Genetic Gains from Selection for Drought Tolerance during Three Breeding Periods in Extra-Early Maturing Maize Hybrids under Drought and Rainfed Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background of the Drought-Tolerant Extra-Early Hybrids
2.2. Field Evaluations
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. 2018. Food and Agriculture Organisation Data Base on Imputation Methodology. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 2 January 2021).
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Banziger, M. Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Fakorede, M.A.B. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Akaogu, I.C.; Badu-Apraku, B.; Adetimirin, V.O. Combining ability and performance of extra-early maturing yellow maize inbreds in hybrid combinations under drought and rain-fed conditions. J. Agric. Sci. 2017, 155, 1520–1540. [Google Scholar] [CrossRef] [Green Version]
- Kamara, A.Y.; Menkir, A.; Omogui, L.O.; Kureh, I. Potential of drought tolerant maize varieties in nitrogen deficient soils of the Guinea Savanna. In Demand-Driven Technologies for Sustainable Maize Production in West and Central Africa; Scientific Papers Presented at the Regional Workshop of the West and Central Africa Collaborative Maize Research Network (WECAMAN) Held at, IITA-Ibadan; Badu Apraku, B., Fakorede, M.A.B., Lum, A.F., Menkir, A., Ouedraogo, M., Eds.; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2005; pp. 180–193. [Google Scholar]
- Lobulu, J.; Shimelis, H.; Laing, M.; Mushongi, A.A. Maize production constraints, traits preference and current Striga control options in western Tanzania: Farmers’ consultation and implications for breeding. Acta Agriculturae Scandinavica, Section B. J. Plant Nutr. Soil Sci. 2019, 69, 734–746. [Google Scholar]
- Fakorede, M.A.B.; Akinyemiju, O.A. Climatic change: Effects on maize production in a tropical rainforest location. In Maize Revolution in West and Central Africa, Proceedings of the Regional Maize Workshop, IITA-Cotonou, Benin Republic, 14–18 May 2001; Badu-Apraku, B., Ed.; WECAMAN/IITA: Ibadan, Nigeria, 2003; pp. 272–282. [Google Scholar]
- Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibañez, M. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. corn belt. Maydica 2006, 51, 369–381. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.A.B.; Oyekunle, M.; Akinwale, R.O. Selection of extra-early maize inbreds under low N and drought at flowering and grain-filling for hybrid production. Maydica 2011, 56, 1721–1735. [Google Scholar]
- Badu-Apraku, B.; Oyekunle, M. Genetic analysis of grain yield and other traits of extra-early yellow maize inbreds and hybrid performance under contrasting environments. Field Crops Res. 2012, 129, 99–110. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Menkir, A.; Kamara, A.Y.; Akanvou, L.; Chabi, Y. Response of early maturing maize to multiple stresses in the Guinea savanna of West and Central Africa. Int. J. Plant Breed. Genet. 2004, 58, 119–130. [Google Scholar]
- Bänziger, M.; Edmeades, G.O.; Beck, D.; Bellon, M. Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice; CIMMYT: Mexico City, Mexico, 2000. [Google Scholar]
