The Effect of Brassinosteroids on Rootting of Stem Cuttings in Two Barberry (Berberis thunbergii L.) Cultivars
Abstract
:1. Introduction
2. Material and Methods
2.1. Evaluation of Cuttings
2.2. Biochemical Analyses
2.3. Statistical Analyses
3. Results
3.1. Rooting of Cuttings in Berberis thunbergii ‘Maria’ and ‘Red Rocket’
3.2. Biochemical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bar-Nun, N.; Sachs, T.; Mayer, A.M. A Role for IAA in the Infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann. Bot. 2007, 101, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Nicolás, J.I.L.; Acosta, M.; Sánchez-Bravo, J. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls. J. Plant. Physiol. 2007, 164, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Aloni, R.; Aloni, E.; Langhans, M.; Ullrich, C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 2006, 97, 883–893. [Google Scholar] [CrossRef]
- Teale, W.D.; Ditengou, F.A.; Dovzhenko, A.D.; Li, X.; Molendijk, A.M.; Ruperti, B.; Paponov, I.; Palme, K. Auxin as a model for the integration of hormonal signal processing and transduction. Mol. Plant. 2008, 1, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blythe, G.; Sibley, J.L. Novel methods of applying rooting hormones in cutting propagation. Comb. Proc. Int. Plant Propag. Soc. 2003, 53, 406–410. [Google Scholar]
- Pacholczak, A.; Szydło, W.; Łukaszewska, A. The effectiveness of foliar auxin application to stock plants in rooting of stem cuttings of ornamental shrubs. Propag. Ornam. Plants 2005, 5, 100–106. [Google Scholar]
- Brosa, C. Biological effects of brassinosteroids. Crit. Rev. Biochem. Mol. Biol. 1999, 34, 339–358. [Google Scholar] [CrossRef]
- Swamy, K.N.; Seeta Ram Rao, S. Influence of brassinosteroids on rooting and growth of geranium (Pelargonium sp.) stem cuttings. Asian J. Plant Sci. 2006, 5, 619–622. [Google Scholar]
- Kvasnica, M.; Buchtova, K.; Budesinsky, M.; Beres, T.; Rarova, L.; Strnad, M. Synthesis, characterization and antiproliferative activity of seco analogues of brassinosteroids. Steroids 2019, 146, 1–13. [Google Scholar] [CrossRef]
- Zullo, M.A.T.; Kohout, L. Semisystematic nomenclature of brassinosteroids. Plant Growth Regul. 2004, 42, 15–28. [Google Scholar] [CrossRef]
- Oklestkova, J.; Rárová, L.; Kvasnica, M.; Strnad, M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015, 14, 1053–1072. [Google Scholar] [CrossRef]
- Vidya Vardhini, B. Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions—A review. Plant. Gene 2017, 11, 70–89. [Google Scholar] [CrossRef]
- Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant. Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yopp, J.H.; Mandava, N.B.; Sasse, J.M. Brassinolide, a growth-promoting steroidal lactone. I. Activity in selected auxin bioassays. Physiol. Plant. 1981, 53, 445–452. [Google Scholar] [CrossRef]
- Dirr, M. Manual of Woody Landscape Plants, 6th ed.; Stipes Publishing: Champaign, IL, USA, 2009; ISBN 978-1588748683. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 1957, 67, 10–15. [Google Scholar] [CrossRef]
- Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 1980, 38, 161–170. [Google Scholar] [CrossRef]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef]
- Compton, M.E. Statistical methods suitable for the analysis of plant tissue culture data. Plant. Cell. Tissue Organ. Cult. 1994, 37, 217–242. [Google Scholar] [CrossRef]
- Wójcik, A.R.; Laudański, Z. Planowanie i Wnioskowanie Statystyczne w Doświadczalnictwie [Statistical Planning and Concluding in Experimental Works]; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1989; ISBN 8301089946/9788301089948. [Google Scholar]
