Melatonin Treatment of Pomegranate Trees Increases Crop Yield and Quality Parameters at Harvest and during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Fruit Growth and Crop Yield
2.3. Fruit Quality Parameters
2.4. Sugars and Organic Acids
2.5. Statistical Analyses
3. Results
3.1. Effect of Pre-Harvest Melatonin Treatment on Crop Yield
3.2. Effect of Melatonin on Fruit Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnao, M.B.; Hernandez-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, R.T.; Tan, D.X.; Zhou, Z.; Coelho-Cruz, M.E.; Fuentes-Broto, L.; Galano, A. Phytomelatonin: Assisting plants to survive and thrive. Molecules 2015, 20, 7396–7437. [Google Scholar] [CrossRef] [Green Version]
- Garrido, M.; Espino, J.; González-Gómez, D.; Lozano, M.; Barriga, C.; Paredes, S.D.; Rodríguez, A.B. The consumption of a Jerte Valley cherry product in humans enhances mood and increases 5-hydroxyindoleacetic acid but reduces cortisol levels in urine. Exp. Gerontol. 2012, 47, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, T.; Zhang, P.; Wang, X.Y. Melatonin attenuates postharvest physiological deterioration of cassava storage roots. J. Pineal Res. 2016, 60, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, N.; Wang, J.; Cao, Y.; Li, X.; Zhang, H.; Zhang, L.; Tan, D.X.; Guo, Y.D. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J. Pineal Res. 2016, 61, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Lu, Z.; Yang, Y.; Wang, D.; Cao, M.; Cao, W. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chem. 2018, 45, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Gardana, C.; Zanzotto, A.; Simonetti, P.; Faoro, F.; Fico, G.; Iriti, M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J. Pineal Res. 2011, 51, 331–337. [Google Scholar] [CrossRef]
- Meng, J.F.; Xu, T.F.; Song, C.Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z.W.; Xi, Z.M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem. 2015, 185, 127–134. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, D.X.; Lei, Q.; Chen, H.; Wang, L.; Li, Q.; Gao, Y.; Kong, J. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 2012, 55, 79–88. [Google Scholar] [CrossRef]
- Tijero, V.; Muñoz, P.; Munné-Bosch, S. Melatonin as an inhibitor of sweet cherries ripening in orchard trees. Plant Physiol. Biochem. 2019, 140, 88–95. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Sun, Y.; Liu, Z.; Jin, W.; Sun, Y. The beneficial effects of exogenous melatonin on tomato fruit properties. Sci. Hortic. 2016, 207, 14–20. [Google Scholar] [CrossRef]
- Abd El-Naby, S.K.M.A.; Mohamed, A.A.A.; El-Naggar, Y.I.M. Effect of melatonin, GA3 and NAA on vegetative growth, yield and quality of ’Canino’ apricot fruits. Acta Sci. Pol. Hortorum Cultus 2019, 18, 167–174. [Google Scholar] [CrossRef]
- Asgary, S.; Keshvari, M.; Sahebkar, A.; Sarrafzadegan, N. Pomegranate consumption and blood pressure: A review. Curr. Pharm. Des. 2017, 23, 1042–1050. [Google Scholar] [CrossRef]
