Optimizing Total Phenolic and Oleuropein of Chinese Olive (Olea europaea) Leaves for Enhancement of the Phenols Content and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.1.1. Plant Materials
2.1.2. Chemicals and Reagents
2.2. UAE of Phenolic Compounds
2.3. Optimization of Total Phenolic and Oleuropein
2.4. Determination of TPC
2.5. Quantification of Phenolic Compounds Using HPLC
2.6. Evaluation of Antioxidant Activities
2.7. Evaluation of Anticancer Activity
2.8. Statistical Analysis
3. Results
3.1. Extraction Optimization of TP and OE
3.1.1. Single-Factor Experiment
3.1.2. Extraction Model Analysis
3.1.3. Response Surface Analysis
3.1.4. Optimization of the Extraction Conditions
3.2. Quantification of Phenolic Compounds
3.2.1. Effect of Leaf Age and Season on Phenolic Compound Contents
3.2.2. Influence of Leaf Age and Cultivars on Phenolic Compound Contents
3.3. Antioxidant Activity of TPs and Oleuropein
3.4. Cell Viability of Oleuropein
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Zhang, Y. Calculation of market power in the import of China’s olive oil market and factors under the imperfectly competitive market. China Oils Fats 2021, 46, 5–9. [Google Scholar]
- Paulo, F.; Santos, L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 61, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Xie, P. Study on high-value utilization of olive leaf and its meachanism. Ph.D. Thesis, Chinese Academic of Forestry, Beijing, China, May 2015. [Google Scholar]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crop. Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Markhali, F.S.; Teixeira, J.A.; Rocha, C.M. Olive tree leaves—A source of valuable active compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Hamdi, H.K.; Castellon, R. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem. Biophys. Res. Commun. 2005, 334, 769–778. [Google Scholar] [CrossRef]
- Yao, J.; Wu, J.; Yang, X.; Yang, J.; Zhang, Y.; Du, L. Oleuropein induced apoptosis in HeLa cells via a mitochondrial apoptotic cascade associated with activation of the c-Jun NH2-terminal kinase. J. Pharmacol. Sci. 2014, 125, 300–311. [Google Scholar] [CrossRef] [Green Version]
- Seçme, M.; Eroğlu, C.; Dodurga, Y.; Bağcı, G. Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells. Gene 2016, 585, 93–99. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Guo, Z.; Jia, X.; Zheng, Z.; Lu, X.; Zheng, Y.; Zheng, B.; Xiao, J. Chemical composition and nutritional function of olive (Olea europaea L.): A review. Phytochem. Rev. 2018, 17, 1091–1110. [Google Scholar] [CrossRef]
- Žuntar, I.; Putnik, P.; Bursać Kovačević, D.; Nutrizio, M.; Šupljika, F.; Poljanec, A.; Dubrović, I.; Barba, F.J.; Režek Jambrak, A. Phenolic and antioxidant analysis of olive leaves extracts (Olea europaea L.) obtained by high voltage electrical discharges (HVED). Foods 2019, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Mert, C.; Barut, E. Quantitative seasonal changes in the leaf phenolic content related to the alternate-bearing patterns of olive (Olea europaea L. cv. Gemlik). J. Agric. Sci. Technol. 2018, 15, 995–1006. [Google Scholar]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef]