- Badu-Apraku, B.; Yallou, C.G.; Haruna, A.; Talabi, A.O.; Akaogu, I.C.; Annor, B.; Adeoti, A. Genetic improvement of extra-early maize cultivars for grain yield and Striga resistance during three breeding eras. Crop Sci. 2016, 56, 2564–2578. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Ewool, M.; Yallou, C.G. Registration of Striga -resistant tropical extra-early maize population. J. Plant Regist. 2010, 4, 60–66. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Ndwiga, J.; Pittchar, J.; Musyoka, P.; Nyagol, D.; Marechera, G.; Omanya, G.; Oluoch, M. Integrated Striga Management in Africa Project; Constraints and Opportunities of Maize Production in Western Kenya: A Baseline Assessment of Striga Extent, Severity, and Control Technologies; Integrated Striga Management in Africa (ISMA); International Institute of Tropical Agriculture: Ibadan, Nigeria, 2013. [Google Scholar]
- Talabi, A.O.; Badu-Apraku, B.; Fakorede, M.A.B. Genetic Variances and Relationship among Traits of an Early-maturing Maize Population under Drought-stress and Low N Environments. Crop Sci. 2017, 57, 1–12. [Google Scholar] [CrossRef] [Green Version]
- NeSmith, D.S.; Ritchie, J.T. Effects of soil water deficit during tessel emergence on development and yield component of maize (Zea mays L.). Field Crops Res. 1992, 28, 251–256. [Google Scholar] [CrossRef]
- Moss, G.I.; Downey, L.A. Influence of drought stress on female gametophyte development in corn (Zea mays L.) and subsequent grain yield. Crop Sci. 1971, 11, 368–372. [Google Scholar] [CrossRef]
- Hall, A.J.; Vilella, F.; Trapani, N.; Chimenti, C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res. 1982, 5, 349–363. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Bolanos, J.; Lafitte, H.R. Progress in breeding for drought tolerance in maize. In Proceedings of the 47th Ann. Corn and Sorghum Industry Research Conference., Chicago, IL, USA, 8–10 December 1992; Wilkinson, D., Ed.; ASTA: Washington, DC, USA, 1992; pp. 93–111. [Google Scholar]
- Badu-Apraku, B.; Yallou, C.G.; Oyekunle, M. Genetic gains from selection for high grain yield and Striga resistance in early maturing maize cultivars of three breeding periods under Striga-infested and Striga-free environments. Field Crops Res. 2013, 147, 54–67. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Talabi, A.O.; Ifie, B.E.; Chabi, Y.C.; Obeng-Antwi, K.; Haruna, A.; Asiedu, R. Gains in grain yield of extra-early maize during three breeding periods under drought and rainfed conditions. Crop Sci. 2018, 58, 2399–2412. [Google Scholar] [CrossRef] [Green Version]
- Annor, B.; Badu-Apraku, B. Gene action controlling grain yield and other agronomic traits of extra-early quality protein maize under stress and non-stress conditions. Euphytica 2016, 212, 213–228. [Google Scholar] [CrossRef]
- Oyekunle, M.; Ado, S.G.; Usman, I.S.; Abdulmalik, R.O.; Ahmed, H.O.; Hassan, L.B.; Yahaya, M.A. Gains in grain yield of released maize (Zea mays L.) cultivars under drought and well-watered conditions. Exp. Agric. 2019, 55, 934–944. [Google Scholar] [CrossRef]
- O’Neill, P.M.; Shanahan, J.F.; Schepers, J.S.; Caldwell, B. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agron. J. 2004, 96, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