- Pacholczak, A. The effect of the auxin application methods on rooting of Physocarpus opulifolius maxim. Cuttings. Propag. Ornam. Plants 2015, 15, 147–153. [Google Scholar]
- Pacholczak, A.; SzydŁo, W.; Petelewicz, P.; Szulczyk, K. The effect of Algaminoplant on rhizogenesis in stem cuttings of Physocarpus opulifolius “Dart’s Gold” and “Red Baron”. Acta Sci. Pol. Hortorum Cultus 2013, 12, 105–116. [Google Scholar]
- Hou, P.-C.; Lin, K.-H.; Huang, Y.-J.; Wu, C.-W.; Chang, Y.-S. Evaluation of vegetation indices and plant growth regulator use on the rooting of azalea cuttings. Hortic. Bras. 2020, 38, 153–159. [Google Scholar] [CrossRef]
- Knight, P.R.; Coker, C.H.; Anderson, J.M.; Murchison, D.S.; Watson, C.E. Mist Interval and K-IBA Concentration Influence Rooting of Orange and Mountain Azalea. Nativ. Plants J. 2005, 6, 111–117. [Google Scholar] [CrossRef]
- Swamy, K.N.; Rao, S.S. Effect of brassinosteroids on rooting and early vegetative growth of Coleus [Plectranthus forskohlii (Willd.) Briq.] stem cuttings. Indian J. Nat. Prod. Resour. 2010, 1, 68–73. [Google Scholar]
- Sasse, J.M. Recent progress in brassinosteroid research. Physiol. Plant. 1997, 100, 696–701. [Google Scholar] [CrossRef]
- Catterou, M.; Dubois, F.; Schaller, H.; Aubanelle, L.; Vilcot, B.; Sangwan-Norreel, B.S.; Sangwan, R.S. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta 2001, 212, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Ku, K.-M.; Choi, S.; Cardarelli, M. Vegetal-derived Biostimulant Enhances Adventitious Rooting in Cuttings of Basil, Tomato, and Chrysanthemum via Brassinosteroid-mediated Processes. Agronomy 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Nigam, D. Integration of Brassinosteroid Signal Transduction with the Transcription Network for Fiber Development and Drought Stress in Gossypium hirsutum L. J. Comput. Sci. Syst. Biol. 2014, 7, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Lv, B.; Ding, T.; Bai, M.; Ding, Z. Auxin-BR interaction regulates plant growth and development. Front. Plant. Sci. 2018, 8, 2256. [Google Scholar] [CrossRef] [Green Version]
- Bao, F.; Shen, J.; Brady, S.R.; Muday, G.K.; Asami, T.; Yang, Z. Brassinosteroids interact with auxin to promote lateral root development in arabidopsis. Plant. Physiol. 2004, 134, 1624–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, A.; Liu, Y.; Dong, R.; Bai, L.; Yu, X.; Li, Y. The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biol. Res. 2018, 51, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.Q.; Huang, L.F.; Hu, W.H.; Zhou, Y.H.; Mao, W.H.; Ye, S.F.; Nogues, S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 2004, 55, 1135–1143. [Google Scholar] [CrossRef]
- Dalio, R.J.D.; Pinheiro, H.P.; Sodek, L.; Haddad, C.R.B. 24-Epibrassinolide Restores Nitrogen Metabolism of Pigeon Pea Under Saline Stress. Bot. Stud. 2013, 54, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M.; Shimizu, S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 1987, 65, 729–735. [Google Scholar] [CrossRef]
- Nurnaeimah, N.; Mat, N.; Suryati Mohd, K.; Badaluddin, N.A.; Yusoff, N.; Sajili, M.H.; Mahmud, K.; Mohd Adnan, A.F.; Khandaker, M.M. The effects of hydrogen peroxide on plant growth, mineral accumulation, as well as biological and chemical properties of Ficus deltoidea. Agronomy 2020, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Khripach, V.; Zhabinskii, V.; De Groot, A. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000, 86, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Prakash, M.; Saravanan, K.; Kumar, B.; Ganesan, J. Effect of brassinosteroids on certain biochemical parameters in groundnut (Arachis hypogaea L.). Indian J. Plant Physiol. 2003, 8, 313–315. [Google Scholar]