- Wu, Z.; Yue, G.; Zhu, Q.; Jiang, Y.; Tang, K.; Chen, H.; Yang, Z.; Huang, Q. Purification, dynamic changes and antioxidant activities of oleuropein in olive (Olea Europaea L.) leaves. J. Food Biochem. 2015, 39, 566–574. [Google Scholar]
- Zhan, M.; Cheng, Z.; Su, G.; Wang, A.; Chen, H.; Yang, Z.; Shan, Z.; Huang, Q. Genetic relationships analysis of olive cultivars grown in China. Genet. Mol. Res. 2015, 2, 5958–5969. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wu, G.; Jin, J.; Jin, Q.; Wang, X. Quality and composition of virgin olive oils from indigenous and European cultivars grown in China. J. Am. Oil Chem. Soc. 2020, 97, 341–353. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhan, M.; Yang, Z.; Zumstein, K.; Chen, H.; Huang, Q. The major qualitative characteristics of olive (Olea europaea L.) cultivated in southwest China. Front. Plant Sci. 2017, 8, 559. [Google Scholar] [CrossRef] [Green Version]
- Lamprou, G.K.; Vlysidis, A.; Tzathas, K.; Vlyssides, A.G. Statistical optimization and kinetic analysis of the extraction of phenolic compounds from olive leaves. J. Chem. Technol. Biotechnol. 2020, 95, 457–465. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Qu, J.; Feng, S.; Chen, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Seasonal variations in the chemical composition of Liangshan olive leaves and their antioxidant and anticancer activities. Foods 2019, 8, 657. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of ultrasound-assisted extraction of flavonoids from olive (Olea europaea) leaves, and evaluation of their antioxidant and anticancer activities. Molecules 2018, 23, 2513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, Y.; Zhu, Y.; Xu, Z. Assessment of the correlations between reducing power, scavenging DPPH activity and anti-lipid-oxidation capability of phenolic antioxidants. LWT Food Sci. Technol. 2015, 63, 569–574. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Gullón, B.; Romero, I.; Ruiz, E.; Brnčić, M.; Žlabur, J.Š.; Castro, E. Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology. Ultrason. Sonochem. 2019, 51, 487–495. [Google Scholar] [CrossRef]
- Goo, Y.T.; Park, S.Y.; Chae, B.R.; Yoon, H.Y.; Kim, C.H.; Choi, J.Y.; Song, S.H.; Choi, Y.W. Optimization of solid self-dispersing micelle for enhancing dissolution and oral bioavailability of valsartan using Box-Behnken design. Int. J. Pharm. 2020, 585, 119483. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Chen, G.; Yue, W.; Liang, Q.; Wu, Q. Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology. Ultrason. Sonochem. 2013, 20, 846–854. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT Food Sci. Technol. 2019, 105, 182–189. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’olive leaves. LWT Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J. Agric. Food Chem. 2006, 54, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Abaza, L.; Taamalli, A.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutierrérez, A.; Zarrouk, M.; Youssef, N.B. Changes in phenolic composition in olive tree parts according to development stage. Food Res. Int. 2017, 100, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Zhang, L.; Zhou, L.; Wu, K. Study on olive development in China. Am.-Eurasian J. Agric. Environ. Sci. 2009, 5, 414–419. [Google Scholar]