- Kamara, A.Y.; Menkir, A.; Fakorede, M.A.B.; Ajala, S.O.; Badu-Apraku, B.; Kureh, I. Agronomic performance of maize cultivars representing three decades of breeding in the Guinea savannas of West and Central Africa. J. Agric. Sci. 2004, 142, 567–575. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Oyekunle, M.; Akinwale, R.O. Genetic gains in grain yield under nitrogen stress following three decades of breeding for drought tolerance and Striga resistance in early maturing maize. J. Agric. Sci. 2015, 154, 647–661. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Yallou, C.G.; Obeng-Antwi, K.; Alidu, H.; Talabi, A.O.; Annor, B.; Oyekunle, M.; Akaogu, I.C.; Aderounmu, M. Yield gains in extra-early maize cultivars of three breeding eras under multiple environments. Agron. J. 2017, 109, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Fakorede, M.A.B. Breeding early and extra-early maize for resistance to biotic and abiotic stresses in sub-Saharan Africa. Plant Breed. Rev. 2013, 37, 123–205. [Google Scholar]
- Badu-Apraku, B.; Yallou, C.G. Registration of Striga-resistant and drought-tolerant tropical early maize populations TZE-W Pop DT STR C 4 and TZE-Y Pop DT STR C 4. J. Plant Regist. 2009, 3, 86–90. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B. Progress in breeding for Striga hermonthica resistant early and extra-early maize varieties. In Impact, Challenges and Prospects of Maize Research and Development in West and Central Africa, Proceedings of the Regional Maize Workshop, 4–7 May 1999; Badu-Apraku, B., Fakorede, M.A.B., Ouedraogo, M., Quin, M., Eds.; WECAMAN/IITA-Cotonou: Cotonou, Benin, 2001; pp. 147–162. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.A.B.; Lum, A.F. Evaluation of experimental varieties from recurrent selection for Striga resistance in two extra-early maize populations in the savannas of West and Central Africa. Exp. Agric. 2007, 43, 183–200. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Lum, A.F. S1 family selection in early maturing maize population in Striga-infested and Striga-free environments. Crop Sci. 2008, 48, 1984–1994. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Lum, A.F.; Akinwale, R.O. Improvement of yield and other traits of extra-early maize under stress and nonstress environments. J. Agron. 2009, 101, 381–389. [Google Scholar] [CrossRef]
- SAS Institute. SAS System for Windows; Release 9.4.; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Fehr, W.R. Principles of Cultivar Development: Theory and Technique; Iowa State University: Ames, IA, USA, 1991; Volume 1. [Google Scholar]
- Yan, W. GGE biplot: A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Bio, E.; Badu-Apraku, B.; Ifie, B.E.; Danquah, A.; Blay, E.T.; Annor, B. Genetic analysis of grain yield and agronomic traits of early provitamin A quality protein maize inbred lines in contrasting environments. J. Agric. Sci. 2019, 157, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Eitzinger, J.; Trnka, M.; Hösch, J.; Žalud, Z.; Dubrovský, M. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecol. Model. 2004, 171, 223–246. [Google Scholar] [CrossRef]
- Zali, H.; Farshadfar, E.; Sabaghpour, S.H. Non-parametric analysis of phenotypic Stability in chickpea (Cicer arietinum L.) genotypes in Iran. CBJ 2011, 1, 89–100. [Google Scholar]
