The Effect of Diffuse Film Covers on Microclimate and Growth and Production of Tomato (Solanum lycopersicum L.) in a Mediterranean Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Greenhouse
2.2. Microclimate Measurement Equipment
2.3. Crop System
2.4. Measurement Equipment for Crop Development and Yield Analysis
2.5. Measurement of Photosynthetic Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microclimatic Conditions
3.1.1. Radiation Measurements
3.1.2. Air Temperature
3.1.3. Crop Temperature
3.1.4. Soil Temperature
3.1.5. Soil Heat Flux
3.1.6. Air Humidity
3.2. Photosynthetic Activity
3.3. Plant Morphology
3.4. Fruit Quality
3.5. Tomato Production
4. Conclusions
- -
- Experimental plastic produced a 14–15% increase in the average cover transmittance for solar radiation and photosynthetically active radiation (PAR).
- -
- The average photosynthetic activity measured in the leaves of tomato crop was 21.5% higher with experimental plastic as a result of a 13% increase in PAR radiation.
- -
- As a result of increased photosynthetic activity, the marketable yield of tomato crop was 3.2% higher with the experimental plastic with higher transmittance (6.5% increase in total production).
- -
- The production improvement was due to both an increase in the average weight of the fruits and the number of fruits per plant, although statistical differences were not observed for either of these two parameters.
- -
- No statistically significant differences were observed in any of the plant growth parameters (length and thickness of the stem, number of nodes and length of internodes).
- -
- The rise in solar radiation produced by the increased transmittance of commercial plastic generated a higher temperature on the soil surface, but there were no statistically significant differences in the air temperature at the height of the crop (2 m).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Real, M.M.; Baille, A.; Gutiérrez Colomer, R.P. Leaf photosynthetic properties and radiation profiles in a rose canopy (Rosa hybrida L.) with bent shoots. Sci. Hortic. (Amsterdam) 2007, 114, 177–187. [Google Scholar] [CrossRef]
- Niinemets, Ü.L.O. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ. 2007, 30, 1052–1071. [Google Scholar] [CrossRef]
- Sarlikioti, V.; de Visser, P.H.B.; Marcelis, L.F.M. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Ann. Bot. 2011, 107, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Long, S.P.; Humphries, S.; Falkowski, P.G. Photoinhibition of Photosynthesis in Nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45, 633–662. [Google Scholar] [CrossRef]
- Asada, K. The Water-Water Cycle In Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, K.K. Photoprotection Revisited: Genetic and Molecular Approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 333–359. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, M.; Kagawa, T.; Oikawa, K.; Suetsugu, N.; Miyao, M.; Wada, M. Chloroplast avoidance movement reduces photodamage in plants. Nature 2002, 420, 829–832. [Google Scholar] [CrossRef]
- Way, D.A.; Pearcy, R.W. Sunflecks in trees and forests: From photosynthetic physiology to global change biology. Tree Physiol. 2012, 32, 1066–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquhar, G.D.; Roderick, M.L. Pinatubo, diffuse light and the carbon cycle. Science 2003, 299, 1997–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-23. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Heuvelink, E.; Dueck, T.A.; Janse, J.; Gort, G.; Marcelis, L.F.M. Enhancement of crop photosynthesis by diffuse light: Quantifying the contributing factors. Ann. Bot. 2014, 114, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Dueck, T.; Janse, J.; Li, T.; Kempkes, F.; Eveleens, B. Influence of diffuse glass on the growth and production of tomato. Acta Hortic. 2012, 956, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Demmig-Adams, B.; Adams, W.W. Photosynthesis and Partitioning. Photoinhibition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 2007–2014. [Google Scholar] [CrossRef]
- Adir, N.; Zer, H.; Shochat, S.; Ohad, I. Photoinhibition—A historical perspective. Photosynth. Res. 2003, 76, 343–370. [Google Scholar] [CrossRef]