- Malik, N.S.; Bradford, J.M. Changes in oleuropein levels during differentiation and development of floral buds in ‘Arbequina’olives. Sci. Hortic. 2006, 110, 274–278. [Google Scholar] [CrossRef]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentao, P.; Gonçalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Arabshahi-Delouee, S.; Urooj, A. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem. 2007, 102, 1233–1240. [Google Scholar] [CrossRef]
- Malheiro, R.; Sousa, A.; Casal, S.; Bento, A.; Pereira, J.A. Cultivar effect on the phenolic composition and antioxidant potential of stoned table olives. Food Chem. Toxicol. 2011, 49, 450–457. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef]
- Visioli, F.; Galli, C. Olive oil phenols and their potential effects on human health. J. Agric. Food Chem. 1998, 46, 4292–4296. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Zurek, G.; Barrajón-Catalán, E.; Bäßmann, C.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLC–ESI-QTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 121–126. [Google Scholar] [CrossRef]
Run | Extraction Variables | TPC (mg/g DM) | OEC (mg/g DM) | |||
---|---|---|---|---|---|---|
X1 (mL/g) Liquid-Solid Ratio | X2 (W) Power | X3 (min) Tim | X4 (%) Concentration | |||
1 | 0(20) | 0(240) | 0(20) | 0(60) | 188.79 | 72.72 |
2 | −1(10) | 1(270) | 0(20) | 0(60) | 183.00 | 71.57 |
3 | −1(10) | 0(240) | 1(30) | 0(60) | 184.48 | 71.93 |
4 | 0(20) | −1(210) | 0(20) | 1(70) | 155.48 | 67.56 |
5 | 1(30) | 0(240) | 0(20) | −1(50) | 166.62 | 69.88 |
6 | 0(20) | 0(240) | 0(20) | 0(60) | 196.31 | 72.61 |
7 | 0(20) | 1(270) | −1(10) | 0(60) | 187.68 | 72.31 |
8 | −1(10) | −1(210) | 0(20) | 0(60) | 172.54 | 72.84 |
9 | 1(30) | 0(240) | 1(30) | 0(60) | 149.77 | 66.00 |
10 | 0(20) | −1(210) | −1(10) | 0(60) | 172.25 | 71.15 |
11 | 0(20) | 0(240) | 0(20) | 0(60) | 190.35 | 73.14 |
12 | 0(20) | −1(210) | 1(30) | 0(60) | 181.54 | 71.48 |
13 | 0(20) | 0(240) | −1(10) | −1(50) | 189.03 | 70.44 |
14 | −1(10) | 0(240) | 0(20) | 1(70) | 164.92 | 68.89 |
15 | 0(20) | −1(210) | 0(20) | −1(50) | 166.55 | 68.49 |
16 | 0(20) | 0(240) | 0(20) | 0(60) | 197.00 | 73.00 |
17 | 0(20) | 0(240) | 0(20) | 0(60) | 196.83 | 72.82 |
18 | −1(10) | 0(240) | 0(20) | −1(50) | 162.68 | 68.08 |
19 | −1(10) | 0(240) | −1(10) | 0(60) | 175.40 | 70.66 |
20 | 1(30) | 1(270) | 0(20) | 0(60) | 156.54 | 70.52 |
21 | 0(20) | 1(270) | 1(30) | 0(60) | 153.09 | 66.83 |
22 | 0(20) | 1(270) | 0(20) | −1(50) | 168.37 | 69.00 |
23 | 1(30) | 0(240) | −1(10) | 0(60) | 186.93 | 71.78 |
24 | 1(30) | −1(210) | 0(20) | 0(60) | 169.31 | 69.89 |
