The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. High-Performance Liquid Chromatography (HPLC) Analysis of Rosmarinic Acid, Tilianin, and Acacetin
2.4. Carotenoid Extraction and HPLC Analysis
2.5. Hydrophilic Compound Extraction and GC-TOF-MS Analysis
2.6. Statistical Analysis
3. Results
3.1. Effect of the Different Drying Temperatures on Rosmarinic Acid, Tilianin, and Acacetin
3.2. Effect of the Different Drying Temperature on Carotenoids
3.3. Metabolic Profiling of Different Drying Temperatures of Agastache Rugosa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.; Cao, P.; Wang, J.; Kang, W. Analysis of tilianin and acacetin in Agastache rugosa by high-performance liquid chromatography with ionic liquids-ultrasound based extraction. BMC Chem. 2016, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 2004, 27, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Abreu, O.; Torres-Piedra, M.; García-Jiménez, S.; Ibarra-Barajas, M.; Villalobos-Molina, R.; Montes, S.; Rembao, D.; Estrada-Soto, S. Dose-dependent antihypertensive determination and toxicological studies of tilianin isolated from Agastache mexicana. J. Ethnopharmacol. 2013, 146, 187–191. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Tuan, P.A.; Park, W.T.; Xu, H.; Park, N.I.; Park, S.U. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J. Agric. Food Chem. 2012, 60, 5945–5951. [Google Scholar] [CrossRef]
- Desta, K.T.; Kim, G.S.; Kim, Y.H.; Lee, W.S.; Lee, S.J.; Jin, J.S.; El-Aty, A.M.A.; Shin, H.C.; Shim, J.H.; Shin, S.C. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 2016, 30, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Yeo, H.J.; Baskar, T.B.; Park, Y.E.; Park, J.S.; Lee, S.Y.; Park, S.U. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kljak, K.; Grbeša, D. Carotenoid content and antioxidant activity of hexane extracts from selected Croatian corn hybrids. Food Chem. 2015, 167, 402–408. [Google Scholar] [CrossRef]
- Howitt, C.A.; Pogson, B.J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ. 2006, 29, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Bartley, G.E.; Scolnik, P.A. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 1995, 7, 1027. [Google Scholar]
- Koornneef, M. Genetic aspects of abscisic acid. In A Genetic Approach to Plant Biochemistry; Blonstein, A.D., King, P.J., Eds.; Springer: Vienna, Austria, 1986; pp. 35–54. [Google Scholar]
- Kopsell, D.A.; Kopsell, D.E. Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci. 2006, 11, 499–507. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Hamrouni-Sellami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Limam, F.; Marzouk, B. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technol. 2013, 6, 806–817. [Google Scholar] [CrossRef]
- Walker, T.H.; Drapcho, C.M.; Chen, F. Bioprocessing technology for production of nutraceutical compounds. In Functional Food Ingredients and Nutraceuticals: Processing Technologies; Shi, J., Ed.; CRC Press: Boca Raton, Fl, USA, 2015; pp. 481–508. [Google Scholar]
- Capecka, E.; Mareczek, A.; Leja, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem. 2005, 93, 223–226. [Google Scholar] [CrossRef]
- Chae, S.C.; Lee, S.W.; Kim, J.K.; Park, W.T.; Uddin, M.R.; Kim, H.H.; Park, S.U. Variation of carotenoid content in Agastache rugosa and Agastache foeniculum. Asian J. Chem. 2013, 25, 4364–4366. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, J.K.; Uddin, M.R.; Xu, H.; Park, W.T.; Tuan, P.A.; Li, X.; Chung, E.S.; Lee, J.-H.; Park, S.U. Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE 2013, 8, e64199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.H.; Park, S.Y.; Park, Y.J.; Kim, J.K.; Park, S.U. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid Brassicoraphanus. J. Agric. Food Chem. 2020, 68, 13711–13719. [Google Scholar] [CrossRef] [PubMed]
