Changes in the Bio-Availability of Phosphorus in Pyrochars and Hydrochars Derived from Sewage Sludge after Their Amendment to Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge Collection and Char Production
2.2. Greenhouse Pot Experiment
2.3. Characterization of the Chars and the Fresh and Incubated Soils
2.4. Calculations for the Characterization of the Behavior of Phosphorus
2.5. Statistical Analysis
3. Results
3.1. pH and Electrical Conductivity (EC)
3.2. Contents of Total Phosporous (PT) and Olsen-P in the Feedstock and the Chars
3.3. Contents of Total Phosporous (PT) and Olsen-P in the Soils Directly and 8 Weeks after Amendment of the Chars
4. Discussion
4.1. pH and Electrical Conductivity
4.2. Fate of Total P and Olsen P during HTC and Dry Pyrolysis of SS
4.3. Phosphorus Dynamics during 80 Days of the Growing Period
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tóth, G.; Guicharnaud, R.-A.; Tóth, B.; Hermann, T. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur. J. Agron. 2014, 55, 42–52. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system. Food Secur. 2015, 7, 337–350. [Google Scholar] [CrossRef]
- Milieu Ltd., WRc and Risk & Policy Analysts Ltd (RPA). Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final Report, Part I: Project Interim Reports, DG ENV.G.4/ETU/2008/0076r. 10.2.2010. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf (accessed on 17 May 2020).
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology, 2nd ed.; Earthscan: London, UK, 2015. [Google Scholar]
- IBI International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar that is Used in Soil: Version Number 2.1; Zurich Open Repository and Archive: Zurich, Switzerland, 2015; Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf (accessed on 17 March 2020).
- EBC. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; European Biochar Foundation: Arbaz, Switzerland, 2012; Version 8E 2019; Available online: http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf (accessed on 17 May 2020).
- Paneque, M.; De la Rosa, J.; Kern, J.; Reza, M.; Knicker, H. Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? J. Anal. Appl. Pyrolysis 2017, 128, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Frišták, V.; Pipíška, M.; Soja, G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. J. Clean. Prod. 2018, 172, 1772–1778. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M.B. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strat. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Chiu, P.C.; Imhoff, P.T.; Guo, M. Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci. Total Environ. 2015, 512–513, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Tan, F.; Wu, B.; He, M.; Wang, W.; Tang, X.; Hu, Q.; Zhang, M. Immobilization of phosphorus in cow manure during hydrothermal carbonization. J. Environ. Manag. 2015, 157, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tang, Y.; Lu, X.-Y.; Zhang, Z.; Cao, Y. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation. Water Res. 2018, 140, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Yang, X.; Sheng, K.; He, Z.; Chen, G. Transformation of Phosphorus in Wetland Biomass during Pyrolysis and Hydrothermal Treatment. ACS Sustain. Chem. Eng. 2019, 7, 16520–16528. [Google Scholar] [CrossRef]
- Christel, W.; Bruun, S.; Magid, J.; Jensen, L.S. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresour. Technol. 2014, 169, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liang, X.; He, M.; Liu, Y.; Tian, G.; Shi, J. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 2016, 142, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paneque, M.; Knicker, H.; Kern, J.; De La Rosa, J.M. Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth. Agronomy 2019, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhai, Y.; Zhu, Y.; Peng, C.; Wang, T.; Xu, B.; Li, C.; Zeng, G. Feedwater pH affects phosphorus transformation during hydrothermal carbonization of sewage sludge. Bioresour. Technol. 2017, 245, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.-H.; Zhao, D.; Liu, Y.; Zhang, W.; Tang, Y.-Y.; Huang, X.; Wu, Q.; Wang, Y.-X.; Xiao, T.; Liu, C. Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd). Chemosphere 2019, 236, 124841. [Google Scholar] [CrossRef]
- European Commission. Working Document of Sludge, 3rd ed.; ENV-E-3/ LM; DG Environment: Brussels, Belgium, 27 April 2000. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report; FAO: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 4 September 2020).
- De La Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Report 939; United States Department of Agriculture: Washington, DC, USA, 1954.
