Can We Use Machine Learning for Agricultural Land Suitability Assessment?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Study Area
2.3. Maxent Models
2.3.1. Training Data
2.3.2. Covariates
2.3.3. Models and Predictions
2.4. ECOCROP
2.5. Historic Land Use Data
3. Results
3.1. Model Accuracies
3.2. Covariate Importance
3.3. Examples
3.3.1. Table Potatoes
3.3.2. Carrots
4. Discussion
4.1. Differences between Maxent and ECOCROP
4.2. Effects of Socioeconomic Variables
4.3. Ecological and Socioeconomic Suitability
4.4. Ways Forward for Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulder, V.L.; van Eck, C.M.; Friedlingstein, P.; Arrouays, D.; Regnier, P. Controlling factors for land productivity under extreme climatic events in continental Europe and the Mediterranean Basin. Catena 2019, 182, 104124. [Google Scholar] [CrossRef]
- Thompson, N.M.; Bir, C.; Widmar, N.J.O. Farmer perceptions of risk in 2017. Agribusiness 2018, 35, 182–199. [Google Scholar] [CrossRef]
- Duveiller, E.; Singh, R.P.; Nicol, J.M. The challenges of maintaining wheat productivity: Pests, diseases, and potential epidemics. Euphytica 2007, 157, 417–430. [Google Scholar] [CrossRef]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; et al. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Chang. 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Lennox, E. Double Exposure to Climate Change and Globalization in a Peruvian Highland Community. Soc. Nat. Resour. 2015, 28, 781–796. [Google Scholar] [CrossRef]
- Cheshire, L.; Woods, M. Globally engaged farmers as transnational actors: Navigating the landscape of agri-food globalization. Geoforum 2013, 44, 232–242. [Google Scholar] [CrossRef]
- Brinkman, S.; Young, A. A Framework for Land Evaluation; Food and Agriculture Organisation of the United Nations: Wagening, The Netherlands, 1976; p. 89. [Google Scholar]
- Beek, K.J. Land Evaluation for Agricultural Development; ILRI: Wageningen, The Netherlands, 1978. [Google Scholar]
- Sonneveld, M.P.W.; Hack-ten Broeke, M.J.D.; van Diepen, C.A.; Boogaard, H.L. Thirty years of systematic land evaluation in the Netherlands. Geoderma 2010, 156, 84–92. [Google Scholar] [CrossRef]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D.; Garcia, M.; Del Castillo, C.; Buytaert, W. Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: A case study for quinoa. Agric. For. Meteorol. 2006, 139, 399–412. [Google Scholar] [CrossRef]
- Araya, A.; Keesstra, S.D.; Stroosnijder, L. A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agric. For. Meteorol. 2010, 150, 1057–1064. [Google Scholar] [CrossRef]
- Boitt, M.K.; Mundia, C.N.; Pellikka, P.K.E. Land suitability assessment for effective crop production, a case study of Taita Hills, Kenya. J. Agric. Inform. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- El Baroudy, A.A. Mapping and evaluating land suitability using a GIS-based model. Catena 2016, 140, 96–104. [Google Scholar] [CrossRef]
- Purnamasari, R.A.; Ahamed, T.; Noguchi, R. Land suitability assessment for cassava production in Indonesia using GIS, remote sensing and multi-criteria analysis. Asia Pac. J. Reg. Sci. 2018, 3, 1–32. [Google Scholar] [CrossRef]
- Iliquín Trigoso, D.; Salas López, R.; Rojas Briceño, N.B.; Silva López, J.O.; Gómez Fernández, D.; Oliva, M.; Quiñones Huatangari, L.; Terrones Murga, R.E.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy 2020, 10, 1898. [Google Scholar] [CrossRef]
