Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored ‘Rojo Brillante’ Persimmons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation and Preparation of Antifungal Coatings
2.3. Effect of Coatings on Disease Development
2.3.1. Fungal Inoculum
2.3.2. Fruit Inoculation and Coating Application
2.3.3. Determination of Disease Incidence and Severity
2.4. Effect of Coatings on Quality of Cold-Stored Persimmons
2.4.1. Fruit Coating and Storage
2.4.2. Assessment of Fruit Quality
- Weight loss. Lots of 20 fruit per treatment were used to measure weight loss. The same marked persimmon fruit was weighed at the beginning of the experiment (weight at harvest), after cold storage, and at the end of the 7-day shelf-life period at 20 °C. The results were expressed as the percentage loss of initial weight.
- Fruit firmness. The firmness of 20 fruit per treatment was determined at harvest and after storage and shelf-life period using an Instron Universal testing machine (Model 4301, Instron Corp., Canton, MA, USA). A thin disk of skin of about 2 cm in diameter was removed from each of the opposite cheeks of the fruit, and firmness was determined as the maximum force in Newtons (N) required to penetrate the fruit flesh with a plunger of 8 mm in diameter.
- Respiration rate. The respiration of coated and uncoated persimmons was measured by the closed system. Four replicates of 3 fruit each were used to determine the CO2 production at harvest and at the end of the shelf-life period. Samples were weighed and placed in sealed containers of known volume. The accumulation of CO2 in the headspace atmosphere was measured at 20 °C over a period of 2 h. The gas sample (1 mL) was injected into a gas chromatograph (GC) (Thermo Trace, Thermo Fisher Scientific, Inc. Waltham, MA, USA) equipped with a thermal conductivity detector (TCD) and fitted with a Poropack QS80/100 column (1.2 m × 0.32 cm internal diameter). Temperatures were 35, 115, and 150 °C for the oven, injector, and thermal conductivity detector, respectively. Helium was used as a carrier gas at a flow rate of 22 mL/min. The CO2 concentration was calculated using the peak area obtained from a standard gas mixture of 15.0:2.5% O2: CO2. Results were expressed as mg CO2/kg h.
2.5. Statistical Analysis
3. Results
3.1. Effect of Coatings on Disease Development
3.2. Effect of Coatings on Fruit Quality
3.2.1. Weight Loss
3.2.2. Fruit Firmness
3.2.3. Respiration Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT Food and Agriculture Organization of the United Nations. Statistics. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 11 January 2021).
- ISAV Informe Sector Agrario Valenciano. Producción, Industrias y Consumo Agroalimentarios. Available online: http://www.agroambient.gva.es/es/informes-del-sector-agrario-valenciano (accessed on 11 January 2021).
- Arnal, L.; Del Río, M.A. Effect of cold storage and removal astringency on quality of persimmon fruit (Diospyros kaki, L.) cv. Rojo brillante. Food Sci. Technol. Int. 2004, 10, 179–185. [Google Scholar] [CrossRef]
- Prusky, D. Etiology and histology of Alternaria rot of persimmon fruits. Phytopatholy 1981, 71, 1124. [Google Scholar] [CrossRef]
- Palou, L.; Montesinos-Herrero, C.; Tarazona, I.; Besada, C.; Taberner, V. Incidence and etiology of postharvest fungal diseases of persimmon (Diospyros kaki thunb. cv. Rojo Brillante) in Spain. Plant Dis. 2015, 99, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Karaca, H.; Pérez-Gago, M.B.; Taberner, V.; Palou, L. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums. Int. J. Food Microbiol. 2014, 179, 72–79. [Google Scholar] [CrossRef]
- Youssef, K.; Ligorio, A.; Sanzani, S.M.; Nigro, F.; Ippolito, A. Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biol. Technol. 2012, 72, 57–63. [Google Scholar] [CrossRef]