- Paneque, M.; De La Rosa, J.M.; Franco-Navarro, J.D.; Colmenero-Flores, J.M.; Knicker, H. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena 2016, 147, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Bruun, S.; Harmer, S.L.; Bekiaris, G.; Christel, W.; Zuin, L.; Hu, Y.; Jensen, L.S.; Lombi, E. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere 2017, 169, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Colvan, S.; Syers, J.; O’Donnell, A. Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol. Fertil. Soils 2001, 34, 258–263. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Soil Survey Division Staff. Soil Survey Manual. Soil Conservation Service; Handbook 18; United States Department of Agriculture: Washington, DC, USA, 1993.
- Huang, R.; Tang, Y. Evolution of phosphorus complexation and mineralogy during (hydro) thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES. Water Res. 2016, 100, 439–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penn, C.; Camberato, J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Adhya, T.K.; Kumar, N.; Reddy, G.; Podile, A.R.; Bee, H.; Samantaray, B. Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr. Sci. 2015, 108, 1280–1287. Available online: https://www.jstor.org/stable/24905489 (accessed on 17 March 2020).
pH | EC | Ash | PT | P Recovery | Olsen-P | Ca | Mg | Fe | Al | |
---|---|---|---|---|---|---|---|---|---|---|
mS cm−1 | mg g−1 | g kg−1 | (%) | mg kg−1 | g kg−1 | g kg−1 | g kg−1 | g kg−1 | ||
A_SS | 7.4 | 15.0 | 540 | 12.3 | 100 | 510 ± 11 | 73.3 | 8.6 | 15.8 | 36.5 |
A_HTC_200_0.5 | 6.5 | 15.0 | 611 | 13.9 | 97.9 | 183 ± 2 | 80.7 | 9.0 | 18.5 | 42.0 |
A_ HTC_200_3 | 6.5 | 12.8 | 625 | 14.5 | 90.4 | 139 ± 10 | 84.4 | 9.3 | 19.4 | 44.0 |
A_ HTC_260_0.5 | 6.4 | 3.0 | 656 | 15.4 | 87.8 | 181 ± 3 | 87.4 | 10.0 | 19.7 | 45.7 |
A_ HTC_260_3 | 6.6 | 8.5 | 657 | 14.9 | 79.1 | 145 ± 16 | 86.5 | 9.6 | 19.1 | 44.2 |
T_SS | 7.5 | 14.5 | 507 | 16.7 | 100 | 651 ± 19 | 62.2 | 9.2 | 19.1 | 32.2 |
T_ HTC_200_0.5 | 6.7 | 25.5 | 570 | 20.0 | 99.7 | 278 ± 18 | 72.8 | 10.1 | 23.1 | 39.6 |
T_ HTC_200_3 | 6.2 | 24.8 | 612 | 20.8 | 82.3 | 234 ± 4 | 76.1 | 10.9 | 24.0 | 41.0 |
T_ HTC_260_0.5 | 6.3 | 18.3 | 645 | 21.6 | 78.5 | 200 ± 1 | 78.5 | 11.6 | 24.4 | 42.2 |
T_ HTC_260_3 | 6.4 | 21.3 | 661 | 21.6 | 73.3 | 70 ± 1 | 78.7 | 11.7 | 26.1 | 42.3 |
A_Py | 9.3 | 6.3 | 761 | 17.0 | 81.2 | 1017 ± 12 | 100.0 | 10.9 | 21.7 | 50.1 |
T_Py | 10.0 | 9.3 | 726 | 25.2 | 75.9 | 668 ± 19 | 92.5 | 13.6 | 28.2 | 48.5 |
W_Py | 9.3 | 1.1 | 1 n.d. | 0.7 | n.d. | 51 ± 1 | n.d. | n.d. | n.d. | n.d. |
Soil | 8.5 ± 0.1 | 0.13 ± 0.03 | n.d. | 0.4 | n.d. | 11.9 | 61.9 | 2.2 | 9.3 | 9.5 |
pH | EC | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
µS cm−1 | ||||||||||||
Control | 8.4 | ±0.02 a | 100.6 | ±2.0 a | ||||||||