- Brisson, N.; King, D.; Nicoullaud, B.; Ruget, F.; Ripoche, D.; Darthout, R. A crop model for land suitability evaluation a case study of the maize crop in France. Eur. J. Agron. 1992, 1, 163–175. [Google Scholar] [CrossRef]
- Katawatin, R.; Crown, P.H.; Grant, R.E. Simulation modelling of land suitability evaluation for dry season peanut cropping based on water availability in Northeast Thailand: Evaluation of the MACROS crop model. Soil Use Manag. 1996, 12, 25–32. [Google Scholar] [CrossRef]
- Littleboy, M.; Smith, D.M.; Bryant, M.J. Simulation modelling to determine suitability of agricultural land. Ecol. Model. 1996, 86, 219–225. [Google Scholar] [CrossRef]
- Schaldach, R.; Priess, J.A. Integrated Models of the Land System: A Review of Modelling Approaches on the Regional to Global Scale. Living Rev. Landsc. Res. 2008, 2. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Veldkamp, A. Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landsc. Ecol. 2004, 19, 77–98. [Google Scholar] [CrossRef]
- Luo, G.P.; Yin, C.Y.; Chen, X.; Xu, W.Q.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Overmars, K.P.; Verburg, P.H.; Veldkamp, T.A. Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land Use Policy 2007, 24, 584–599. [Google Scholar] [CrossRef]
- Elnashar, A.; Abbas, M.; Sobhy, H.; Shahba, M. Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach. Agronomy 2021, 11, 260. [Google Scholar] [CrossRef]
- Manners, R.; Varela-Ortega, C.; van Etten, J. Protein-rich legume and pseudo-cereal crop suitability under present and future European climates. Eur. J. Agron. 2020, 113. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Jarvis, A.; Läderach, P. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agric. For. Meteorol. 2013, 170, 67–78. [Google Scholar] [CrossRef]
- Egbebiyi, T.S.; Crespo, O.; Lennard, C. Defining Crop–climate Departure in West Africa: Improved Understanding of the Timing of Future Changes in Crop Suitability. Climate 2019, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Piikki, K.; Winowiecki, L.; Vågen, T.-G.; Ramirez-Villegas, J.; Söderström, M. Improvement of spatial modelling of crop suitability using a new digital soil map of Tanzania. S. Afr. J. Plant Soil 2017, 34, 243–254. [Google Scholar] [CrossRef]
- Alemayehu, S.; Ayana, E.K.; Dile, Y.T.; Demissie, T.; Yimam, Y.; Girvetz, E.; Aynekulu, E.; Solomon, D.; Worqlul, A.W. Evaluating Land Suitability and Potential Climate Change Impacts on Alfalfa (Medicago sativa) Production in Ethiopia. Atmosphere 2020, 11, 1124. [Google Scholar] [CrossRef]
- Suhairi, T.A.S.T.M.; Jahanshiri, E.; Nizar, N.M.M. Multicriteria land suitability assessment for growing underutilised crop, bambara groundnut in Peninsular Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2018, 169. [Google Scholar] [CrossRef]
- Remesh, K.R.R.; Byju, G.; Soman, S.; Raju, S.; Ravi, V. Future changes in mean temperature and total precipitation and climate suitability of yam (Dioscorea spp.) in major yam-growing environments in India. Curr. Hortic. 2019, 7. [Google Scholar] [CrossRef]
- Hunter, R.; Crespo, O. Large Scale Crop Suitability Assessment Under Future Climate Using the Ecocrop Model: The Case of Six Provinces in Angola’s Planalto Region. In The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future; Rosenstock, T.S., Nowak, A., Girvetz, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 39–48. [Google Scholar]
- FAO. Crop Ecological Requirements Database (ECOCROP). Available online: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/ (accessed on 21 October 2020).