- Xia, X.J.; Huang, L.F.; Zhou, Y.H.; Mao, W.H.; Shi, K.; Wu, J.X.; Asami, T.; Chen, Z.; Yu, J.Q. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 2009, 230, 1185–1196. [Google Scholar] [CrossRef]
- Rai, V.K. Role of amino acids in plant responses to stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Vardhini, B.V. Brassinosteroids’ role for amino acids, peptides and amines modulation in stressed plants—A review. In Plant Adaptation to Environmental Change: Significance of Amino Acids and their Derivatives; CABI: Wallingford, UK, 2014; pp. 300–316. [Google Scholar]
- Li, X.; Ahammed, G.J.; Li, Z.-X.; Zhang, L.; Wei, J.-P.; Shen, C.; Yan, P.; Zhang, L.-P.; Han, W.-Y. Brassinosteroids Improve Quality of Summer Tea (Camellia sinensis L.) by Balancing Biosynthesis of Polyphenols and Amino Acids. Front. Plant. Sci. 2016, 7, 1304. [Google Scholar] [CrossRef] [Green Version]
- Pustovoitova, T.N.; Zhdanova, N.E.; Zholkevich, V.N. Epibrassinolide increases plant drought resistance. Dokl. Biochem. Biophys. 2001, 376, 36–38. [Google Scholar] [CrossRef]
- Chhetrii, D.R.; Roy, S. Biochemical diversity in some Rhododendron species from the Darjeeling and Sikkim Himalayas. J. Hill Res. 2007, 20, 46–52. [Google Scholar]
- Zhu, T.; Deng, X.; Zhou, X.; Zhu, L.; Zou, L.; Li, P.; Zhang, D.; Lin, H. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci. Rep. 2016, 6, 35392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, C.; Ashraf, M.; Wijaya, L.; Ahmad, P. The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant. Physiol. Biochem. 2019, 143, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Amraee, L.; Rahmani, F.; Abdollahi Mandoulakani, B. Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system. Funct. Plant. Biol. 2020, 47, 565. [Google Scholar] [CrossRef] [PubMed]
- Behnamnia, M.; Kalantari, K.M.; Ziaie, J. The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk. J. Bot. 2009, 33, 417–428. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, C.; Ma, X.; Li, G.; Gan, L.; Ng, D.; Xia, K. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings. PLoS ONE 2013, 8, e84580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastiani, L.; Tognetti, R. Growing season and hydrogen peroxide effects on root induction and development in Olea europaea L. (cvs ‘Frantoio’ and ‘Gentile di Larino’) cuttings. Sci. Hortic. 2004, 100, 75–82. [Google Scholar] [CrossRef]
- Vázquez, M.N.; Guerrero, Y.R.; de la Noval, W.T.; González, L.M.; Zullo, M.A.T. Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Aust. J. Crop. Sci. 2019, 13, 115–121. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Yusuf, M.; Ahmad, I.; Ahmad, A. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 2014, 58, 9–17. [Google Scholar] [CrossRef]
- Verma, A.; Malik, C.P.; Gupta, V.K. In Vitro Effects of Brassinosteroids on the Growth and Antioxidant Enzyme Activities in Groundnut. ISRN Agron. 2012, 2012, 356485. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Peng, L.C.; Li, S.F.; Zhang, L.; Xie, W.J.; Song, J.; Wang, J.H. 24-epibrassionlide improves photosynthetic response of Rhododendron delavayi to drought. Nord. J. Bot. 2020, 38. [Google Scholar] [CrossRef]
- Lima, J.V.; Lobato, A.K.S. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol. Mol. Biol. Plants 2017, 23, 59–72. [Google Scholar] [CrossRef] [PubMed]
No. of Treatment | Methods of Cuttings Treatment |
---|---|
1 | Control “0” 1 spraying with distilled water |
2 | spraying with IBA 200 mg·L−1 |
3 | spraying with Brassinolide (BL) 0.05% |
4 | spraying with Brassinolide (BL) 0.05% + IBA 200 mg·L−1 |
5 | spraying with 24-Epibrassinolide (24epiBL) 0.05% |
6 | spraying with 24-Epibrassinolide (24epiBL) 0.05% + IBA 200 mg·L−1 |