25 | 0(20) | 0(240) | 1(30) | −1(50) | 139.56 | 65.49 |
26 | 0(20) | 1(270) | 0(20) | 1(70) | 129.00 | 63.91 |
27 | 0(20) | 0(240) | 1(30) | 1(70) | 140.46 | 65.12 |
28 | 1(30) | 0(240) | 0(20) | 1(70) | 110.79 | 61.52 |
29 | 0(20) | 0(240) | −1(10) | 1(70) | 132.55 | 64.60 |
Predicted | 30 | 260.57 | 10.00 | 53.09 | 197.12 | 74.35 |
Experimental | 30 | 260.00 | 10.00 | 50.00 | 197.32 | 74.68 |
Factor | TPC | OEC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | DF | MS | F-Value | p-Value | SS | DF | MS | F-Value | p-Value | |
Model | 13536.65 | 14 | 966.90 | 40.56 | <0.0001 *** | 279.95 | 14 | 20.00 | 126.71 | <0.0001 *** |
X1 | 885.11 | 1 | 885.11 | 37.13 | <0.0002 ** | 17.23 | 1 | 17.23 | 109.19 | <0.0002 ** |
X2 | 133.27 | 1 | 133.27 | 5.59 | 0.0330 * | 4.40 | 1 | 4.40 | 27.91 | 0.0002 ** |
X3 | 751.13 | 1 | 751.13 | 31.51 | <0.0002 ** | 16.54 | 1 | 16.54 | 104.83 | <0.0002 ** |
X4 | 2122.95 | 1 | 2122.95 | 89.06 | <0.0002 ** | 32.60 | 1 | 32.60 | 206.60 | <0.0002 ** |
X1X2 | 134.91 | 1 | 134.91 | 5.66 | 0.0322 * | 0.90 | 1 | 0.90 | 5.72 | 0.0314 * |
X1X3 | 334.53 | 1 | 534.53 | 22.42 | 0.0003 ** | X1X3 | 12.43 | 1 | 12.43 | 78.73 |
X1X4 | 843.03 | 1 | 843.03 | 35.37 | <0.0002 ** | X1X4 | 21.02 | 1 | 21.02 | 133.21 |
X2X3 | 481.36 | 1 | 481.36 | 20.19 | 0.0005 ** | X2X3 | 8.44 | 1 | 8.44 | 33.47 |
X2X4 | 200.22 | 1 | 200.22 | 8.40 | 0.0227 * | X2X4 | 4.33 | 1 | 4.33 | 27.41 |
X3X4 | 823.12 | 1 | 823.12 | 34.53 | <0.0002 ** | X3X4 | 7.48 | 1 | 7.48 | 47.40 |
X12 | 857.04 | 1 | 857.04 | 35.95 | <0.0002 ** | X12 | 6.25 | 1 | 6.25 | 39.59 |
X22 | 641.97 | 1 | 641.97 | 26.93 | 0.0002 ** | X22 | 3.48 | 1 | 3.48 | 22.07 |
X32 | 684.77 | 1 | 684.77 | 28.73 | 0.0002 ** | X32 | 18.81 | 1 | 18.81 | 119.17 |
X42 | 6280.22 | 1 | 6280.22 | 263.45 | <0.0002 ** | X42 | 149.70 | 1 | 149.70 | 948.56 |
Lack of Fit | 271.02 | 10 | 27.10 | 1.73 | 0.3149 ns | Lack of Fit | 2.03 | 10 | 0.20 | 4.46 |
Residual | 333.73 | 14 | 23.84 | Residual | 2.21 | 14 | 0.16 | |||
Pure Error | 62.71 | 4 | 15.68 | Pure Error | 0.18 | 4 | 0.045 | |||
Cor Total | 13870.38 | 28 | Cor Total | 282.16 | 28 | |||||
R2 | 0.9759 | 0.9922 | ||||||||
R2adj | 0.9519 | 0.9843 |
Months | LA | TPC | OEC | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|---|
January | AL | 167.58 ± 8.22 a | 33.89 ± 2.61 hi | 0.40 ± 0.162 hijkl | 39.63 ± 2.88 cde | 2.03 ± 0.15 efg | 0.048 ± 0.006 a | 0.020 ± 0.002 efg | nd |
YL | 168.37 ± 7.99 a | 67.57 ± 0.71 e | 1.24 ± 0.164 b | 49.58 ± 5.72 b | 2.96 ± 0.33 bc | 0.057 ± 0.007 a | 0.425 ± 0.005 bc | nd | |
February | AL | 89.27 ± 5.14 gh | 22.99 ± 1.68 ijk | 0.20 ± 0.003 lm | 47.95± 0.69 bc | 2.11 ± 0.03 ef | 0.009 ± 0.001 defg | 0.014 ± 0.003 fg | nd |
YL | 93.12 ± 0.78 gh | 44.65 ± 1.52 fg | 0.26 ± 0.015 klm | 37.78 ± 2.36 def | 1.93 ± 0.12 efgh | 0.023 ± 0.003 bc | 0.113 ± 0.019 a | 0.017 ± 0.001 | |
March | AL | 96.88 ± 5.51 fg | 21.38 ± 3.26 jkl | 0.20 ± 0.022 lm | 28.35 ± 3.39 fghi | 1.82 ± 0.21 fgh | 0.011 ± 0.001 cdefg | 0.010 ± 0.001 fg | nd |