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Martínez-Minaya, J.; Cameletti, M.; Conesa, D.; Pennino, M.G. Species distribution modeling: A statistical review with focus in spatio-temporal issues. Stoch. Environ. Res. Risk Assess. 2018, 32, 3227–3244. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Maguranyanga, C.; Murwira, A. Mapping maize, tobacco, and soybean fields in large-scale commercial farms of Zimbabwe based on multitemporal NDVI images in MAXENT. Can. J. Remote Sens. 2015, 40, 396–405. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R.; Kariyawasam, C.S. Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach. Agronomy 2019, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Wang, H.; Ma, X.; Peng, H.; Shan, J. Modeling the current land suitability and future dynamics of global soybean cultivation under climate change scenarios. Field Crop. Res. 2021, 263. [Google Scholar] [CrossRef]
- Chhogyel, N.; Kumar, L.; Bajgai, Y.; Sadeeka Jayasinghe, L. Prediction of Bhutan’s ecological distribution of rice (Oryza sativa L.) under the impact of climate change through maximum entropy modelling. J. Agric. Sci. 2020, 158, 25–37. [Google Scholar] [CrossRef]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim. Chang. 2013, 119, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Ovalle-Rivera, O.; Laderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Laderach, P.; Dempewolf, J.; Philpott, S.; Haggar, J.; Eakin, H.; Castillejos, T.; Garcia Moreno, J.; Soto Pinto, L.; Hernandez, R.; et al. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 605–625. [Google Scholar] [CrossRef] [Green Version]
- Heumann, B.W.; Walsh, S.J.; McDaniel, P.M. Assessing the application of a geographic presence-only model for land suitability mapping. Ecol. Inf. 2011, 6, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Heumann, B.W.; Walsh, S.J.; Verdery, A.M.; McDaniel, P.M.; Rindfuss, R.R. Land Suitability Modeling using a Geographic Socio-Environmental Niche-Based Approach: A Case Study from Northeastern Thailand. Ann. Assoc. Am. Geogr. 2013, 103. [Google Scholar] [CrossRef] [PubMed]
- Estes, L.D.; Bradley, B.A.; Beukes, H.; Hole, D.G.; Lau, M.; Oppenheimer, M.G.; Schulze, R.; Tadross, M.A.; Turner, W.R. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Glob. Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Dossou-Yovo, E.R.; Groen, T.A.; Zwart, S.J. Mapping suitability for rice production in inland valley landscapes in Benin and Togo using environmental niche modeling. Sci. Total Environ. 2020, 709, 136165. [Google Scholar] [CrossRef]
- Rodcha, R.; Tripathi, N.; Prasad Shrestha, R. Comparison of Cash Crop Suitability Assessment Using Parametric, AHP, and FAHP Methods. Land 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Ranjitkar, S.; Sujakhu, N.M.; Merz, J.; Kindt, R.; Xu, J.; Matin, M.A.; Ali, M.; Zomer, R.J. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal. PLoS ONE 2016, 11, e0163916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Li, Z.; Liu, L.; Bo, A.; Zhang, C.; Li, M. Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China. Sci. Rep. 2020, 10, 12482. [Google Scholar] [CrossRef]
- White, R.E.; Balachandra, L.; Edis, R.; Chen, D. The soil component of terroir. OENO One 2007, 41, 9. [Google Scholar] [CrossRef] [Green Version]
- Costantini, E.A.C.; Bucelli, P. Soil and terroir. In Soil Security for Ecosystem Management; Kapur, S., Erşahin, S., Eds.; Springer: Berlin, Germany, 2014; pp. 97–133. [Google Scholar]
- Kærgård, N.; Dalgaard, T. Dansk landbrugs strukturudvikling siden 2. verdenskrig. Landbohistorisk Tidsskr. 2014, 11, 9–33. [Google Scholar]
- Statistics Denmark. Statistisk Årbog; Statistics Denmark: Copenhagen, Denmark, 2017.
- Wang, P.R. Referenceværdier: Døgn-, Måneds- og Årsværdier for Regioner og Hele Landet 2001–2010, Danmark for Temperatur, Relativ Luftfugtighed, Vindhastighed, Globalstråling og Nedbør; Teknisk Rapport 12-24; Danish Meteorological Institute: Copenhagen, Denmark, 2013.
- Adhikari, K.; Minasny, B.; Greve, M.B.; Greve, M.H. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma 2014, 214–215, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Madsen, H.B.; Jensen, N.H. Soil map of Denmark according to the revised FAO legend 1990. Dan. J. Geogr. 1996, 96, 51–59. [Google Scholar] [CrossRef]
- Møller, A.B.; Malone, B.; Odgers, N.P.; Beucher, A.; Iversen, B.V.; Greve, M.H.; Minasny, B. Improved disaggregation of conventional soil maps. Geoderma 2019, 341, 148–160. [Google Scholar] [CrossRef]
- The Danish Agricultural Agency Kort og Markblokke. Available online: https://lbst.dk/landbrug/kort-og-markblokke/ (accessed on 14 October 2020).
- Agricultural Marketing Service. Definition of Specialty Crops; US Department of Agriculture: Washington, DC, USA, 2014.