- Sabaghnia, N.; Sabaghpour, S.H.; Dehghani, H. The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials. J. Agric. Sci. 2008, 146, 571–581. [Google Scholar] [CrossRef]
- Moghaddam, M.J.; Pourdad, S.S. Comparison of parametric and non-parametric methods for analyzing genotype × environment interactions in safflower (Carthamus tinctorius L.). J. Agric. Sci. 2009, 147, 601–612. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Bolaños, J.; Chapman, S.C.; Lafitte, H.R.; Bänziger, M. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci. 1999, 39, 1306–1315. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Oyekunle, M.; Menkir, A.; Obeng-Antwi, K.; Yallou, C.G.; Usman, I.S.; Alidu, H. Comparative performance of early maturing maize cultivars developed in three eras under drought stress and well-watered environments in West Africa. Crop Sci. 2013, 53, 1298–1311. [Google Scholar] [CrossRef]
- Bänziger, M.; Edmeades, G.O.; Lafitte, H.R. Selection for drought tolerance increases maize yields over a range of N levels. Crop Sci. 1999, 39, 1035–1040. [Google Scholar] [CrossRef]
- Berner, D.K.; Alabi, M.O.; Di-Umba, U.; Ikie, F.O. Proposed integrated control program for Striga hermonthica in Africa. In Proceedings of the 6th Parasitic Weeds Symposium, Cordoba, Spain, 16–18 April 1996; pp. 817–825. [Google Scholar]
- Tollenaar, M. Response of dry matter accumulation in maize to temperature. II Leaf photosynthesis. Crop Sci. 1989, 29, 1275–1279. [Google Scholar] [CrossRef]
- Sadras, V.O.; Lawson, C. Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop. Pasture Sci. 2011, 62, 533–539. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Kirby, E.J.M.; Perry, M.W. Ear: Stem ratio in old and modern wheat varieties; relationship with improvement in number of grains per ear and yield. Field Crops Res. 1989, 21, 59–78. [Google Scholar] [CrossRef]
- Giunta, F.; Motzo, R.; Pruneddu, G. Trends since 1900inthe yield potential of Italian-bred durum wheat cultivars. Eur. J. Agron. 2007, 27, 12–24. [Google Scholar] [CrossRef]
- Ma, M.L.; Dwyer, M.L. Nitrogen uptake and use in two contrasting maize hybrids differing in leaf senescence. J. Plant Nutr. Soil Sci. 1998, 199, 283–291. [Google Scholar]
- Blum, A. Drought resistance, water-use efficiency, and yield potential: Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Blum, A. Drought adaptation in cereal crops: A prologue. In Drought Adaptation in Cereals; Ribaut, J.-M., Ed.; The Haworth Press Inc.: Binghamton, NY, USA, 2006; pp. 3–15. [Google Scholar]
- Ribaut, J.M.; Bänziger, M.; Setter, T.; Edmeades, G.; Hoisington, D. Genetic dissection of drought tolerance in maize: A case study. In Physiology and Biotechnology Integration for Plant Breeding; Nguyen, H., Blum, A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 571–611. [Google Scholar]
- Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L). Adv. Agron. 2005, 86, 83–145. [Google Scholar]
- Yan, W.; Kang, M.S.; Ma, S.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 596–605. [Google Scholar] [CrossRef]
- Yan, W.; Fregeau-Reid, J.; Pageau, D.; Martin, R.; Mitchell-Fetch, J.; Etienne, M.; Rowsell, J.; Scott, P.; Price, M.; de Haan, B.; et al. Identifying essential test locations for oat breeding in Eastern Canada. Crop Sci. 2010, 50, 505–515. [Google Scholar] [CrossRef] [Green Version]