- Murata, N.; Takahashi, S.; Nishiyama, Y.; Allakhverdiev, S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wu, N.; Zhang, L.; Ahammed, G.J.; Chen, X.; Xiang, X.; Zhou, J.; Xia, X.; Shi, K.; Yu, J.; et al. Light signaling-dependent regulation of photoinhibition and photoprotection in Tomato. Plant Physiol. 2018, 176, 1311–1326. [Google Scholar] [CrossRef] [PubMed]
- Gent, M.; Seniger, I. A carbohydrate supply and demand model of vegetative growth: Response to temperature and light. Plant. Cell Environ. 2012, 35, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Masabni, J.; Sun, Y.; Niu, G.; Del Valle, P. Shade effect on growth and productivity of tomato and chili pepper. Horttechnology 2016, 26, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Kempkes, F.L.K.; Stanghellini, C.; Victoria, N.G.; Bruins, M. Effect of diffuse glass on climate and plant environment: First results from an experiment on roses. Acta Hortic. 2012, 952, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Urban, O.; Klem, K.; Ač, A.; Havránková, K.; Holišová, P.; Navrátil, M.; Zitová, M.; Kozlová, K.; Pokorný, R.; Šprtová, M.; et al. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct. Ecol. 2012, 26, 46–55. [Google Scholar] [CrossRef]
- Trouwborst, G.; Oosterkamp, J.; Hogewoning, S.W.; Harbinson, J.; van Ieperen, W. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol. Plant. 2010, 138, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, C.R.; Vogelmann, T.C.; Williams, W.E.; Gorton, H.L. A new paradigm in leaf-level photosynthesis: Direct and diffuse lights are not equal. Plant. Cell Environ. 2008, 31, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, H.; Takenaka, A.; Tang, Y.; Koizumi, H.; Washitani, I. Flexible Leaf Orientations of Arisaema heterophyllum Maximize Light Capture in a Forest Understorey and Avoid Excess Irradiance at a Deforested Site. Ann. Bot. 1998, 82, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.M.; Smith, W.K. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce–fir forest (USA). Am. J. Bot. 2006, 93, 1625–1632. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yang, Q. Advantages of diffuse light for horticultural production and perspectives for further research. Front. Plant Sci. 2015, 6, 704. [Google Scholar] [CrossRef] [Green Version]
- Pounds, J.A.; Puschendorf, R. Clouded futures. Nature 2004, 427, 107–109. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. Atmospheric science: The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Oceans cool off in hottest years. Nature 2006, 442, 854–855. [Google Scholar] [CrossRef] [Green Version]
- Brodersen, C.R.; Vogelmann, T.C. Do Epidermal Lens Cells Facilitate the Absorptance of Diffuse Light? Am. J. Bot. 2007, 94, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Hemming, S.; Dueck, T.; Janse, J.; Van Noort, F. The effect of diffuse light on crops. Acta Hortic. 2008, 801 Pt 2, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Heuvelink, E.; van Noort, F.; Kromdijk, J.; Marcelis, L.F.M. Responses of two Anthurium cultivars to high daily integrals of diffuse light. Sci. Hortic. (Amsterdam) 2014, 179, 306–313. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.D.; Wofsy, S.C.; William Munger, J.; Michalsky, J.J.; Urbanski, S.P.; Boden, T.A. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 2003, 299, 2035–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Poorter, H.; Anten, N.P.R.; Marcelis, L.F.M. Physiological mechanisms in plant growth models: Do we need a supra-cellular systems biology approach? Plant Cell Environ. 2013, 36, 1673–1690. [Google Scholar] [CrossRef] [PubMed]
- Fausey, B.A.; Heins, R.D.; Cameron, A.C. Daily light integral affects flowering and quality of greenhouse-grown Achillea, Gaura, and Lavandula. HortScience 2005, 40, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, D.W. Photosynthesis, productivity and environment. J. Exp. Bot. 1995, 46, 1449–1461. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Fournier, C.; Brichet, N.; Welcker, C.; Suard, B.; Tardieu, F. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 2016, 212, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Barthélémy, D.; Caraglio, Y. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 2007, 99, 375–407. [Google Scholar] [CrossRef] [Green Version]
- Falster, D.S.; Westoby, M. Leaf size and angle vary widely across species: What consequences for light interception? New Phytol. 2003, 158, 509–525. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, T.R.; Muchow, R.C. Radiation Use Efficiency. Adv. Agron. 1999, 65, 215–265. [Google Scholar]