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Kheir, R.B.; Greve, M.B.; Greve, M.H. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef]
- Adhikari, K.; Kheir, R.B.; Greve, M.B.; Bøcher, P.K.; Malone, B.P.; Minasny, B.; McBratney, A.B.; Greve, M.H. High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Am. J. 2013, 77, 860–876. [Google Scholar] [CrossRef]
- Adhikari, K.; Kheir, R.B.; Greve, M.B.; Greve, M.H.; Malone, M.; Minasny, B.; McBratney, A. Mapping soil pH and bulk density at multiple soil depths in Denmark. In GlobalSoilMap: Basis of the Global Spatial Soil Information System; Arrouays, D., McKenzie, N.J., Hempel, J., de Forges, A.R., McBratney, A., Eds.; Taylor & Francis: London, UK, 2014; pp. 155–160. [Google Scholar]
- Møller, A.B.; Beucher, A.; Iversen, B.V.; Greve, M.H. Predicting artificially drained areas by means of a selective model ensemble. Geoderma 2018, 320, 30–42. [Google Scholar] [CrossRef]
- Møller, A.B.; Beucher, A.; Iversen, B.V.; Greve, M.H. Prediction of soil drainage classes in Denmark by means of decision tree classification. Geoderma 2017, 352, 314–329. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S.; O’Hara, R.B. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Møller, A.B.; Heckrath, G.; Hermansen, C.; Nørgaard, T.; de Jonge, L.W.; Greve, M.H. Mapping the phosphorus sorption capacity of Danish soils with quantile regression forests and uncertainty propagation. 2021. in writing. [Google Scholar]
- Jakobsen, P.R.; Hermansen, B.; Tougaard, L. Danmarks Digitale Jordartskort 1:25,000 Version 4.0; 30; GEUS: Copenhagen, Denmark, 2015; p. 29. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Roell, Y.E.; Peng, Y.; Beucher, A.; Greve, M.B.; Greve, M.H. Development of hierarchical terron workflow based on gridded data—A case study in Denmark. Comput. Geosci. 2020, 138. [Google Scholar] [CrossRef]
- National Survey and Cadastre. Danmarks Højdemodel 2007, DHM-2007/Terræn; National Survey and Cadastre: Copenhagen, Denmark, 2012. [Google Scholar]
- Madsen, H.B.; Nørr, A.H.; Holst, K.A. The Danish Soil Classification; The Royal Danish Geographical Society: Copenhagen, Denmark, 1992; Volume 3, p. 56. [Google Scholar]
- Agency for Data Supply and Efficiency GeoDanmark. Available online: https://sdfe.dk/hent-data/fotos-og-geodanmark-data/ (accessed on 26 August 2020).
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- López-Rocha, E.; Mireles-Arriga, A.I.; Hernández-Ruíz, J.; Ruiz-Nieto, J.E.; Rucoba-Garcia, A. Áreas potenciales para el cultivo de girasol en condiciones de temporal en Guanajuato, México. Agron. Mesoam. 2018, 29, 305. [Google Scholar] [CrossRef] [Green Version]
- Mbugua, J.K.; Suksa-ngiam, W. Predicting suitable areas for growing cassava using remote sensing and machine learning techniques: A study in Nakhon-Phanom Thailand. Issues Inf. Sci. Inf. Technol. 2018, 15, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 31 March 2020).
- Hijmans, R.J.; Phillips, S.J.; Leathwick, J.; Elith, J. Package ‘dismo’: Species Distribution Modeling. Available online: https://cran.r-project.org/web/packages/dismo/dismo.pdf (accessed on 21 October 2020).
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Brenning, A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest. Int. Geosci. Remote Sens. 2012, 5372–5375. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M.; Siegert, S.; Doering, M.; Robin, M.X. Package ‘pROC’. Available online: https://cran.r-project.org/web/packages/pROC/pROC.pdf (accessed on 26 January 2020).
- Roell, Y.E.; Beucher, A.; Møller, P.G.; Greve, M.B.; Greve, M.H. Comparing a Random Forest based prediction of winter wheat yield to historical yield potential. Agronomy 2020, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Bianco Lunos Hof-Trykkeri (F. Dreyer). Arealets Benyttelse i Danmark den 15. Juli 1896 (Statistisk Tabelværk Rk. 5 Litra C Nr 1); Statistics Denmark: Copenhagen, Denmark, 1898.