- Mediani, A.; Abas, F.; Khatib, A.; Tan, C.P.; Ismail, I.S.; Shaari, K.; Ismail, A.; Lajis, N.H. Relationship between metabolites composition and biological activities of Phyllanthus niruri extracts prepared by different drying methods and solvents extraction. Plant Foods Hum. Nutr. 2015, 70, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in Chinese cabbage (Brassica rapa L. subsp. chinensis) and nightshade (Solanum retroflexum Dun.). Molecules 2020, 25, 1326. [Google Scholar] [CrossRef] [Green Version]
- Mahanom, H.; Azizah, A.H.; Dzulkifly, M.H. Effect of different drying methods on concentrations of several phytochemicals in herbal preparation of 8 medicinal plants leaves. Malays. J. Nutr. 1999, 5, 47–54. [Google Scholar] [PubMed]
- De Torres, C.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Anal. Chim. Acta 2010, 660, 177–182. [Google Scholar] [CrossRef]
- Nunes, J.C.; Lago, M.G.; Castelo-Branco, V.N.; Oliveira, F.R.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chem. 2016, 197, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Regier, M.; Mayer-Miebach, E.; Behsnilian, D.; Neff, E.; Schuchmann, H.P. Influences of drying and storage of lycopene-rich carrots on the carotenoid content. Dry. Technol. 2005, 23, 989–998. [Google Scholar] [CrossRef]
- Das, A.; Raychaudhuri, U.; Chakraborty, R. Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. Int. J. Food. Sci. Nutr. 2012, 63, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Shaari, A.R.; Azimi, A. Effect of drying methods on metabolites composition of misai kucing (Orthosiphon stamineus) leaves. APCBEE Procedia 2012, 2, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Gregory, M.J.; Menary, R.C.; Davies, N.W. Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J. Agric. Food Chem. 2005, 53, 5969–5975. [Google Scholar] [CrossRef]
Drying Methods | ||||
---|---|---|---|---|
Freeze Drying | 25 °C Oven Drying | 50 °C Oven Drying | 80 °C Oven Drying | |
Rosmarinic acid | 2.95 ± 0.08 a 1 | 2.23 ± 0.02 c | 2.53 ± 0.07 b | 1.66 ± 0.06 d |
Tilianin | 2.04 ± 0.10 c | 2.34 ± 0.15 b | 2.88 ± 0.31 a | 3.11 ± 0.33 a |
Acacetin | 0.36 ± 0.01 b | 0.23 ± 0.01 c | 0.24 ± 0.05 c | 0.66 ± 0.04 a |
Total | 5.34 ± 0.05 ab | 4.81 ± 0.17 b | 5.65 ± 0.44 a | 5.43 ± 0.42 a |
Drying Methods | ||||
---|---|---|---|---|
Freeze Drying | 25 °C Oven Drying | 50 °C Oven Drying | 80 °C Oven Drying | |
Lutein | 63.15 ± 3.35 a 1 | 48.14 ± 5.95 b | 49.16 ± 2.80 b | 41.83 ± 2.93 b |
Zeaxanthin | 7.86 ± 0.62 ab | 5.87 ± 0.42 c | 8.37 ± 0.67 a | 6.90 ± 0.53 bc |
β-Cryptoxanthin | 7.16 ± 0.64 a | 6.52 ± 0.60 a | 6.57 ± 0.52 a | 6.12 ± 0.73 a |
13Z-β-Carotene | 9.69 ± 0.73 a | 7.45 ± 0.76 b | 7.54 ± 0.91 b | 5.27 ± 0.37 c |
α-Carotene | 1.19 ± 0.12 a | 0.75 ± 0.07 b | 0.92 ± 0.21 ab | 0.79 ± 0.17 b |
β-Carotene | 84.55 ± 3.61 a | 67.53 ± 5.76 b | 70.63 ± 4.88 b | 41.68 ± 3.78 c |
9Z-β-Carotene | 13.47 ± 0.39 a | 8.92 ± 1.31 b | 9.15 ± 0.64 b | 5.91 ± 0.51 c |
Total | 187.06 ± 8.92 a | 145.19 ± 12.60 b | 152.34 ± 7.81 b | 108.51 ± 7.79 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.H.; Yeo, H.J.; Park, C.; Chung, Y.S.; Park, S.U. The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agronomy 2021, 11, 698. https://doi.org/10.3390/agronomy11040698
Park CH, Yeo HJ, Park C, Chung YS, Park SU. The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agronomy. 2021; 11(4):698. https://doi.org/10.3390/agronomy11040698
Chicago/Turabian StylePark, Chang Ha, Hyeon Ji Yeo, Chanung Park, Yong Suk Chung, and Sang Un Park. 2021. "The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower" Agronomy 11, no. 4: 698. https://doi.org/10.3390/agronomy11040698
APA StylePark, C. H., Yeo, H. J., Park, C., Chung, Y. S., & Park, S. U. (2021). The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agronomy, 11(4), 698. https://doi.org/10.3390/agronomy11040698