- Sultan, S.E. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000, 5, 537–542. [Google Scholar] [CrossRef]
- Sarlikioti, V.; De Visser, P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M. How plant architecture affects light absorption and photosynthesis in tomato: Towards an ideotype for plant architecture using a functionalstructural plant model. Ann. Bot. 2011, 108, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Dueck, T.A.; Poudel, D.; Janse, J.; Hemming, S. Diffuus Licht—Wat Is de Optimale Lichtverstrooiing; Wageningen UR Glastuinbouw: Wageningen, The Netherlands, 2009; 50p. [Google Scholar]
- Teitel, M.; Vitoshkin, H.; Geoola, F.; Karlsson, S.; Stahl, N. Greenhouse and screenhouse cover materials: Literature review and industry perspective. Acta Hortic. 2018, 1227, 31–44. [Google Scholar] [CrossRef]
- Baneshi, M.; Gonome, H.; Maruyama, S. Wide-range spectral measurement of radiative properties of commercial greenhouse covering plastics and their impacts into the energy management in a greenhouse. Energy 2020, 210, 118535. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Scarascia Mugnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Review Paper (SE—Structures and Environment): Radiometric and Thermal Properties of, and Testing Methods for, Greenhouse Covering Materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Guiselini, C.; Sentelhas, P.; Oliveira, R. Uso de malhas e sombreamento em ambiente protegido II: Efeito sobre a radiação solar global e a fotossinteticamente ativa no crescimento e produção da cultura de pimentão. Rev. Bras. Agrometeorol. 2004, 11, 15–26. [Google Scholar]
- Gurrea-Ysasi, G.; Blanca-Giménez, V.; Fita, I.C.; Fita, A.; Prohens, J.; Rodriguez-Burruezo, A. Characterization of the spectrum of solar irradiance under different crop protection coverings in Mediterranean conditions and effect on the interception of photosynthetically active radiation. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Cemek, B.; Demir, Y.; Uzun, S.; Ceyhan, V. The effects of different greenhouse covering materials on energy requirement, growth and yield of aubergine. Energy 2006, 31, 1780–1788. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Kumar, A.; Alsadon, A.A.; Shady, M.R.; Ibrahim, A.A. Effect of Aging on the Spectral Radiative Properties of Plastic Film-Covered Greenhouse under Arid Conditions. Int. J. Thermophys. 2018, 39, 1–16. [Google Scholar] [CrossRef]
- Marques, D.J.; Matheus Filho, E.; Bianchini, H.C.; Veroneze Junior, V.; Santos, B.R.; Carlos, L.D.A.; Silva, E.C.D. Tomato production in hydroponic system using different agrofilms as greenhouse cover. Hortic. Bras. 2020, 38, 58–64. [Google Scholar] [CrossRef]
- Emekli, N.Y.; Buÿüktaş, K.; Başçetinçelik, A. Changes of the light transmittance of the LDPE films during the service life for greenhouse application. J. Build. Eng. 2016, 6, 126–132. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Alhamdan, A.M. Effect of arid environment on radiative properties of greenhouse polyethylene cover. Sol. Energy 2009, 83, 790–798. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Picuno, P.; Cidek, M.F.; Al-Rebeh, A.; Shady, M.R. Degradation Characteristics of the Optical Constants of PE-LD Film-Covered Greenhouses in an Arid Climate. Int. J. Thermophys. 2019, 40, 1–14. [Google Scholar] [CrossRef]
- Argento, S.; Melilli, M.G.; Branca, F. Enhancing Greenhouse Tomato-Crop Productivity by Using Brassica macrocarpa Guss. Leaves for Controlling Root-Knot Nematodes. Agronomy 2019, 9, 820. [Google Scholar] [CrossRef] [Green Version]
- Baeza, E.; Hemming, S.; Stanghellini, C. Materials with switchable radiometric properties: Could they become the perfect greenhouse cover? Biosyst. Eng. 2020, 193, 157–173. [Google Scholar] [CrossRef]
- Molina-Aiz, F.; Valera, D.; López, A.; Bouharroud, R.; Fatnassi, H. Analysis of economic sustainability of tomato greenhouses in Almería (Spain). Acta Hortic. 2020, 1296, 1169–1177. [Google Scholar] [CrossRef]
- JA. Characterization of the Agricultural and Fisheries Sector of Andalusia. Junta de Andalucía Caracterización del Sector 954. Agrario y Pesquero de Andalucía. Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible 2020; pp. 109–111. Available online: https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/19/12/Fichas%202020_publicable.pdf (accessed on 30 March 2021).