- DigDag Digital Atlas of Denmark’s Historical-Administrative Geography. Available online: http://digdag.dk (accessed on 26 January 2020).
- Fourcade, Y.; Besnard, A.G.; Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 2018, 27, 245–256. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Samuel-Rosa, A.; Poggio, L.; Mulder, V.L. A note on knowledge discovery and machine learning in digital soil mapping. Eur. J. Soil Sci. 2019. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.; Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [Green Version]
- Behrens, T.; Schmidt, K.; Viscarra Rossel, R.; Gries, P.; Scholten, T.; MacMillan, R. Spatial modelling with Euclidean distance fields and machine learning. Eur. J. Soil Sci. 2018, 69, 757–770. [Google Scholar] [CrossRef]
- Møller, A.B.; Beucher, A.M.; Pouladi, N.; Greve, M.H. Oblique geographic coordinates as covariates for digital soil mapping. Soil 2020, 6, 269–289. [Google Scholar] [CrossRef]
- Pereira, P.A.A.; Martha, G.B.; Santana, C.A.M.; Alves, E. The development of Brazilian agriculture: Future technological challenges and opportunities. Agric. Food Secur. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
Crop | Potato | Carrot |
---|---|---|
Growing season (days) | ||
Minimum | 90 | 40 |
Maximum | 160 | 150 |
Temperature (°C) | ||
Killing | −1 | −1 |
Minimum, range | 7 | 3 |
Minimum, optimal | 15 | 15 |
Maximum, optimal | 25 | 24 |
Maximum, range | 30 | 30 |
Precipitation (mm) | ||
Minimum, range | 250 | 400 |
Minimum, optimal | 500 | 600 |
Maximum, optimal | 800 | 1200 |
Maximum, range | 2000 | 4000 |
Soil texture | ||
Light | 0.5 | 0.5 |
Medium | 1 | 1 |
Heavy | 0.5 | 0.5 |
Organic | 1 | 1 |
Soil drainage | ||
Insufficient drainage | 0 | 0 |
Well-drained | 1 | 1 |
Soil pH | ||
Minimum, range | 4.2 | 4.2 |
Minimum, optimal | 5.0 | 5.8 |
Maximum, optimal | 6.2 | 6.8 |
Maximum, range | 8.5 | 8.7 |
Rank | Table Potatoes | Carrots |
---|---|---|
1 | Solar radiation a | Growing days a |
2 | Risk of frost a | Risk of frost a |
3 | Mean annual precipitation b | Precipitation in wettest month b |
4 | Mean annual precipitation a | Degree days above 5 °C |
5 | Temperature in coldest quarter b | Precipitation in driest month b |
6 | Landscape (post-glacial marine) | Solar radiation a |
7 | Precipitation in wettest month b | Mean annual precipitation a |
8 | Minimum annual temperature b | Distance to cities; population >10,000 |
9 | Precipitation in driest month b | Minimum annual temperature b |
10 | Silt (60–100 cm) | Phosphorus sorption capacity (25–50 cm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Møller, A.B.; Mulder, V.L.; Heuvelink, G.B.M.; Jacobsen, N.M.; Greve, M.H. Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy 2021, 11, 703. https://doi.org/10.3390/agronomy11040703
Møller AB, Mulder VL, Heuvelink GBM, Jacobsen NM, Greve MH. Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy. 2021; 11(4):703. https://doi.org/10.3390/agronomy11040703
Chicago/Turabian StyleMøller, Anders Bjørn, Vera Leatitia Mulder, Gerard B. M. Heuvelink, Niels Mark Jacobsen, and Mogens Humlekrog Greve. 2021. "Can We Use Machine Learning for Agricultural Land Suitability Assessment?" Agronomy 11, no. 4: 703. https://doi.org/10.3390/agronomy11040703
APA StyleMøller, A. B., Mulder, V. L., Heuvelink, G. B. M., Jacobsen, N. M., & Greve, M. H. (2021). Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy, 11(4), 703. https://doi.org/10.3390/agronomy11040703