Amended Soils | 5 t ha−1 | 25 t ha−1 | 5 t ha−1 | 25 t ha−1 | ||||||||
A_HTC_200_0.5 | 8.0 | ± | 0.03 de | 7.4 | ± | 0.07 gh | 116.4 | ± | 7.7 a | 280.0 | ± | 18.3 c |
A_ HTC_200_3 | 8.2 | ± | 0.03 b | 7.0 | ± | 0.02 i | 112.6 | ± | 7.5 a | 380.3 | ± | 39.6 d |
A_ HTC_260_0.5 | 8.2 | ± | 0.05 bc | 7.5 | ± | 0.09 fg | 111.0 | ± | 14.4 a | 231.8 | ± | 10.7 b |
A_ HTC_260_3 | 8.0 | ± | 0.12 cd | 7.3 | ± | 0.09 h | 103.5 | ± | 1.9 a | 256.5 | ± | 37.6 bc |
T_ HTC_200_0.5 | 8.0 | ± | 0.11 cd | 7.3 | ± | 0.06 h | 111.9 | ± | 2.2 a | 644.3 | ± | 22.4 f |
T_ HTC_200_3 | 8.2 | ± | 0.05 bc | 7.0 | ± | 0.04 i | 109.0 | ± | 1.2 a | 524.8 | ± | 10.8 e |
T_ HTC_260_0.5 | 8.2 | ± | 0.03 bc | 7.5 | ± | 0.04 fg | 117.0 | ± | 2.4 a | 554.0 | ± | 27.4 e |
T_ HTC_260_3 | 8.1 | ± | 0.07 bcd | 7.6 | ± | 0.05 f | 117.3 | ± | 5.4 a | 378.5 | ± | 8.1 d |
A_Py | 8.2 | ± | 0.04 b | 7.3 | ± | 0.09 h | 115.4 | ± | 2.1 a | 236.0 | ± | 15.1 b |
T_Py | 8.2 | ± | 0.04 bc | 7.8 | ± | 0.03 e | 129.5 | ± | 3.9 a | 223.3 | ± | 9.0 b |
W_Py | 8.4 | ± | 0.04 a | 8.5 | ± | 0.07 a | 92.4 | ± | 0.1 a | 108.5 | ± | 5.2 a |
Total P a | Olsen-P b | |||
---|---|---|---|---|
5 t ha−1 | 25 t ha−1 | 5 t ha−1 | 25 t ha−1 | |
g kg−1 Soil | mg kg−1 Soil | |||
A_HTC_200_0.5 | 0.51 | 0.94 | 1.5 | 7.3 |
A_HTC_200_3 | 0.52 | 0.97 | 1.2 | 5.6 |
A_HTC_260_0.5 | 0.52 | 1.00 | 1.5 | 7.3 |
A_HTC_260_3 | 0.52 | 0.98 | 1.2 | 5.8 |
T_HTC_200_0.5 | 0.56 | 1.19 | 2.3 | 11.2 |
T_HTC_200_3 | 0.57 | 1.22 | 1.9 | 9.4 |
T_HTC_260_0.5 | 0.58 | 1.25 | 1.7 | 8.0 |
T_HTC_260_3 | 0.58 | 1.25 | 0.6 | 2.8 |
A_Py | 0.54 | 1.07 | 8.4 | 40.8 |
T_Py | 0.61 | 1.40 | 5.5 | 26.8 |
W_Py | 0.40 | 0.41 | 0.4 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paneque, M.; de la Rosa, J.M.; Patti, A.F.; Knicker, H. Changes in the Bio-Availability of Phosphorus in Pyrochars and Hydrochars Derived from Sewage Sludge after Their Amendment to Soils. Agronomy 2021, 11, 623. https://doi.org/10.3390/agronomy11040623
Paneque M, de la Rosa JM, Patti AF, Knicker H. Changes in the Bio-Availability of Phosphorus in Pyrochars and Hydrochars Derived from Sewage Sludge after Their Amendment to Soils. Agronomy. 2021; 11(4):623. https://doi.org/10.3390/agronomy11040623
Chicago/Turabian StylePaneque, Marina, José María de la Rosa, Antonio F. Patti, and Heike Knicker. 2021. "Changes in the Bio-Availability of Phosphorus in Pyrochars and Hydrochars Derived from Sewage Sludge after Their Amendment to Soils" Agronomy 11, no. 4: 623. https://doi.org/10.3390/agronomy11040623
APA StylePaneque, M., de la Rosa, J. M., Patti, A. F., & Knicker, H. (2021). Changes in the Bio-Availability of Phosphorus in Pyrochars and Hydrochars Derived from Sewage Sludge after Their Amendment to Soils. Agronomy, 11(4), 623. https://doi.org/10.3390/agronomy11040623