- Panth, N.; Manandhar, B.; Paudel, K.R. Anticancer activity of Punica granatum (pomegranate): A review. Phytother. Res. 2017, 31, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.; Valero, D.; Serrano, M. Postharvest biology and technology of pomegranate. J. Sci. Food Agr. 2015, 95, 2360–2369. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Guillén, F.; Valero, D.; Serrano, M. The effects of salicylic acid and its derivatives on increasing pomegranate fruit quality and bioactive compounds at harvest and during storage. Front. Plant Sci. 2020, 11, 668. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Galindo, A.; Collado-González, J.; Rodríguez, P.; Cruz, Z.N.; Legua, P.; Burló, F.; Morales, D.; Carbonell-Barrachina, A.; Hernández, F. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agric. 2018, 98, 3098–3108. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Calín-Sánchez, A.; Carbonell-Barrachina, A.; Hernández, F. Changes in quality parameters, proline, antioxidant activity and color of pomegranate (Punica granatum L.) as affected by fruit position within tree, cultivar and ripening stage. Sci. Hortic. 2014, 165, 181–189. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Aradhya, S.M. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem. 2005, 93, 319–324. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Giménez, M.J.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Preharvest application of methyl jasmonate increases crop yield, fruit quality and bioactive compounds in pomegranate ‘Mollar de Elche’ at harvest and during postharvest storage. J. Sci. Food Agric. 2020, 100, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality; CRC Press: Boca Raton, FL, USA, 2010; p. 288. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Serrano, M.; Guillén, F.; Martínez-Romero, D.; Valero, D. Prestorage heat treatment to maintain nutritive and functional properties during postharvest cold storage of pomegranate. J. Agric. Food Chem. 2006, 54, 8495–8500. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernandez-Ruiz, J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Kołodziejczyk, I.; Posmyk, M.M. Melatonin—A new plant biostimulator? J. Elem. 2016, 21, 1187–1198. [Google Scholar] [CrossRef]
- Li, X.; Wasila, H.; Liu, L.; Yuan, T.; Gao, Z.; Zhao, B.; Ahmad, I. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem. 2015, 175, 575–584. [Google Scholar] [CrossRef]
- Bartual, J.; Pérez-Gago, M.B.; Pomares, F.; Palou, L.; Intrigliolo, D.S. Nutrient status and irrigation management affect anthocyanins in ‘Mollar de Elche’ pomegranate. Acta Hortic. 2015, 1106, 85–92. [Google Scholar] [CrossRef]
- Gil, M.I.; García-Viguera, C.; Artés, F.; Tomás-Barberán, F.A. Changes in pomegranate juice pigmentation during ripening. J. Sci. Food Agric. 1995, 68, 77–81. [Google Scholar] [CrossRef]
- Hu, W.; Yang, H.; Tie, W.W.; Yan, Y.; Ding, Z.; Liu, Y.; Wu, C.; Wang, J.; Reiter, R.J.; Tan, D.X.; et al. Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. J. Agric. Food Chem. 2017, 65, 9987–9994. [Google Scholar] [CrossRef]
- Bal, E. Physicochemical changes in ‘Santa Rosa’ plum fruit treated with melatonin during cold storage. J. Food Measur. Charact. 2019, 13, 1713–1720. [Google Scholar] [CrossRef]
- Rastegar, S.; Khankahdani, H.H.; Rahimzadeh, M. Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Sci. Hortic. 2020, 259, 108835. [Google Scholar] [CrossRef]
- Onik, J.C.; Wai, S.C.; Li, A.; Lin, Q.; Sun, Q.; Wang, Z.; Duan, Y. Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chem. 2021, 337, 127753. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Cheng, N.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 2016, 118, 103–110. [Google Scholar] [CrossRef]