- CBS Vegetables; Yield and Cultivated Area Per Kind of Vegetable. Statistics Netherlands 2020. Available online: https://www.cbs.nl/en-958gb/figures/detail/37738ENG?q=tomato#shortTableDescription (accessed on 30 March 2021).
- Valera, D.L.; Belmonte, L.J.; Molina-Aiz, F.D.; López, A. Greenhouse Agriculture in Almería. A Comprehensive Techno-Economic 961 Analysis; CAJAMAR. Caja Rural: Almería, Spain, 2016; 408p, Available online: https://publicacionescajamar.es/seriestematicas/economia/greenhouse-agriculture-in-almeria-a-comprehensive-techno-economic-analysis (accessed on 22 December 2020).
- Moreno-Teruel, M.D.; Valera, D.; Molina-Aiz, F.D.; López-Martínez, A.; Peña, A.; Marín, P.; Reyes-Rosas, A. Effects of Cover Whitening Concentrations on the Microclimate and on the Development and Yield of Tomato (Lycopersicon esculentum Mill.) Inside Mediterranean Greenhouses. Agronomy 2020, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- UNE-EN 13206: 2017+A1 Plastics. Thermoplastic Covering Films for Use in Agriculture and Horticulture; Asociación Española de Normalización (UNE): Madrid, Spain; 6p, Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?Tipo=N&c=N0064784 (accessed on 16 December 2020).
- ASTM D 1003-13. Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA; 64p, Available online: https://www.astm.org/Standards/D1003.htm (accessed on 8 December 2020).
- Hernández, J.; Bonachela, S.; Granados, M.R.; López, J.C.; Magán, J.J.; Montero, J.I. Microclimate and agronomical effects of internal impermeable screens in an unheated Mediterranean greenhouse. Biosyst. Eng. 2017, 163, 66–77. [Google Scholar] [CrossRef]
- Steelheart, C.; Alegre, M.L.; Vera Bahima, J.; Senn, M.E.; Simontacchi, M.; Bartoli, C.G.; Gergoff Grozeff, G.E. Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum L.)fruit postharvest life. Sci. Hortic. (Amsterdam) 2019, 255, 193–201. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A.; Maruo, T. Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. Sci. Hortic. (Amsterdam) 2017, 222, 221–229. [Google Scholar] [CrossRef]
- Melilli, M.G.; Tringali, S.; Raccuia, S.A. Reduction of browning phenomena of minimally processed artichoke hearts. Acta Hortic. 2016, 1147, 223–236. [Google Scholar] [CrossRef]
- Statgraphics Statgraphics®Centurion 18. User Manual. Statgraphics Technologies. Available online: https://www.statgraphics.net/wp-983content/uploads/2015/03/Centurion-XVI-Manual-Principal.pdf (accessed on 29 December 2020).