Entry | Variety | Year | Period |
---|---|---|---|
1 | TZEEI 82 × TZEEI 79 | 2008 | 1 |
2 | TZEEI 95 × TZEEI 58 | 2008 | 1 |
3 | TZEEI 79 × TZEEI 76 | 2008 | 1 |
4 | (TZEEI 95 × TZEEI 79) × TZEEI 63 | 2010 | 1 |
5 | (TZEEI 79 × TZEEI 58) × TZEEI 95 | 2010 | 1 |
6 | (TZEEI 95 × TZEEI 58) × (TZEEI 82 × TZEEI 79) | 2010 | 1 |
7 | (TZEEI 95 × TZEEI 63) × (TZEEI 79 × TZEEI 58) | 2010 | 1 |
8 | TZEE-Y Pop STR C5 × TZEEI 67 | 2010 | 1 |
9 | TZEE-Y Pop STR C5 × TZEEI 95 | 2008 | 1 |
10 | TZEE-Y Pop STR C5 × TZEEI 58 | 2008 | 1 |
11 | TZEE-Y Pop STR C5 × TZEEI 82 | 2010 | 1 |
12 | TZEEI 29 × TZEEI 49 | 2010 | 1 |
13 | TZEEI 29 × TZEEI 21 | 2010 | 1 |
14 | (TZEEI 29 × TZEEI 21) × TZEEI 55 | 2010 | 1 |
15 | (TZEEI 4 × TZEEI 49) × TZEEI 29 | 2010 | 1 |
16 | (TZEEI 29 × TZEEI 21) × TZEEI 14 | 2010 | 1 |
17 | (TZEEI 29 × TZEEI 21) × (TZEEI 4 × TZEEI 14) | 2010 | 1 |
18 | TZEE -W Pop STR C5 × TZEEI 21 | 2010 | 1 |
19 | TZEEI 79 × TZEEI 58 | 2008 | 1 |
20 | TZEE-W Pop STR C5 × TZEEI 6 | 2010 | 1 |
21 | TZEEI 100 × TZEEI 63 | 2011 | 2 |
22 | TZEEI 64 × TZEEI 79 | 2011 | 2 |
23 | TZEEI 87 × TZEEI 76 | 2012 | 2 |
24 | TZEEI 81 × TZEEI 96 | 2012 | 2 |
25 | TZEEI 71 × TZEEI 79 | 2011 | 2 |
26 | TZEEI 9 × TZEEI 79 | 2011 | 2 |
27 | TZEEI 112 × TZEEI 29 | 2011 | 2 |
28 | TZEEI 110 × TZEEI 29 | 2011 | 2 |
29 | TZEEI 15 × TZEEI 29 | 2011 | 2 |
30 | TZEEI 48 × TZEEI 29 | 2011 | 2 |
31 | TZEEI 12 × TZEEI 21 | 2011 | 2 |
32 | TZEEI 14 × TZEEI 29 | 2011 | 2 |
33 | (TZEEI 29 × TZEEI 13) × TZEEI 10 | 2013 | 2 |
34 | TZEEI 36 × TZEEI 14 | 2013 | 2 |
35 | TZEEI 95 × TZEEI 79 × TZEEI 81 | 2013 | 2 |
36 | TZEEI 96 × TZEEI 73 × TZEEI 67 | 2013 | 2 |
37 | (TZEEI 29 × TZEEI 13) × TZEEI 34 | 2013 | 2 |
38 | TZEEI 29 × TZEEI 14 × TZEEI 10 | 2013 | 2 |
39 | TZEEI 15 × TZEEI 21 × TZEEI 14 | 2013 | 2 |
40 | TZEEI 29 × TZEEI 14 × TZEEI 37 | 2013 | 2 |
41 | TZdEEI 1 × TZdEEI 12 | 2013 | 2 |
42 | TZdEEI 4 × TZEEI 58 | 2015 | 3 |
43 | TZdEEI 2 × TZEEI 63 | 2015 | 3 |
44 | TZdEEI 7 × TZEEI 79 | 2015 | 3 |
45 | TZdEEI 7 × TZEEI 58 | 2015 | 3 |
46 | TZdEEI 11 × TZdEEI 12 | 2013 | 2 |
47 | TZdEEI 12 × TZdEEI 58 | 2013 | 2 |
48 | TZdEEI 11 × TZdEEI 79 | 2013 | 2 |
49 | TZdEEI 50 × TZEEI 29 | 2015 | 3 |
50 | TZdEEI 64 × TZEEI 54 | 2015 | 3 |
51 | TZdEEI 54 × TZEEI 29 | 2015 | 3 |
52 | TZdEEI 34 × TZEEI 29 | 2015 | 3 |
53 | (TZEEI 29 × TZEEI 13) × TZdEEI 50 | 2015 | 3 |
54 | (TZEEI 29 × TZEEI 14) × TZdEEI 64 | 2015 | 3 |
55 | TZEEI 29 × TZEEI 13 × TZdEEI 90 | 2015 | 3 |
56 | TZEEI 29 × TZEEI 13 × TZdEEI 51 | 2015 | 3 |
57 | TZEEI 29 × TZEEI 13 × TZdEEI 64 | 2015 | 3 |
58 | TZEEI 29 × TZEEI 14 × TZdEEI 90 | 2015 | 3 |
59 | 2009 TZEE-OR1 STR × TZdEEI 12 | 2016 | 3 |
60 | 2009 TZEE-OR1 STR × TZdEEI 7 | 2016 | 3 |
Source † | Df | Grain Yield, (kg ha−1) | Anthesis Silking Interval | Plant Height (cm) | Ear Height (cm) | Stalk Lodging (%) | Ear Aspect | Ear Rot | Ears/Plant | Plant Aspect | Stay Green Xtics |
---|---|---|---|---|---|---|---|---|---|---|---|
Drought condition | |||||||||||
Block (Rep × ENV) | 45 | 1254881 ** | 11.30 ** | 458.03 ** | 189.71 ** | 20.05 ** | 2.09 ** | 14.17 ** | 0.052 ** | 1.51 ** | 1.08 ** |
Rep (ENV) | 6 | 190546 ns | 6.2 | 394.47 ** | 169.84* | 59.78 ** | 4.25 ** | 80.29 ** | 0.051 ** | 1.72 ** | 1.99 ** |
