (g/cm3) | 1.07 | 1.52 |
Sand (20−2000μm) (%) | 27.4 | 97.9 |
Silt (2−20μm) (%) | 70.8 | 2.03 |
Clay (0.01−2μm) (%) | 1.8 | 0.07 |
Texture | Silt loam | Sand |
pH | 8.42 | 7.25 |
Electrical Conductivity (EC) (ms/cm) | 1.62 | 0.31 |
CK | F5P1 | F5P2 | F10P1 | F10P2 | F15P1 | F15P2 | ||
---|---|---|---|---|---|---|---|---|
2017 | PLH (cm) | 167.00 a | 166.50 a | 145.00 b | 129.50 bc | 116.00 cd | 122.00 cd | 107.00 d |
BD (mm) | 17.42 a | 16.69 ab | 15.58 ab | 13.69 abc | 13.28 abc | 10.37 bc | 8.87 c | |
TFW (g) | 619.52 b | 658.69 a | 220.94 d | 264.67 c | 80.09 e | 200.12 d | 66.62 e | |
TDW (g) | 260.19 b | 279.19 a | 85.92 e | 116.42 c | 37.84 f | 98.97 d | 37.83 f | |
2018 | PLH (cm) | 168.50 a | 170.75 a | 150.50 b | 136.75 bc | 127.00 c | 127.50 c | 120.25 c |
BD (mm) | 19.27 a | 19.32 a | 17.59 ab | 14.49 ab | 14.22 ab | 11.64 b | 11.17 b | |
TFW (g) | 774.98 a | 771.37 a | 295.32 b | 283.18 b | 257.11 b | 270.10 b | 210.65 c | |
TDW (g) | 314.00 a | 323.88 a | 178.94 bc | 170.65 bc | 201.34 b | 163.73 bc | 135.79 c |
Treatment | F1 | F2 | F | Ranking No. |
---|---|---|---|---|
CK | 4.96 | −1.15 | 3.91 | 1 |
F5P1 | 3.90 | 1.20 | 3.29 | 2 |
F5P2 | −0.25 | 1.55 | −0.05 | 3 |
F10P1 | −0.79 | −0.35 | −0.68 | 4 |
F10P2 | −1.43 | −1.54 | −1.31 | 5 |
F15P1 | −2.62 | 0.20 | −2.11 | 6 |
F15P2 | −3.76 | 0.10 | −3.05 | 7 |
FA | PAM | FA × PAM | ||||
---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | |
PSE | 567.296 | 0.000 | 44.531 | 0.000 | 16.559 | 0.000 |
PLH of 2016 | 4.995 | 0.017 | 0.155 | 0.698 | 0.601 | 0.557 |
BD of 2016 | 11.164 | 0.000 | 1.315 | 0.264 | 0.087 | 0.917 |
TFW of 2016 | 31.067 | 0.000 | 7.278 | 0.013 | 5.429 | 0.013 |
TDW of 2016 | 32.960 | 0.000 | 4.136 | 0.055 | 3.508 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Su, X.; Tang, Z. Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of Artemisia ordosica in the Desert Region of North China. Agronomy 2021, 11, 590. https://doi.org/10.3390/agronomy11030590
Niu J, Su X, Tang Z. Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of Artemisia ordosica in the Desert Region of North China. Agronomy. 2021; 11(3):590. https://doi.org/10.3390/agronomy11030590
Chicago/Turabian StyleNiu, Jiping, Xiaoling Su, and Zejun Tang. 2021. "Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of Artemisia ordosica in the Desert Region of North China" Agronomy 11, no. 3: 590. https://doi.org/10.3390/agronomy11030590
APA StyleNiu, J., Su, X., & Tang, Z. (2021). Influence of Fly Ash and Polyacrylamide Mixtures on Growth Properties of Artemisia ordosica in the Desert Region of North China. Agronomy, 11(3), 590. https://doi.org/10.3390/agronomy11030590