- Stanghellini, C. Transpiration of Greenhouse Crops: An Aid to Climate Management. Ph.D. Thesis, Agricultural University Wageningen, Wageninge, The Nederland, 1987. [Google Scholar]
- Marcelis, L.F.M. Simulation of plant-water relations and photosynthesis of greenhouse crops. Sci. Hortic. (Amsterdam) 1989, 41, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Garcia, M.L.; Sanchez-Guerro, M.C.; Medrano, E.; Caparros, I.; Giménez, M. Influence of mobile shading on yield, crop transpiration and water use efficiency. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2006; pp. 471–478. [Google Scholar]
- Sethi, V.P.; Sharma, S.K. Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol. Energy 2007, 81, 1447–1459. [Google Scholar] [CrossRef]
- Ahemd, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. (Amsterdam) 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Sage, R.F.; Sharkey, T.D. The Effect of Temperature on the Occurrence of O2 and CO2 Insensitive Photosynthesis in Field Grown Plants 1. Plant Physiol. 1987, 84, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Short, T.H.; Fox, R.D.; Bauerle, W.L. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agric. For. Meteorol. 1990, 51, 197–209. [Google Scholar] [CrossRef]
- López-Martínez, A.; Valera-Martínez, D.L.; Molina-Aiz, F.D.; Moreno-Teruel, M.Á.; Peña-Fernández, A.; Espinoza-Ramos, K.E. Analysis of the effect of concentrations of four whitening products in cover transmissivity of mediterranean greenhouses. Int. J. Environ. Res. Public Health 2019, 16, 958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Nofziger, D.L. Incorporating Temperature Effects on Pesticide Degradation into a Management Model. J. Environ. Qual. 1999, 28, 92–100. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Campbell, G.S.B.T.-D. Chapter 4 Soil Temperature and Heat Flow. In Soil Physics With Basic; Elsevier: Amsterdam, The Netherlands, 1985; pp. 26–39. ISBN 0166-2481. [Google Scholar]
- Sauer, T.J.; Horton, R. Soil Heat Flux. Micrometeorol. Agric. Syst. 2015, 47, 131–154. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Valera, D.L.; Peña, A.A.; Gil, J.A. Optimisation of Almería-type greenhouse ventilation performance with computational fluid dynamics. Acta Hortic. 2005, 691, 433–440. [Google Scholar] [CrossRef]
- Li, T.; Kromdijk, J.; Heuvelink, E.; van Noort, F.R.; Kaiser, E.; Marcelis, L.F.M. Effects of diffuse light on radiation use efficiency of two Anthurium cultivars depend on the response of stomatal conductance to dynamic light intensity. Front. Plant Sci. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, B.; Zhao, S.; Sun, S.; Qu, Y.; Zhou, Q.; Wang, P. Preliminary research on growth of cucumber under the diffuse ligth film. J. Shanxi Agric. Univ. 2016, 36, 633. [Google Scholar]