- Fagundes, C.; Pérez-Gago, M.B.; Monteiro, A.R.; Palou, L. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int. J. Food Microbiol. 2013, 166, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Sci. Hortic. 2015, 193, 249–257. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. J. Agric. Food Chem. 2009, 57, 2770–2777. [Google Scholar] [CrossRef]
- De Souza, E.L.; Lundgren, G.A.; de Oliveira, K.A.R.; Berger, L.R.R.; Magnani, M. An analysis of the published literature on the effects of edible coatings formed by polysaccharides and essential oils on postharvest microbial control and overall quality of fruit. Compr. Rev.Food Sci. Food Saf. 2019, 18, 1947–1967. [Google Scholar] [CrossRef] [Green Version]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioprocess Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chamorro, S.A.; Palou, L.; Del Río, M.A.; Pérez-Gago, M.B. Inhibition of Penicillium digitatum and Penicillium italicum by hydroxypropyl methylcellulose-lipid edible composite films containing food additives with antifungal properties. J. Agric. Food Chem. 2008, 56, 11270–11278. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored ‘Valencia’ oranges. Postharvest Biol. Technol. 2009, 54, 72–79. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; Del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on Penicillium decay development and postharvest quality of cold-stored ‘Ortanique’ mandarins. J. Food Sci. 2010, 75, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.E.R.; de la Fuente, B.; Pérez-Gago, M.B.; Andradas, C.; Carbó, R.; Mattiuz, B.H.; Palou, L. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 2019, 301, 9–18. [Google Scholar] [CrossRef]
- Gunaydin, S.; Karaca, H.; Palou, L.; de la Fuente, B.; Pérez-Gago, M.B. Effect of hydroxypropyl methylcellulose-beeswax composite edible coatings formulated with or without antifungal agents on physicochemical properties of plums during cold storage. J. Food Qual. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol. Technol. 2014, 92, 1–8. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; Cerqueira, M.A.; Ventura-Sobrevilla, J.; Aguilar-Gonzalez, M.A.; Carbó-Argibay, E.; Castro, L.P.; Aguilar, C.N. Candelilla wax-based coatings and films: Functional and physicochemical characterization. Food Bioprocess Technol. 2019, 12, 1787–1797. [Google Scholar] [CrossRef]
- Gong, L.; Zhao, Z.; Yin, C.; Gupta, V.K.; Zhang, X.; Jiang, Y. Synergistic interaction of natamycin with carboxymethyl chitosan for controlling Alternata alternara, a cause of black spot rot in postharvest jujube fruit. Postharvest Biol. Technol. 2019, 156, 110919. [Google Scholar] [CrossRef]
- Sapper, M.; Palou, L.; Pérez-Gago, M.B.; Chiralt, A. Antifungal starch-gellan edible coatings with thyme essential oil for the postharvest preservation of apple and persimmon. Coatings 2019, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Garcia, I.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Moctezuma, E.; Gutierrez-Pacheco, M.M.; Tapia-Rodriguez, M.R.; Ortega-Ramirez, L.A.; Ayala-Zavala, J.F. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J. Sci. Food Agric. 2016, 96, 3772–3778. [Google Scholar] [CrossRef]
- Martínez-Blay, V.; Pérez-Gago, M.B.; de la Fuente, B.; Carbó, R.; Palou, L. Edible coatings formulated with antifungal GRAS salts to control citrus anthracnose caused by Colletotrichum gloeosporioides and preserve postharvest fruit quality. Coatings 2020, 10, 730. [Google Scholar] [CrossRef]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- De Souza, E.; Ramos, L.; Marín, A.; Pérez-Gago, M.B.; Palou, L. Chitosan and other edible coatings for postharvest disease control. In Postharvest Pathology of Fresh Horticultural Produce; Palou, L., Smilanick, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 677–712. ISBN 9781315209180. [Google Scholar]
- Palou, L.; Teksur, P.K.; Cao, S.; Karaoglanidis, G.; Vicent, A. Pomegranate, persimmon and loquat. In Postharvest Pathology of Fresh Horticultural Produce; Palou, L., Smilanick, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 187–226. ISBN 9781315209180. [Google Scholar]