Era | 2 | 2885469 ** | 10.16 | 1389.61 ** | 532.03 ** | 9.21 ns | 9.93 ** | 9.52 ns | 0.203 ** | 5.04 ** | 0.85 |
ENV | 2 | 48563216 ** | 1022.67 ** | 31023.69 ** | 1446.79 ** | 544.29 ** | 18.58 ** | 188.93 ** | 3.674 ** | 69.12 ** | 77.74 ** |
Hybrid (Era) | 57 | 1185780 ** | 8.77 ** | 508.01 ** | 219.27 ** | 59.32 ** | 1.63 ** | 10.22 ** | 0.068 ** | 1.25 ** | 2.54 ** |
ENV × Hybrid (Era) | 114 | 367057 * | 4.90 ** | 154.43 | 81.06 | 16.44 ** | 0.74 ** | 6.16 | 0.025 ** | 0.58 ** | 0.86 |
ENV × Era | 4 | 471453 | 0.9 | 280.12 | 199.88 * | 18.85 | 0.82* | 2.4 | 0.006 | 1.33 * | 0.91 |
Error | 309 | 272813 | 3.42 | 134.61 | 74.28 | 11.06 | 0.58 | 6.52 | 0.017 | 0.4 | 0.42 |
Heritability | 0.72 | 0.48 | 0.72 | 0.65 | 0.73 | 0.63 | 0.39 | 0.67 | 0.58 | 0.65 | |
Well-watered condition | |||||||||||
Block (Rep × ENV) | 90 | 1680222 ** | 0.31 ns | 513.37 ** | 284.42 ** | 22.87 ** | 1.00 ** | 9.77 ** | 0.02 ** | 1.08 ** | - |
Rep (ENV) | 12 | 2971597 ** | 0.70 ** | 1074.50 ** | 685.59 ** | 58.22 ** | 2.59 ** | 59.65 ** | 0.01 ns | 2.91 ** | - |
Era | 2 | 60071418 ** | 3.03 ** | 3713.70* | 1860.17 ** | 451.35 ** | 53.62 ** | 17.17 ** | 0.26 ** | 19.00 ** | - |
ENV | 5 | 53702086 ** | 94.88 ** | 38577.22 ** | 22681.00 ** | 12986.70 ** | 181.89 ** | 1551.35 ** | 0.75 ** | 29.75 ** | - |
Hybrid (Era) | 57 | 3666304 ** | 0.87 ** | 733.24 ** | 397.74 ** | 181.37 ** | 2.31 ** | 13.59 ** | 0.03 ** | 1.79 ** | - |
ENV × Hybrid (Era) | 285 | 1312636 ** | 0.70 ** | 210.38 ** | 122.51 ** | 102.65 ** | 0.80 ** | 4.79 ** | 0.01 ns | 0.77 ** | - |
ENV*Era | 10 | 2814491 ** | 2.14 ** | 201.22 ns | 102.11 ns | 329.50 ** | 3.12 ** | 3.66 ns | 0.02* | 1.13 ** | - |
ERROR | 618 | 492828 | 0.31 | 157.18 | 76.04 | 22.53 | 0.43 | 3.15 | 0.01 | 0.39 | - |
Heritability | 0.76 | 0.21 | 0.76 | 0.74 | 0.43 | 0.78 | 0.66 | 0.66 | 0.67 | - | |
Across research environments | |||||||||||
Block (Rep × ENV) | 135 | 1538442 ** | 3.98 ** | 494.92 ** | 252.85 ** | 21.93 ns | 1.36 ** | 11.24 ** | 0.028 ** | 1.22 ** | - |
Rep (ENV) | 18 | 2044580 ** | 2.54* | 847.82 ** | 513.68 ** | 58.74 ** | 3.14 ** | 66.53 ** | 0.026 ** | 2.51 ** | - |
Era | 2 | 53159421 ** | 10.28 ** | 4973.71 ** | 2327.94 ** | 244.48 ** | 60.78 ** | 9.47 ns | 0.439 ** | 23.54 ** | = |
Environment (ENV) | 8 | 341757186 ** | 518.42 ** | 63559.17 ** | 17511.44 ** | 8534.31 ** | 153.80 ** | 1016.84 ** | 6.012 ** | 43.56 ** | - |
Cultivar (Era) | 57 | 3635019 ** | 4.68 ** | 902.30 ** | 513.40 ** | 199.66 ** | 2.41 ** | 17.86 ** | 0.058 ** | 2.23 ** | - |
ENV × Cultivar (Era) | 456 | 1064295 ** | 2.28 ** | 212.46 ** | 109.79 ** | 73.39 ** | 0.88 ** | 5.28 ** | 0.020 ** | 0.73 ** | - |
ENV × Era | 16 | 3101603 ** | 1.92 ns | 211.99 ns | 121.82 ns | 237.66 ** | 2.50 ** | 5.04 ns | 0.018 ns | 1.10 ** | - |
Error | 927 | 419489 | 1.34 | 149.66 | 75.45 | 18.71 | 0.48 | 4.27 | 0.01 | 0.40 | - |
Heritability | 0.79 | 0.54 | 0.80 | 0.81 | 0.61 | 0.79 | 0.70 | 0.73 | 0.75 |
Trait | Era | Number of Hybrids | Research Condition | |
---|---|---|---|---|
Drought | Well-Watered | |||
Grain yield, kg ha−1 | 2008–2010 | 20 | 1389 ± 101.0 | 3678 ± 108.7 |
2011–2013 | 24 | 1474 ± 60.4 | 4078 ± 109.7 | |
2014–2016 | 16 | 1659 ± 96.6 | 4577 ± 78.7 | |
Days to anthesis | 2008–2010 | 20 | 48 ± 0.17 | 50 ± 0.27 |