- Sun, S.; Zhou, Q.; Fan, B.; Zhao, S.; Wang, P.; Qu, Y. Effect of diffuse light thin film on tomato growth and fruit quality. China Veg. 2016, 5, 22–26. [Google Scholar]
- Horn, H. The Adaptive Geometry of Trees; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Norman, J.M.; Miller, E.E.; Tanner, C.B. Light Intensity and Sunfleck-size Distributions in Plant Canopies1. Agron. J. 1971, 63, 743–748. [Google Scholar] [CrossRef]
- Norman, J.M.; Arkebauer, T.J. Predicting Canopy Light-Use Efficiency from Leaf Characteristics. Model. Plant Soil Syst. 1991, 31, 125–143. [Google Scholar]
- Victoria, N.G.; Kempkes, F.L.K.; Van Weel, P.; Stanghellini, C.; Dueck, T.A.; Bruins, M. Effect of a diffuse glass greenhouse cover on rose production and quality. Acta Hortic. 2012, 952, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Van der Ploeg, A.; van der Meer, M.; Heuvelink, E. Breeding for a more energy efficient greenhouse tomato: Past and future perspectives. Euphytica 2007, 158, 129–138. [Google Scholar] [CrossRef] [Green Version]
- López Camelo, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Marcelis, L.F.M. A Simulation Model for Dry Matter Partitioning in Cucumber. Ann. Bot. 1994, 74, 43–52. [Google Scholar] [CrossRef]
- Cabello, T.; Gallego, J.R.; Fernandez, F.J.; Gamez, M.; Vila, E.; Del Pino, M.; Hernandez–Suarez, E. Biological Control Strategies for the South American Tomato Moth (Lepidoptera: Gelechiidae) in Greenhouse Tomatoes. J. Econ. Entomol. 2012, 105, 2085–2096. [Google Scholar] [CrossRef] [PubMed]
Sector | Plastic Cover | LG× WG | SC | SV | SV/SC |
---|---|---|---|---|---|
East | Diffuse commercial film | 40 × 20 | 800 | 84.9 | 10.6 |
West | Diffuse experimental film | 40 × 25 | 1000 | 109.1 | 10.9 |
Plastic Cover | TPAR | TUV | D [%] | T [%] |
---|---|---|---|---|
Diffuse commercial film | 0.85 | 0.24 | 60 | 85 |
Diffuse experimental film | 0.90 | 0.24 | 55 | 90 |
Parameters | East—Commercial Film | West—Experimental Film |
---|---|---|
Average values from1/04/2020 to 18/06/2020 | ||
RSOL (W·m−2) | 105.3 a ± 140.0 | 120.5 b ± 163.4 |
τc (mean·values) | 0.43 a ± 0.16 | 0.49 b ± 0.16 |
ΣRsol (MJ·m−2) | 9.07 a ± 12.09 | 10.37 a ± 14.11 |
RPAR (μmol·s−1·m−2) | 193.1 a ± 273.7 | 223.5 a ±303.4 |
Average daily maximum values | ||
RSOL (W·m−2) | 442. 5 a ± 160.3 | 568.2 b ± 176.5 |
τc (mean·values) | 0.53 a ± 0.21 | 0.66 b ± 0.19 |
RPAR (μmol·s−1·m−2) | 859.0 a ± 411.8 | 1079.7 b ± 310.8 |
Parameters | East—Commercial Diffuse Film | West—Experimental Diffuse Film | ||
---|---|---|---|---|
North | South | North | South | |
Average values from 1/04/2020 to 18/06/2020 | ||||
T1 m (°C) | 21.1 a ± 6.0 | 21.4 c ± 5.8 | 21.5 d ± 6.2 | 21.2 b ± 6.1 |
T2 m (°C) | 21.7 a ± 6.7 | 21.3 a ± 6.3 | 22.4 a ± 6.9 | 21.4 a ± 6.8 |
T4.5 m (°C) | 21.6 a ± 7.2 | 21.9 b ± 7.2 | 22.3 c ± 7.2 | 22.1 d ± 7.6 |