YL | 118.75 ± 2.04 bcde | 89.16 ± 12.45 c | 0.29 ± 0.017 klm | 41.65 ± 2.69 bcd | 1.63 ± 0.10 ghi | 0.018 ± 0.002 cde | 0.105 ± 0.009 ab | nd | |
April | AL | 47.36 ± 5.67 i | 74.74 ± 5.59 de | 0.32 ± 0.227 jklm | nd | 0.30 ± 0.12 l | 0.005 ± 0.001 efg | 0.009 ± 0.004 fg | 0.190 ± 0.132 |
YL | 35.96 ± 4.13 i | 14.72 ± 0.41 kl | nd | nd | 0.28 ± 0.01 l | 0.018 ± 0.006 bcd | 0.067 ± 0.025 abcde | 0.030 ± 0.002 | |
May | AL | 111.25 ± 3.27 def | 25.56 ± 0.35 ijk | 0.16 ± 0.008 m | 25.67 ± 0.91 ghij | 1.64 ± 0.05 ghi | 0.010 ± 0.002 cdefg | nd | nd |
YL | 117.67 ± 2.62 bcde | 47.03 ± 0.85 fg | 0.19 ± 0.035 lm | 19.81 ± 0.50 hij | 0.99 ± 0.04 jk | 0.055 ± 0.010 a | nd | nd | |
June | AL | 114.85 ± 2.62 cde | 16.38 ± 0.18 kl | 0.28 ± 0.015 klm | 29.29 ± 1.20 fgh | 1.92 ± 0.11 efgh | 0.011 ± 0.002 cdefg | 0.004 ± 0.001 g | nd |
YL | 121.47 ± 2.41 bcd | 148.10 ± 6.63 a | 0.27 ± 0.003 klm | 18.01 ± 9.32 j | 1.53 ± 0.04 hi | 0.031 ± 0.009 b | 0.100 ± 0.039 ab | 0.017 ± 0.001 | |
July | AL | 88.67 ± 5.33 gh | 22.06 ± 0.09 jk | 0.59 ± 0.046 efgh | 27.91 ± 1.77 fghi | 2.05 ± 0.15 efg | 0.006 ± 0.003 defg | 0.004 ± 0.001 g | nd |
YL | 90.47 ± 7.59 gh | 90.23 ± 0.62 c | 0.46 ± 0.024 hijkl | 31.69 ± 2.12 efg | 1.69 ± 0.10 ghi | 0.012 ± 0.003 cdefg | 0.043 ± 0.016 cdefg | nd | |
August | AL | 126.29 ± 1.19 bcd | 30.04 ± 0.03 ij | 0.69 ± 0.025 def | 35.40 ± 1.61 defg | 2.60 ± 0.11 cd | 0.016 ± 0.003 cdef | 0.018 ± 0.007 efg | nd |
YL | 124.56 ± 1.41 bcd | 78.17 ± 0.38 d | 0.62 ± 0.035 defg | 31.27 ± 1.08 efg | 1.51 ± 0.11 ij | 0.031 ± 0.002 b | 0.073 ± 0.009 abc | 0.019 ± 0.002 | |
September | AL | 78.15 ± 5.83 h | 16.26 ± 0.63 kl | 0.54 ± 0.044 fghi | 20.88 ± 1.80 hij | 1.32 ± 0.09 ij | 0.005 ± 0.001 efg | 0.007 ± 0.074 g | nd |
YL | 103.08 ± 3.38 efg | 41.62 ± 0.23 gh | 0.34 ± 0.038 ijklm | 18.69 ± 2.15 ij | 0.99 ± 0.11 jk | 0.004 ± 0.001 fg | 0.058 ± 0.009 bcdef | nd | |
October | AL | 97.18 ± 7.54 fg | 10.58 ± 0.09 l | 0.52 ± 0.060 fghij | 9.07 ± 1.39 k | 0.65 ± 0.09 kl | 0.006 ± 0.001 efg | 0.009 ± 0.0.006 fg | nd |
YL | 129.07 ± 3.43 bc | 52.78 ± 0.81 f | 0.90 ± 0.026 c | 19.28 ± 0.81 ij | 0.92 ± 0.05 k | 0.010 ± 0.001 cdefg | 0.059 ± 0.014 bcdef | nd | |
November | AL | 91.64 ± 2.51 gh | 15.50 ± 1.32 kl | 0.81 ± 0.028 cd | 31.67 ± 1.36 efg | 1.85 ± 0.09 efgh | 0.008 ± 0.001 defg | 0.032 ± 0.003 defg | nd |
YL | 117.20 ± 3.781 bcde | 106.49 ± 2.11 b | 1.51 ± 0.095 a | 62.33 ± 4.16 a | 3.23 ± 0.22 ab | 0.002 ± 0.001 g | 0.099 ± 0.033 ab | nd | |
December | AL | 113.611 ± 11.93 cde | 10.29 ± 0.12 gh | 0.75 ± 0.006 cde | 34.44 ± 0.43 defg | 2.24 ± 0.03 de | 0.005 ± 0.001 efg | 0.017 ± 0.002 fg | nd |
YL | 133.25 ± 3.42 b | 24.33 ± 0.73 ijk | 1.29 ± 0.013 b | 47.75 ± 0.67 bc | 3.56 ± 0.06 a | 0.017 ± 0.003 cdef | 0.088 ± 0.011 abc | nd |
Cultivars | LA | TPC | OEC | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|---|
Salonenque | AL | 127.68 ± 3.43 d | 45.86 ± 0.25 g | 2.15 ± 0.032 ij | 43.26 ± 1.74 bcd | 2.75 ± 0.13 c | 0.015 ± 0.002 e | 0.014 ± 0.003 fg | |
YL | 141.60 ± 0.26 b | 50.48 ± 0.32 f | 2.92 ± 0.131 gh | 22.80 ± 0.80 f | 1.58 ± 0.05 e | 0.039 ± 0.001 a | 0.030 ± 0.001 e | 0.034 ± 0.004 b | |