2011–2013 | 24 | 49 ± 0.27 | 52 ± 0.34 | |
2014–2016 | 16 | 49 ± 0.20 | 51 ± 0.23 | |
Days to silking | 2008–2010 | 20 | 51 ± 0.32 | 51 ± 0.26 |
2011–2013 | 24 | 52 ± 0.35 | 52 ± 0.31 | |
2014–2016 | 16 | 51 ± 0.29 | 52 ± 0.21 | |
Anthesis silking interval | 2008–2010 | 20 | 3 ± 0.26 | 1 ± 0.06 |
2011–2013 | 24 | 3 ± 0.20 | 1 ± 0.04 | |
2014–2016 | 16 | 3 ± 0.24 | 1 ± 0.04 | |
Plant height, cm | 2008–2010 | 20 | 157 ± 1.72 | 182 ± 1.56 |
2011–2013 | 24 | 157 ± 1.36 | 184 ± 1.40 | |
2014–2016 | 16 | 162 ± 1.96 | 189 ± 1.51 | |
Ear height, cm | 2008–2010 | 20 | 77 ± 1.30 | 85 ± 1.24 |
2011–2013 | 24 | 79 ± 0.93 | 88 ± 0.99 | |
2014–2016 | 16 | 81 ± 1.08 | 89 ± 0.96 | |
Root lodging (%) | 2008–2010 | 20 | 0.4 ± 0.10 | 2.8 ± 0.39 |
2011–2013 | 24 | 0.5 ± 0.16 | 2.3 ± 0.31 | |
2014–2016 | 16 | 0.6 ± 0.16 | 2.2 ± 0.39 | |
Stalk lodging (%) | 2008–2010 | 20 | 2.6 ± 0.42 | 6.8 ± 0.64 |
2011–2013 | 24 | 3.1 ± 0.52 | 4.6 ± 0.78 | |
2014–2016 | 16 | 3.0 ± 0.87 | 4.9 ± 0.77 | |
Husk cover | 2008–2010 | 20 | 3.7 ± 0.10 | 3.8 ± 0.09 |
2011–2013 | 24 | 3.5 ± 0.06 | 3.5 ± 0.07 | |
2014–2016 | 16 | 3.6 ± 0.11 | 3.2 ± 0.06 | |
Plant aspect | 2008–2010 | 20 | 5.3 ± 0.10 | 5.0 ± 0.09 |
2011–2013 | 24 | 5.1 ± 0.06 | 4.7 ± 0.06 | |
2014–2016 | 16 | 5.0 ± 0.10 | 4.5 ± 0.06 | |
Ear aspect | 2008–2010 | 20 | 5.2 ± 0.12 | 4.5 ± 0.09 |
2011–2013 | 24 | 4.9 ± 0.07 | 4.0 ± 0.08 | |
2014–2016 | 16 | 4.7 ± 0.10 | 3.6 ± 0.07 | |
Ear rot | 2008–2010 | 20 | 2.6 ± 0.19 | 2.8 ± 0.17 |
2011–2013 | 24 | 2.4 ± 0.23 | 2.7 ± 0.21 | |
2014–2016 | 16 | 2.9 ± 0.36 | 2.4 ± 0.20 | |
Stay green characteristic | 2008–2010 | 20 | 3.9 ± 0.12 | - |
2011–2013 | 24 | 3.8 ± 0.12 | - | |
2014–2016 | 16 | 3.9 ± 0.12 | - | |
Ears per plant | 2008–2010 | 20 | 0.5 ± 0.023 | 0.9 ± 0.010 |
2011–2013 | 24 | 0.6 ± 0.014 | 0.9 ± 0.008 | |
2014–2016 | 16 | 0.6 ± 0.023 | 0.9 ± 0.010 |
Relative Gain (% Per Year) | R2 | a | b | |||||
---|---|---|---|---|---|---|---|---|
Trait | DS | WW | DS | WW | DS | WW | DS | WW |
Grain yield, (kg ha−1) | 4.14 | 4.15 | 0.159 | 0.33 | 1446.8 | 3376.2 | 46.536 * | 140.25 ** |
Days to anthesis | 0.07 | 0.31 | 0.003 | 0.064 | 50.96 | 50.34 | 0.086 ns | 0.157 * |
Days to silk | 0.05 | 0.25 | 0.001 | 0.057 | 53.56 | 51.23 | 0.003 ns | 0.127 ns |
Anthesis silking interval | −0.41 | −3.2 | 0.002 | 0.097 | 2.6 | 0.96 | −0.083 ns | −0.031 * |
Plant height (cm) | 1.14 | 0.51 | 0.08 | 0.092 | 135.09 | 180.43 | 1.016 * | 0.913 ** |
Ear height (cm) | 1.33 | 0.08 | 0.1 | 0.091 | 68.69 | 84.15 | 0.624 * | 0.066 ** |
Root lodging (%) | −0.4 | −3.72 | 0 | 0.029 | 0.58 | 3.06 | 0.034 ns | −0.114 * |
Stalk lodging (%) | −5.45 | −3.6 | 0.059 | 0.027 | 2.25 | 6.61 | 0.072 ns | −0.238 ns |
Husk cover | 0.21 | −2.43 | 0.003 | 0.328 | 3.51 | 4.01 | −0.012 ns | −0.097 ** |
Plant aspect | −0.97 | −1.5 | 0.128 | 0.233 | 5.6 | 5.09 | −0.065 ** | −0.076 ** |
Ear aspect | −1.31 | −2.63 | 0.143 | 0.035 | 5.15 | 4.68 | −0.081 ** | −0.123 ** |
Ear rot | 1.24 | −2.01 | 0.004 | 0.024 | 2.41 | 2.93 | 0.018 ns | −0.059 ns |
Stay green character | −0.44 | 0.008 | 3.85 | 0.006 ns | ||||
Ears/plant | 1.14 | 1.02 | 0.071 | 0.187 | 0.65 | 0.86 | 0.014 ** | 0.09 ** |