- Fallik, E.; Grinberg, S.; Ziv, O. Potassium bicarbonate reduces postharvest decay development on bell pepper fruits. J. Hort. Sci. 1997, 72, 35–41. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Djenane, F.; Incerti, O.; Admane, N.; Mincuzzi, A.; Ippolito, A. Mycotoxigenic fungi contaminating greenhouse-grown tomato fruit and their alternative control. Eur. J. Plant Pathol. 2021. [Google Scholar] [CrossRef]
- Moscoso-Ramírez, P.A.; Montesinos-Herrero, C.; Palou, L. Control of citrus postharvest penicillium molds with sodium ethylparaben. Crop Prot. 2013, 46, 44–51. [Google Scholar] [CrossRef]
- Han, J.H.; Floros, J.D. Potassium sorbate diffusivity in American processed and Mozzarella cheeses. J. Food Sci. 1998, 63, 435–437. [Google Scholar] [CrossRef]
- Choi, J.H.; Choi, W.Y.; Cha, D.S.; Chinnan, M.J.; Park, H.J.; Lee, D.S.; Park, J.M. Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT Food Sci. Technol. 2005, 38, 417–423. [Google Scholar] [CrossRef]
- Wang, H.; He, J.; Sun, H. Diffusion analysis and modeling of potassium sorbate in gelatin based antimicrobial film. J. Mater. Sci. Chem. Eng. 2016, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, M.; Floros, J.D. Analysis and modeling of potassium sorbate diffusion through edible whey protein films. J. Food Eng. 2001, 47, 149–155. [Google Scholar] [CrossRef]
- López, O.V.; Giannuzzi, L.; Zaritzky, N.E.; García, M.A. Potassium sorbate controlled release from corn starch films. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Moditsi, M.; Lazaridou, A.; Moschakis, T.; Biliaderis, C.G. Modifying the physical properties of dairy protein films for controlled release of antifungal agents. Food Hydrocoll. 2014, 39, 195–203. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Hagenmaier, R.D.; Baker, R.A. Use of lipids in coatings for food products. Food Technol. 1997, 51, 56–64. [Google Scholar]
- Bai, J.; Baldwin, E.A.; Hagenmaier, R.H. Alternatives to shellac coatings provide comparable gloss, internal gas modification, and quality for ’Delicious’ apple fruit. HortScience 2002, 37, 559–563. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; Sothornvit, R.; Pérez-Gago, M.B. Effect of plasticizer type and amount on hydroxypropyl methylcellulose- beeswax edible film properties and postharvest quality of coated plums (Cv. Angeleno). J. Agric. Food Chem. 2008, 56, 9502–9509. [Google Scholar] [CrossRef]
- Contreras-Oliva, A.; Rojas-Argudo, C.; Pérez-Gago, M.B. Effect of solid content and composition of hydroxypropyl methylcellulose-lipid edible coatings on physico-chemical and nutritional quality of ‘Oronules’ mandarins. J. Sci. Food Agric. 2012, 92, 794–802. [Google Scholar] [CrossRef]
- Kingwascharapong, P.; Arisa, K.; Karnjanapratum, S.; Tanaka, F.; Tanaka, F. Effect of gelatin-based coating containing frog skin oil on the quality of persimmon and its characteristics. Sci. Hortic. 2020, 260, 108864. [Google Scholar] [CrossRef]
- Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Hussain, S.; Ali, S.; Canan, I. Postharvest application of gum Arabic edible coating delays ripening and maintains quality of persimmon fruits during storage. J. Food Process. Preserv. 2020, 44, 1–13. [Google Scholar] [CrossRef]
- Lara, I.; Belge, B.; Goulao, L.F. The fruit cuticle as a modulator of postharvest quality. Postharvest Biol. Technol. 2014, 87, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Pastor, C.; Sánchez-González, L.; Marcilla, A.; Chiralt, A.; Cháfer, M.; González-Martínez, C. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biol. Technol. 2011, 60, 64–70. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery. Appl. Surf. Sci. 2016, 372, 42–51. [Google Scholar] [CrossRef]
- Salvador, A.; Cuquerella, J.; Martínez-Jávega, J.M.; Monterde, A.; Navarro, P. 1-MCP preserves the firmness of stored persimmon ‘Rojo Brillante’. J. Food Sci. 2004, 69, snq69–snq73. [Google Scholar] [CrossRef]