- Zhai, R.; Liu, J.; Liu, F.; Zhao, Y.; Liu, L.; Fang, C.; Wang, H.; Li, X.; Wang, Z.; Ma, F.; et al. Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biol. Technol. 2018, 139, 38–46. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H.; Huber, D.J.; Pan, Y.; Shi, X.; Zhang, Z. Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin. Postharvest Biol. Technol. 2020, 163, 111136. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Yang, Q.; Zhao, Q. Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chem. 2019, 301, 125311. [Google Scholar] [CrossRef]
Parameter | Control | Melatonin 0.1 mM | Melatonin 1 mM |
---|---|---|---|
Yield (kg tree−1) | |||
Harvest 1 | 28.65 ± 3.16 a | 21.68 ± 2.02 b | 20.66 ± 2.84 b |
Harvest 2 | 9.10 ± 0.98 a | 20.36 ± 3.60 b | 18.05 ± 2.29 b |
Total | 37.75 ± 3.28 a | 42.04 ± 1.06 b | 38.71 ± 2.49 a |
Yield (number of fruit tree−1) | |||
Harvest 1 | 78.0 ± 7.9 a | 61.40 ± 4.01 b | 65.00 ± 3.83 b |
Harvest 2 | 29.8 ± 3.21 a | 58.00 ± 3.98 c | 46.60 ± 5.65 b |
Total | 107.8 ± 5.16 a | 119.40 ± 3.96 b | 111.60 ± 4.15 ab |
Fruit weight (g) | |||
Harvest 1 | 367.31 ± 11.29 a | 353.09 ± 9.14 a | 317.84 ± 10.21 b |
Harvest 2 | 305.37 ± 7.62 a | 351.03 ± 9.95 b | 387.33 ± 8.45 c |
Average | 350.18 ± 6.19 a | 352.03 ± 12.97 a | 346.86 ± 9.15 b |
Parameter | Control | Melatonin 0.1 mM |
---|---|---|
Yield (kg tree−1) | ||
Harvest 1 | 26.73 ± 1.72 a | 22.91 ± 2.34 b |
Harvest 2 | 10.37 ± 1.37 a | 20.34 ± 3.19 b |
Total | 37.10 ± 1.56 a | 43.25 ± 1.57 b |
Yield (number of fruit tree−1) | ||
Harvest 1 | 72.40 ± 3.64 a | 60.90 ± 3.85 b |
Harvest 2 | 36.75 ± 4.02 a | 60.40 ± 5.92 b |
Total | 109.15 ± 3.92 a | 121.30 ± 4.96 b |
Fruit weight (g) | ||
Harvest 1 | 369.20 ± 9.55 a | 376.19 ± 7.45 a |
Harvest 2 | 282.17 ± 6.46 a | 336.75 ± 6.17 b |
Average | 339.90 ± 5.15 a | 357.43 ± 8.07 b |
Parameter | Days | Control | Melatonin 0.1 mM | Melatonin 1 mM |
---|---|---|---|---|
Weight loss (%) | 0 | - | - | - |
30 | 3.94 ± 0.19 aA | 3.67 ± 0.15 aA | 3.75 ± 0.20 aA | |
60 | 4.82 ± 0.49 bA | 3.83 ± 0.48 aB | 4.38 ± 0.11 bB | |
90 | 6.87 ± 1.09 cA | 4.86 ± 0.26 bC | 5.59 ± 0.17 cB | |
TSS (g 100 g−1) | 0 | 15.17 ± 0.26 aA | 16.37 ± 0.22 aB | 15.38 ± 0.35 aA |
30 | 16.68 ± 0.12 bA | 16.38 ± 0.10 aA | 16.40 ± 0.12 aA | |
60 | 16.93 ± 0.23 bcA | 16.48 ± 0.16 aA | 17.18 ± 0.26 a,bA | |
90 | 17.42 ± 0.15 cA | 17.25 ± 0.19 bA | 17.32 ± 0.12 bA | |
TA (g 100 g−1) | 0 | 0.45 ± 0.03 aA | 0.56 ± 0.01 aA | 0.56 ± 0.05 aA |
30 | 0.38 ± 0.01 bA | 0.51 ± 0.02 bB | 0.57 ± 0.03 aB | |
60 | 0.32 ± 0.02 bcA | 0.46 ± 0.01 bB | 0.45 ± 0.02 bB | |
90 | 0.21 ± 0.01 cA | 0.38 ± 0.02 cB | 0.30 ± 0.01 cB | |
RI (TSS/TA) | 0 | 35.04 ± 0.51 aA | 29.23 ± 0.52 aB | 27.46 ± 0.54 aB |
30 | 43.88 ± 0.73 bA | 32.01 ± 0.54 bB | 28.77 ± 0.38 aB | |
60 | 52.91 ± 0.84 cA | 35.82 ± 0.74 cB | 38.18 ± 0.56 bB | |
90 | 82.95 ± 1.22 dA | 45.39 ± 0.41 dB | 57.73 ± 0.62 cC | |
External Color Hue | 0 | 68.30 ± 1.01 aA | 58.84 ± 1.47 aC | 62.69 ± 1.12 aB |
30 | 64.71 ± 1.07 abA | 55.89 ± 1.88 abB | 57.71 ± 1.03 abB | |
60 | 61.53 ± 1.09 bcA | 53.66 ± 1.88 bcB | 55.80 ± 1.68 bB | |