Characteristics of the Degree of Rooting | Score |
---|---|
Cutting without visible roots | 1 |
A few (1–3) short roots | 2 |
4–5 roots, some of them branched, no root ball formed | 3 |
Medium sized root system composed of 6–10 branched roots forming a root ball | 4 |
Well developed, branched root system forming a root ball (over 10 roots) | 5 |
Parameter | Control | IBA | BL | BL + IBA | 24epiBL | 24epiBL + IBA |
---|---|---|---|---|---|---|
Rooted cuttings (%) | 91.7 ± 2.8 a * | 91.7 ± 2.7 a | 96.7 ± 2.8 b | 98.3 ± 2.7 b | 96.7 ± 2.8 b | 98.3 ± 2.8 b |
Rooting degree | 3.9 ± 0.3 a | 4.1 ± 0.2 ab | 4.4 ± 0.3 bc | 4.6 ± 0.1 c | 4.2 ± 0.3 ab | 4.4 ± 0.3 bc |
Root length (cm) | 3.9 ± 0.1 a | 4.1 ± 0.1 b | 4.3 ± 0.3 b | 4.8 ± 0.2 c | 4.2 ± 0.3 b | 4.8 ± 0.3 c |
Parameter | Control | IBA | BL | BL + IBA | 24epiBL | 24epiBL + IBA |
---|---|---|---|---|---|---|
Rooted cuttings (%) | 93.3 ± 25.7 a | 96.7 ± 5.7 ab | 98.3 ± 2.8 ab | 100.0 ± 0.0 b | 98.3 ± 2.9 ab | 100.0 ± 0.0 b |
Rooting degree | 4.1 ± 0.1 a * | 4.2 ± 0.2 ab | 4.1 ± 0.2 a | 4.4 ± 0.3 ab | 4.3 ± 0.4 ab | 4.6 ± 0.1 b |
Root length (cm) | 4.2 ± 0.1 a | 4.6 ± 0.2 b | 4.3 ± 0.1 a | 4.6 ± 0.2 b | 4.8 ± 0.1 c | 4.9 ± 0.1 c |
Parameter | Cultivar | Control | IBA | BL | BL + IBA | 24epiBL | 24epiBL + IBA |
---|---|---|---|---|---|---|---|
chlorophyll [mg g−1 d.w.] | B. th. Maria | 3.1 ± 0.1 a* | 3.2 ± 0.1 a | 3.2 ± 0.2 ab | 3.3 ± 0.3 ab | 3.4 ± 0.1 b | 3.5 ± a0.1 b |
B. th. Red Rocket | 3.6 ± 0.1 a | 3.7 ± 0.1 a | 4.1 ± 0.1 cd | 4.3 ± 0.0 d | 3.9 ± 0.1 b | 4.0 ± a0.2 bc | |
total soluble sugar [mg g−1 d.w.] | B. th. Maria | 76.2 ± 2.5 a | 84.9 ± 8.8 ab | 99.6 ± 11.1 c | 130.6 ± 12.0 d | 96.5 ± 2.3 bc | 96.4 ± 2.4 bc |
B. th. Red Rocket | 66.9 ± 2.2 a | 82.9 ± 1.3 ab | 138.1 ± 8.5 d | 89.1 ± 5.1 b | 90.3 ± 21.9 b | 101.7 ± 1.9 c | |
free amino acids [µmol leucine g−1 d.w.] | B. th. Maria | 525.0 ± 21.6 a | 559.3 ± 32.3 ab | 764.1 ± 20.7 c | 790.3 ± 30.9 c | 593.2 ± 15.7 b | 798.1 ± 20.5 c |
B. th. Red Rocket | 454.4 ± 15.6 a | 608.9 ± 18.7 b | 640.0 ± 21.9 b | 746.2 ± 8.7 d | 619.5 ± 7.1 b | 701.1 ± 24.7 c | |
H202 [µg g−1 d.w.] | B. th. Maria | 172.2 ± 3.5 a | 160.2 ± 2.3 a | 244.5 ± 3.2 b | 255.9 ± 7.8 b | 248.6 ± 3.8 b | 242.2 ± 18.1 b |
B. th. Red Rocket | 297.2 ± 6.9 a | 402.5 ± 9.2 e | 311.2 ± 4.4 ab | 323.1 ± 1.8 b | 348.8 ± 9.3 c | 397.3 ± 2.3 d | |
catalase [mkat g−1 d.w.] | B. th. Maria | 1757.2 ± 439.8 a | 2790.5 ± 369.5 b | 2599.5 ± 336.6 b | 3577.8 ± 371.3 c | 2420.1 ± 320.6 b | 3487.6 ± 383.1 c |
B. th. Red Rocket | 3492.1 ± 129.1 a | 6937.3 ± 565.8 b | 11986 ± 570.1 c | 14111.5 ± 462.1 d | 12130.9 ± 462.1 c | 14467.3 ± 200.2 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacholczak, A.; Zajączkowska, M.; Nowakowska, K. The Effect of Brassinosteroids on Rootting of Stem Cuttings in Two Barberry (Berberis thunbergii L.) Cultivars. Agronomy 2021, 11, 699. https://doi.org/10.3390/agronomy11040699
Pacholczak A, Zajączkowska M, Nowakowska K. The Effect of Brassinosteroids on Rootting of Stem Cuttings in Two Barberry (Berberis thunbergii L.) Cultivars. Agronomy. 2021; 11(4):699. https://doi.org/10.3390/agronomy11040699
Chicago/Turabian StylePacholczak, Andrzej, Małgorzata Zajączkowska, and Karolina Nowakowska. 2021. "The Effect of Brassinosteroids on Rootting of Stem Cuttings in Two Barberry (Berberis thunbergii L.) Cultivars" Agronomy 11, no. 4: 699. https://doi.org/10.3390/agronomy11040699
APA StylePacholczak, A., Zajączkowska, M., & Nowakowska, K. (2021). The Effect of Brassinosteroids on Rootting of Stem Cuttings in Two Barberry (Berberis thunbergii L.) Cultivars. Agronomy, 11(4), 699. https://doi.org/10.3390/agronomy11040699