Average daily maximum values | ||||
T1 m (°C) | 30.8 a ± 4.0 | 31.2 a ± 4.4 | 31.6 a ± 4.4 | 31.4 a ± 4.6 |
T2 m (°C) | 32.4 ab ± 4.2 | 31.6 a ± 4.4 | 33.5 b ± 4.4 | 32.7 ab ± 4.7 |
T4.5 m (°C) | 33.3 a ± 4.1 | 33.5 a ± 4.2 | 33.9 a ± 4.2 | 34.4 a ± 4.6 |
Average daily minimum values | ||||
T1 m (°C) | 14.9 a ± 2.0 | 15.4 a ± 2.0 | 15.1 a ± 2.2 | 15.0 a ± 2.2 |
T2 m (°C) | 14.8 ab ± 2.2 | 14.9 ab ± 2.1 | 15.3 b ± 2.3 | 14.6 a ± 2.3 |
T4.5 m (°C) | 14.1 a ± 2.1 | 14.5 bc ± 2.1 | 14.7 c ± 2.2 | 14.3 ab ± 2.3 |
Parameters | East—Commercial Diffuse Film | West—Experimental Diffuse Film | ||
---|---|---|---|---|
North | South | North | South | |
Average values from 1/04/2020 to 18/06/2020 | ||||
Th (°C) | 21.9 b ± 6.8 | 21.6 a ± 6.4 | 21.9 b ± 6.6 | 21.6 a ± 6.7 |
ΔTh-i (°C) | 0.72 d ± 1.56 | 0.28 a ±1.30 | 0.38 b ± 1.03 | 0.42 c ± 1.40 |
Average daily maximum values | ||||
Th (°C) | 33.9 a ± 4.6 | 33.2 a ± 4.0 | 32.9 a ± 4.1 | 34.0 a ± 4.2 |
ΔTh-i (°C) | 4.08 c ± 1.90 | 3.49 b ± 1.68 | 2.64 a ± 1.04 | 3.91 bc ± 2.15 |
Average daily minimum values | ||||
Th (°C) | 14.8 a ± 1.8 | 15.0 a ± 2.0 | 15.0 a ± 2.1 | 14.8 a ± 2.2 |
ΔTh-i (°C) | −1.07 b ± 0.73 | −1.66 a ± 0.59 | −1.11 b ± 0.55 | −1.23 b ± 0.55 |
Parameters | East—Commercial Diffuse Film | West—Experimental Diffuse Film |
---|---|---|
Average values from 1/04/2020 to 18/06/2020 | ||
Ts (°C) | 21.7 a ± 3.5 | 22.1 b ± 3.2 |
Average daily maximum values | ||
Ts (°C) | 25.8 a ± 3.2 | 26.8 a ± 3.1 |
Average daily minimum values | ||
Ts (°C) | 17.7 a ± 3.6 | 18.3 a ± 2.4 |
Parameters | East—Commercial Diffuse Film | West—Experimental Diffuse Film |
---|---|---|
Average values from 1/04/2020 to 18/06/2020 | ||
qS (W·m−2) | 3.2 a ± 21.8 | 5.1 b ± 27.0 |
Average daily maximum values | ||
qS (W00B7m−2) | 43.0 a ± 16.8 | 57.1 b ± 21.3 |
Average daily minimum values | ||
qS (W00B7m−2) | –18.3 a ± 3.4 | −19.8 a ± 8.3 |
Parameters | East—Commercial Diffuse Film | West—Experimental Diffuse Film | ||
---|---|---|---|---|
North | South | North | South | |
Average values from 1/04/2020 to 18/06/2020 | ||||
x1 m (kg·kg−1) | 0.0119 d ± 0.0031 | 0.0117 b ± 0.0030 | 0.0118 c ± 0.0033 | 0.0116 a ± 0.0034 |
x2 m (kg·kg−1) | 0.0123 d ± 0.0034 | 0.0118 c ± 0.0032 | 0.0117 b ± 0.0034 | 0.0115 a ± 0.0036 |
x4.5 m (kg·kg−1) | 0.0120 d ± 0.0034 | 0.0115 b ± 0.0032 | 0.0117 c ± 0.0036 | 0.0113 a ± 0.0037 |
Average daily maximum values | ||||
x1 m (kg·kg−1) | 0.0185 a ± 0.0051 | 0.0182 a ± 0.0052 | 0.0186 a ± 0.0058 | 0.0186 a ± 0.0060 |
x2 m (kg·kg−1) | 0.0196 a ± 0.0053 | 0.0184 a ± 0.0052 | 0.0188 a ± 0.0059 | 0.0190 a ± 0.0063 |
x4.5 m (kg·kg−1) | 0.0195 a ± 0.0050 | 0.0182 a ± 0.0052 | 0.0188 a ± 0.0058 | 0.0186 a ± 0.0064 |
Average daily minimum values | ||||
x1 m (kg·kg−1) | 0.0092 b ± 0.0012 | 0.0091 ab ± 0.0013 | 0.0089 ab ± 0.0012 | 0.0087 a ± 0.0014 |