90 | 59.93 ± 1.57 cB | 52.26 ± 1.89 cB | 54.48 ± 1.42 bB | |
Internal Color Hue | 0 | 34.13 ± 1.71 aA | 30.34 ± 1.18 aB | 31.92 ± 1.29 aAB |
30 | 31.78 ± 1.04 abA | 28.34 ± 0.73 abB | 28.77 ± 1.22 abB | |
60 | 28.91 ± 0.53 bA | 26.00 ± 0.64 bB | 26.93 ± 0.65 bcB | |
90 | 26.91 ± 0.83cA | 23.84 ± 0.55 cB | 24.74 ± 0.69 cAB |
Parameter | Treatment | Day 0 | Day 30 | Day 60 | Day 90 |
---|---|---|---|---|---|
Weight loss (%) | Control | - | 7.07 ± 0.49 Aa | 8.49 ± 0.48 Ab | 9.88 ± 0.54 Ac |
Melatonin | 6.03 ± 0.14 Aa | 7.18 ± 0.25 Bb | 7.98 ± 0.24 Bc | ||
TSS (g 100 g−1) | Control | 16.05 ± 0.10 Aa | 17.03 ± 0.15 Ab | 17.52 ± 0.16 Ab | 17.41 ± 0.22 Ab |
Melatonin | 17.18 ± 0.12 Ba | 17.02 ± 0.13 Aa | 17.13 ± 0.18 Aa | 17.25 ± 0.36 Aa | |
TA (g 100 g−1) | Control | 0.35 ± 0.03 Aa | 0.31 ± 0.03 Ab | 0.21 ± 0.02 Ac | 0.19 ± 0.04 Ac |
Melatonin | 0.42 ± 0.04 Ba | 0.37 ± 0.03 Ba,b | 0.34 ± 0.02 Bb,c | 0.29 ± 0.01 Bc | |
Ripening index (TSS/TA) | Control | 45.85 ± 1.74 Aa | 54.93 ± 2.15 Ab | 83.42 ± 1.65 Ac | 91.63 ± 1.97 Ad |
Melatonin | 40.90 ± 1.03 Ba | 48.62 ± 0.78 Bb | 50.38 ± 2.18 Bb | 59.48 ± 2.18 Bc | |
External Color Hue | Control | 66.41 ± 1.22 Aa | 64.20 ± 1.52 Aa | 60.02 ± 1.34 Ab | 58.38 ± 0.99 Ab |
Melatonin | 60.02 ± 0.51 Ba | 56.70 ± 1.57 Bbc | 54.07 ± 1.24 Bcd | 52.49 ± 1.61 Bd | |
Internal Color Hue | Control | 33.13 ± 0.58 Aa | 30.75 ± 1.90 Aab | 29.23 ± 0.56 Ab | 27.65 ± 1.07 Ac |
Melatonin | 30.56 ± 1.24 Ba | 27.22 ± 1.40 Bab | 26.02 ± 1.18 Bb | 22.79 ± 1.17 Bc |
Parameter | Control | Melatonin 0.1 mM |
---|---|---|
Sugars (g 100 g−1) | ||
Sucrose | 0.06 ± 0.01 a | 0.06 ± 0.02 a |
Glucose | 4.17 ± 0.10 a | 4.81 ± 0.24 b |
Fructose | 11.61 ± 0.33 a | 12.54 ± 0.26 b |
Organic acids (g 100 g−1) | ||
Malic acid | 0.32 ± 0.03 a | 0.36 ± 0.04 b |
Succinic acid | 0.07 ± 0.01 a | 0.12 ± 0.01 b |
Citric acid | 0.09 ± 0.01 a | 0.09 ± 0.01 a |
Ascorbic acid | 0.04 ± 0.01 a | 0.06 ± 0.01 b |
Fumaric acid | 0.03 ± 0.01 a | 0.03 ± 0.01 a |
Oxalic acid | 0.01 ± 0.01 a | 0.01 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Santamarina, J.; Serrano, M.; Lorente-Mento, J.M.; García-Pastor, M.E.; Zapata, P.J.; Valero, D.; Guillén, F. Melatonin Treatment of Pomegranate Trees Increases Crop Yield and Quality Parameters at Harvest and during Storage. Agronomy 2021, 11, 861. https://doi.org/10.3390/agronomy11050861
Medina-Santamarina J, Serrano M, Lorente-Mento JM, García-Pastor ME, Zapata PJ, Valero D, Guillén F. Melatonin Treatment of Pomegranate Trees Increases Crop Yield and Quality Parameters at Harvest and during Storage. Agronomy. 2021; 11(5):861. https://doi.org/10.3390/agronomy11050861
Chicago/Turabian StyleMedina-Santamarina, Jorge, María Serrano, Jose M. Lorente-Mento, María E. García-Pastor, Pedro J. Zapata, Daniel Valero, and Fabián Guillén. 2021. "Melatonin Treatment of Pomegranate Trees Increases Crop Yield and Quality Parameters at Harvest and during Storage" Agronomy 11, no. 5: 861. https://doi.org/10.3390/agronomy11050861
APA StyleMedina-Santamarina, J., Serrano, M., Lorente-Mento, J. M., García-Pastor, M. E., Zapata, P. J., Valero, D., & Guillén, F. (2021). Melatonin Treatment of Pomegranate Trees Increases Crop Yield and Quality Parameters at Harvest and during Storage. Agronomy, 11(5), 861. https://doi.org/10.3390/agronomy11050861