- Tsubaki, S.; Ozaki, Y.; Yonemori, K.; Azuma, J.I. Mechanical properties of fruit-cuticular membranes isolated from 27 cultivars of Diospyros kaki Thunb. Food Chem. 2012, 132, 2135–2139. [Google Scholar] [CrossRef]
- Sharma, P.; Kehinde, B.A.; Kaur, S.; Vyas, P. Application of edible coatings on fresh and minimally processed fruits: A review. Nutr. Food Sci. 2019, 49, 713–738. [Google Scholar] [CrossRef]
- Bai, J.; Hagenmaier, R.D.; Baldwin, E.A. Coating selection for ‘Delicious’ and other apples. Postharvest Biol. Technol. 2003, 28, 381–390. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L.; Krochta, J.M. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. J. Food Sci. 2003, 68, 503–510. [Google Scholar] [CrossRef]
- Bai, J.; Plotto, A. Coatings for fresh fruits and vegetables. In Edible Coatings and Films to Improve Food Quality; Baldwin, E.A., Hagenmaier, R., Bai, J., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 185–242. ISBN 9781138198937. [Google Scholar]
Coating | Food Preservative | Food Preservative Concentration (%, wb) | Solid Concentration (%, wb) | pH | Viscosity (mPa.s) |
---|---|---|---|---|---|
HPMC–OA | Ammonium carbonate (AC) | 1.0 | 8 | 7.39 | 111.6 |
Potassium carbonate (PC) | 1.0 | 8 | 9.83 | 134.1 | |
Potassium bicarbonate (PBC) | 1.0 | 8 | 8.03 | 101.5 | |
Sodium benzoate (SB) | 2.0 | 9 | 6.05 | 110.3 | |
Sodium bicarbonate (SBC) | 1.0 | 8 | 7.97 | 112.6 | |
Potassium silicate (PSi) | 1.0 | 8 | 9.36 | 111.8 | |
Sodium methyl paraben (SMP) | 0.1 | 7.1 | 7.26 | 109.4 | |
Sodium ethyl paraben (SEP) | 0.1 | 7.1 | 6.96 | 104.1 | |
HPMC–BW | Potassium bicarbonate (PBC) | 2.0 | 11 | 8.68 | 163.0 |
Sodium propionate (SP) | 2.0 | 11 | 6.47 | 174.4 | |
Sodium benzoate (SB) | 2.0 | 11 | 6.39 | 149.1 | |
Sodium ethyl paraben (SEP) | 0.1 | 8.1 | 7.56 | 150.7 |
Coating | Food Preservative | Food Preservative Concentration (%, wb) | Solid Concentration (%, wb) | pH | Viscosity (mPa.s) |
---|---|---|---|---|---|
HPMC–OA | -- | -- | 7.0 | 5.46 | 89.4 |
Potassium bicarbonate (PBC) | 2.0 | 9.0 | 8.28 | 79.7 | |
Sodium ethyl paraben (SEP) | 0.1 | 7.1 | 6.72 | 98.9 | |
HPMC–BW | -- | -- | 9.0 | 5.58 | 193.4 |
Potassium bicarbonate (PBC) | 2.0 | 11.0 | 8.84 | 137.5 | |
Sodium ethyl paraben (SEP) | 0.1 | 9.1 | 7.60 | 198.6 |
Food Additive | Disease Severity Reduction (Mean ± SE, %) | |
---|---|---|
HPMC–OA | HPMC–BW | |
None (HPMC-lipid) | 0.0 ± 0.0 c | 25.9 ± 0.8 ab |
Ammonium carbonate (AC) | 0.0 ± 0.0 | -- |
Potassium carbonate (PC) | 11.8 ± 0.7 b | -- |
Potassium bicarbonate (PBC) | 27.9 ± 0.5 a | 0.0 ± 0.0 c |
Sodium benzoate (SB) | 1.5 ± 1.2 c | 14.7 ± 1.5 b |
Sodium bicarbonate (SBC) | 0.0 ± 0.0 c | -- |
Potassium silicate (PSi) | 0.0 ± 0.0 c | -- |
Sodium methyl paraben (SMP) | 0.0 ± 0.0 c | -- |
Sodium salt of ethyl paraben (SEP) | 22.1 ± 0.6 a | 36.2 ± 3.0 a |
Sodium propionate (SP) | -- | 14.7 ± 1.0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Catalán, A.; Palou, L.; Taberner, V.; Grimal, A.; Argente-Sanchis, M.; Pérez-Gago, M.B. Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored ‘Rojo Brillante’ Persimmons. Agronomy 2021, 11, 757. https://doi.org/10.3390/agronomy11040757
Fernández-Catalán A, Palou L, Taberner V, Grimal A, Argente-Sanchis M, Pérez-Gago MB. Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored ‘Rojo Brillante’ Persimmons. Agronomy. 2021; 11(4):757. https://doi.org/10.3390/agronomy11040757
Chicago/Turabian StyleFernández-Catalán, Asunción, Lluís Palou, Verònica Taberner, Amparo Grimal, Maricruz Argente-Sanchis, and María B. Pérez-Gago. 2021. "Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored ‘Rojo Brillante’ Persimmons" Agronomy 11, no. 4: 757. https://doi.org/10.3390/agronomy11040757
APA StyleFernández-Catalán, A., Palou, L., Taberner, V., Grimal, A., Argente-Sanchis, M., & Pérez-Gago, M. B. (2021). Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored ‘Rojo Brillante’ Persimmons. Agronomy, 11(4), 757. https://doi.org/10.3390/agronomy11040757