x2 m (kg·kg−1) | 0.0092 c ± 0.0013 | 0.0089 bc ± 0.0014 | 0.0086 ab ± 0.0014 | 0.0084 a ± 0.0016 |
x4.5 m (kg·kg−1) | 0.0086 a ± 0.0015 | 0.0086 a ± 0.0015 | 0.0085 a ± 0.0017 | 0.0081 a ± 0.0017 |
Greenhouse Sectors | PA | QPAR | TL | CO | EL | CE |
---|---|---|---|---|---|---|
East—Commercial diffuse film | 10.7 a ± 3.4 | 432.8 a ± 178.5 | 31.1 b ± 2.7 | 421.6 a ± 27.8 | 2.3 a ± 0.7 | 0.1 a ± 0.06 |
West—Experimental diffuse film | 13.0 b ± 3.9 | 489.9 b ± 174.4 | 29.0 a ± 3.0 | 438.9 a ± 47.9 | 2.3 a ± 0.8 | 0.2 b ± 0.08 |
Greenhouse Sectors | LP | NT | LI | DS | NN | NF | LL |
---|---|---|---|---|---|---|---|
East—Commercial diffuse film | 186.9 a ± 111.9 | 20.4 a ± 5.4 | 10.5 a ± 2.9 | 9.1 a ± 4.2 | 14.0 a ± 5.0 | 19.6 a ± 6.3 | 33.6 a ± 4.4 |
West—Experimental diffuse film | 201.2 a ± 126.6 | 23.2 a ± 19.1 | 9.7 a ± 2.7 | 9.9 a ± 3.7 | 15.0 a ± 5.6 | 19.9 a ± 5.6 | 33.1 a ± 4.0 |
Greenhouse Sectors | WF | DF | FF | TSS | DM |
---|---|---|---|---|---|
East—Commercial diffuse film | 266.6 a ± 86.8 | 80.1 a ± 11.4 | 0.8 a ± 0.3 | 5.4 a ± 0.4 | 6.1 a ± 1.3 |
West—Experimental diffuse film | 271.9 a ± 76.6 | 81.4 a ± 11.5 | 0.8 a ± 0.3 | 4.8 a ± 5.2 | 5.9 a ± 1.3 |
Greenhouse Sectors | L* | a* | b* | a*/b* |
---|---|---|---|---|
East—Commercial diffuse film | 43.1 b ± 2.2 | 21.1 a ± 4.2 | 18.8 a ± 2.3 | 1.13 a ± 0.2 |
West—Experimental diffuse film | 42.4 a ± 2.1 | 21.8 a ± 3.8 | 19.1 a ± 2.8 | 1.17 a ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Teruel, M.d.l.Á.; Molina-Aiz, F.D.; Peña-Fernández, A.; López-Martínez, A.; Valera-Martínez, D.L. The Effect of Diffuse Film Covers on Microclimate and Growth and Production of Tomato (Solanum lycopersicum L.) in a Mediterranean Greenhouse. Agronomy 2021, 11, 860. https://doi.org/10.3390/agronomy11050860
Moreno-Teruel MdlÁ, Molina-Aiz FD, Peña-Fernández A, López-Martínez A, Valera-Martínez DL. The Effect of Diffuse Film Covers on Microclimate and Growth and Production of Tomato (Solanum lycopersicum L.) in a Mediterranean Greenhouse. Agronomy. 2021; 11(5):860. https://doi.org/10.3390/agronomy11050860
Chicago/Turabian StyleMoreno-Teruel, María de los Ángeles, Francisco Domingo Molina-Aiz, Araceli Peña-Fernández, Alejandro López-Martínez, and Diego Luis Valera-Martínez. 2021. "The Effect of Diffuse Film Covers on Microclimate and Growth and Production of Tomato (Solanum lycopersicum L.) in a Mediterranean Greenhouse" Agronomy 11, no. 5: 860. https://doi.org/10.3390/agronomy11050860
APA StyleMoreno-Teruel, M. d. l. Á., Molina-Aiz, F. D., Peña-Fernández, A., López-Martínez, A., & Valera-Martínez, D. L. (2021). The Effect of Diffuse Film Covers on Microclimate and Growth and Production of Tomato (Solanum lycopersicum L.) in a Mediterranean Greenhouse. Agronomy, 11(5), 860. https://doi.org/10.3390/agronomy11050860