Arbeqoina | AL | 123.18 ± 1.74 de | 43.41 ± 0.82 gh | 7.70 ± 0.126 c | 43.24 ± 0.36 bcd | 3.85 ± 0.0.01 a | 0.013 ± 0.001 e | 0.012 ± 0.001 fg | |
YL | 142.92 ± 0.67 b | 67.94 ± 0.82 d | 10.23 ± 0.060 a | 45.26 ± 0.66 bcd | 3.63 ± 0.15 ab | 0.035 ± 0.002 a | 0.080 ± 0.010 c | 0.022 ± 0.001 c | |
Koroneiki | AL | 123.66 ± 0.03 de | 18.64 ± 0.33 j | 2.99 ± 0.045 gh | 52.65 ± 1.30 a | 2.78 ± 0.03 c | 0.017 ± 0.001 de | 0.012 ± 0.001 fg | |
YL | 146.45 ± 0.82 ab | 121.46 ± 1.81 b | 3.99 ± 0.101 e | 35.49 ± 1.80 e | 2.17 ± 0.18 d | 0.036 ± 0.002 a | 0.095 ± 0.003 b | ||
Jiufeng | AL | 141.56 ± 2.01 b | 58.26 ± 0.13 e | 1.74 ± 0.110 j | 48.75 ± 2.71 ab | 2.29 ± 0.03 d | 0.006 ± 0.002 f | 0.014 ± 0.001 fg | |
YL | 151.04 ± 0.43 a | 136.54 ± 2.73 a | 3.46 ± 0.226 ef | 39.59 ± 0.57 de | 2.09 ± 0.05 d | 0.023 ± 0.001 c | 0.072 ± 0.003 c | 0.020±0.001 c | |
Frantioio | AL | 127.71 ± 2.21 d | 25.59 ± 0.34 i | 2.61 ± 0.211 hi | 48.53 ± 2.01 ab | 3.73 ± 0.0.16 ab | 0.023 ± 0.0.001 c | 0.006 ± 0.001 g | 0.043±0.005 a |
YL | 125.00 ± 2.85 de | 42.69 ± 0.63 h | 1.84 ± 0.035 j | 46.25 ± 5.38 bc | 2.45 ± 0.25 cd | 0.028 ± 0.0.002 b | 0.050 ± 0.0.005 d | ||
Arbosana | AL | 126.73 ± 1.47 d | 44.53 ± 0.41 g | 7.06 ± 0.432 d | 43.70 ± 1.01 bcd | 3.39 ± 0.15 b | 0.013 ± 0.0.001 e | 0.018 ± 0.0.003 f | |
YL | 135.10 ± 2.82 c | 95.83 ± 0.96 c | 9.25 ± 0.140 b | 40.40 ± 2.33 cde | 1.67 ± 1.26 e | 0.021 ± 0.0.002 cd | 0.108 ± 0.004 a | 0.020±0.002 c |
Antioxidant Activities | EC50 (mg/mL) | Cell Viability | EC50 (mg/mL) | |
---|---|---|---|---|
PE | OE | OE | ||
Reducing power | 0.33 ± 0.046 | 0.29 ± 0.003 | 12 h | 0.82 ± 0.119 |
DPPH radicals | 0.14 ± 0.001 | 0.27 ± 0.016 | 24 h | 0.36 ± 0.072 |
Superoxide radicals | 0.93 ± 0.003 | 0.29 ± 0.001 | 48 h | 0.19 ± 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Shen, S.; Qu, J.; Xu, Z.; Feng, S.; Chen, T.; Ding, C. Optimizing Total Phenolic and Oleuropein of Chinese Olive (Olea europaea) Leaves for Enhancement of the Phenols Content and Antioxidant Activity. Agronomy 2021, 11, 686. https://doi.org/10.3390/agronomy11040686
Wang B, Shen S, Qu J, Xu Z, Feng S, Chen T, Ding C. Optimizing Total Phenolic and Oleuropein of Chinese Olive (Olea europaea) Leaves for Enhancement of the Phenols Content and Antioxidant Activity. Agronomy. 2021; 11(4):686. https://doi.org/10.3390/agronomy11040686
Chicago/Turabian StyleWang, Bixia, Shian Shen, Jipeng Qu, Zhou Xu, Shiling Feng, Tao Chen, and Chunbang Ding. 2021. "Optimizing Total Phenolic and Oleuropein of Chinese Olive (Olea europaea) Leaves for Enhancement of the Phenols Content and Antioxidant Activity" Agronomy 11, no. 4: 686. https://doi.org/10.3390/agronomy11040686
APA StyleWang, B., Shen, S., Qu, J., Xu, Z., Feng, S., Chen, T., & Ding, C. (2021). Optimizing Total Phenolic and Oleuropein of Chinese Olive (Olea europaea) Leaves for Enhancement of the Phenols Content and Antioxidant Activity. Agronomy, 11(4), 686. https://doi.org/10.3390/agronomy11040686