Grain Yield, kg/ha | Days to Anthesis | Days to Silking | ASI | Plant Height, cm | Ear Height, cm | Root Lodging | Stalk Lodging | Husk Cover | Plant Aspect | Ear Aspect | Ear Rot | STGR | Ears/Plant | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain yield, kg/ha | −0.132 | −0.60 ** | −0.74 ** | 0.33 ** | 0.32 * | 0.03 | −0.28 * | −0.16 | −0.65 ** | −0.80 ** | 0.08 | −0.06 | 0.76 ** | |
Days to anthesis | 0.31 * | 0.73 ** | 0.02 | 0.05 | 0.2 | −0.29 * | −0.13 | −0.2 | −0.12 | 0.01 | −0.35 ** | −0.25 | 0.01 | |
Days to silking | 0.26 * | 0.99 ** | 0.70 ** | −0.15 | −0.05 | −0.23 | 0.02 | 0.08 | 0.35 ** | 0.52 ** | −0.33 ** | −0.01 | −0.45 ** | |
ASI | −0.32 * | −0.47 * | −0.33 * | −0.28 * | −0.28 * | −0.03 | 0.17 | 0.32 * | 0.64 ** | 0.75 ** | −0.12 | 0.25 | −0.66 ** | |
Plant height, cm | 0.43 ** | 0.46 ** | 0.42 ** | −0.39 ** | 0.78 ** | −0.11 | −0.11 | −0.39 ** | −0.66 ** | −0.43 ** | −0.1 | −0.35 ** | 0.42 ** | |
Ear height, cm | 0.47 ** | 0.58 ** | 0.53 ** | −0.49 ** | 0.91 ** | −0.04 | −0.11 | −0.35 ** | −0.61 ** | −0.41 ** | −0.25 | −0.35 ** | 0.32* | |
Root lodging | −0.60 ** | −0.23 | −0.2 | 0.16 | −0.05 | −0.16 | 0.47 ** | 0.27 * | 0.11 | −0.05 | 0.34 ** | 0.27* | 0.14 | |
Stalk lodging | −0.43 ** | −0.19 | −0.19 | 0.03 | 0.18 | −0.01 | 0.61 ** | 0.18 | 0.34 ** | 0.18 | 0.27 * | 0.37 ** | −0.19 | |
Husk cover | −0.72 ** | −0.53 ** | −0.48 ** | 0.48 ** | −0.55 ** | −0.63 ** | 0.51 ** | 0.28 * | 0.59 ** | 0.40 ** | 0.33 ** | 0.41 ** | −0.34 ** | |
Plant aspect | −0.76 ** | −0.53 ** | −0.47 ** | 0.49 ** | −0.66 ** | −0.74 ** | 0.48 ** | 0.23 | 0.80 ** | 0.83 ** | 0.19 | 0.42 ** | −0.72 ** | |
Ear aspect | −0.91 ** | −0.34 ** | −0.31 * | 0.32 * | −0.55 ** | −0.60 ** | 0.47 ** | 0.39 ** | 0.71 ** | 0.80 ** | −0.02 | 0.17633 | −0.83 ** | |
Ear rot | −0.41 ** | −0.38 ** | −0.38 ** | 0.09 | −0.31 * | −0.40 ** | 0.40 ** | 0.41 ** | 0.54 ** | 0.44 ** | 0.48 ** | 0.47 ** | 0.07 | |
STGR | - | - | - | - | - | - | - | - | - | - | - | - | −0.14 | |
Ears/ plant | 0.33 ** | 0.42 ** | 0.36 ** | −0.45 ** | 0.45 ** | 0.50 ** | −0.18 | −0.15 | −0.52 ** | −0.49 ** | −0.34 ** | −0.40 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badu-Apraku, B.; Obisesan, O.; Abiodun, A.; Obeng-Bio, E. Genetic Gains from Selection for Drought Tolerance during Three Breeding Periods in Extra-Early Maturing Maize Hybrids under Drought and Rainfed Environments. Agronomy 2021, 11, 831. https://doi.org/10.3390/agronomy11050831
Badu-Apraku B, Obisesan O, Abiodun A, Obeng-Bio E. Genetic Gains from Selection for Drought Tolerance during Three Breeding Periods in Extra-Early Maturing Maize Hybrids under Drought and Rainfed Environments. Agronomy. 2021; 11(5):831. https://doi.org/10.3390/agronomy11050831
Chicago/Turabian StyleBadu-Apraku, Baffour, Oluwafemi Obisesan, Adeoti Abiodun, and Ebenezer Obeng-Bio. 2021. "Genetic Gains from Selection for Drought Tolerance during Three Breeding Periods in Extra-Early Maturing Maize Hybrids under Drought and Rainfed Environments" Agronomy 11, no. 5: 831. https://doi.org/10.3390/agronomy11050831
APA StyleBadu-Apraku, B., Obisesan, O., Abiodun, A., & Obeng-Bio, E. (2021). Genetic Gains from Selection for Drought Tolerance during Three Breeding Periods in Extra-Early Maturing Maize Hybrids under Drought and Rainfed Environments. Agronomy, 11(5), 831. https://doi.org/10.3390/agronomy11050831