Spatial Distribution and Mobility of Nutrients on Sand Mulching Soil for Fertigated Green Bean Crops under Greenhouse Conditions in Southern Spain: (I) Macronutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Weather Conditions
2.2. Treatments and Experimental Design
2.3. Soil Sampling
2.4. Physical and Chemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The management of agricultural waste biomass in the framework of circular economy and bioeconomy: An opportunity for greenhouse agriculture in southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Lao, M.T. The mulching sandy soil and their management fergation in horticultural production. Trends Soil Sci. 2004, 3, 71–82. [Google Scholar]
- Llanderal, A.; García-Caparrós, P.; Contreras, J.I.; Segura, M.L.; Lao, M.T. Spatio-temporal variations in nutrient concentration in soil solution under greenhouse tomato. J. Plant Nutr. 2019, 42, 842–852. [Google Scholar] [CrossRef]
- Ramos-Miras, J.; Gil, C.; Boluda-Hernández, R. Estudio de las características de los antrosoles cumílicos de los invernaderos de la comarca del poniente almeriense. Influencia de las prácticas agrícolas sobre los cambios de sus propiedades. Edafología 2002, 9, 129–142. [Google Scholar]
- Castilla, N. Contribución al Estudio de los Cultivos Enarenados en Almería: Necesidades Hídricas y Extracción de Nutrientes del Cultivo de Tomate de Crecimiento Indeterminado en Abrigo de Polietileno. Ph.D. Thesis, Autonomous University of Madrid, Madrid, Spain, 1986. [Google Scholar]
- Segura, M.L. Fertirrigación de Cultivos Hortícolas en Condiciones Salinas con Sistema Enarenado y Sustratos Alternativos en la Comarca Agrícola de Almería. Ph.D. Thesis, Autonomous University of Madrid, Madrid, Spain, 1995. [Google Scholar]
- Adnan, M.; Asif, M.; Khalid, M.; Abbas, B.; Sikander Hayyat, M.; Raza, A.; Ahmad Khan, B.; Hassan, M.; Awais Bashir, M.; Shakeel Hanif, M. Role of mulches in agriculture: A review. Int. J. Bot. Std. 2020, 3, 309–314. [Google Scholar]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Nazar, M.A. Potential agricultural and environmental benefits of mulches-a review. Bull. Natl. Res. Cent. 2020, 44, 1–16. [Google Scholar] [CrossRef]
- Llanderal, A. Study of diagnostic methods and evaluation of nutritional parameters in the intensive horticulture cropping systems as basis for a sustainable management of the fertigation. Ph.D. Thesis, Universidad de Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, Almeria, Spain, September 2017; p. 177. [Google Scholar]
- Li, J.; Zhang, J.; Ren, L. Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source. Irrig. Sci. 2003, 22, 19–30.–30. [Google Scholar]
- García, C.; Paucar, C. Estudio de algunos parámetros que determinan la síntesis de hidroxiapatita por la ruta de precipitación. Dyna Rev. Fac. Nac. Mina. 2006, 148, 9–20. [Google Scholar]
- Fernández, C.; Novo, R. Vida Microbiana en el Suelo, 2nd ed.; Pueblo y Educación: La Habana, Cuba, 1988; p. 220. [Google Scholar]
- Rivera, R.N.; Duarte, S.N.; Miranda, J.H.; Botrel, T.A. Potassium modelling dynamics in the soil under drip irrigation: Model validation. Eng. Agric. 2006, 26, 388–394. [Google Scholar]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers. An Introduction to Nutrient Management; Pearson Prentice Hall: Hoboken, NJ, USA, 2005; p. 515. [Google Scholar]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Till. Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Wright, S.F.; Green, V.S.; Cavigelli, M.A. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 2007, 94, 546–549. [Google Scholar] [CrossRef]
- Kleinman, P.J.; Wolf, A.M.; Sharpley, A.N.; Beegle, D.B.; Saporito, L.S. Survey of water-extractable phosphorus in livestock manures. Soil Sci. Soc. Amer. J. 2005, 69, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Luo, S.; Zhu, L.; Liu, J.; Bu, L.; Yue, S.; Shen, Y.; Li, S. Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland. Eur. J. Soil Biol. 2015, 67, 35–42. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, X.; Xie, Z.; Wang, Y. Effects of gravel-sand mulch on the runoff, erosion, and nutrient losses in the Loess Plateau of north-western China under simulated rainfall. Soil Water Res. 2020, 16, 22–28. [Google Scholar]
- Martin-Rueda, I.; Munoz-Guerra, L.M.; Yunta, F.; Esteban, E.; Tenorio, J.L.; Lucena, J.J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Till. Res. 2007, 92, 1–9. [Google Scholar] [CrossRef]
- Contreras, J.I. Optimización de las Estrategias de Fertirrigación de Cultivos Hortícolas en Invernadero Utilizando Aguas de Baja Calidad (Agua Salina y Agua Regenerada) en Condiciones del Litoral de Andalucía. Ph.D. Thesis, University of Almeria, Almeria, Spain, 2014; p. 258. [Google Scholar]
- MAPA. Métodos Oficiales de Análisis; Tomo III; Secretaría General Técnica del Ministerios de Agricultura: Pesca y Alimentación, Madrid, Spain, 1986. [Google Scholar]
- Baethgen, W.E.; Alley, M.M. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- Baker, A.S. Colorimetric determination of nitrate in soil and plant extracts with brucine. J. Agric. Food Chem. 1969, 17, 802–806. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954; p. 19. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: New York, NY, USA, 1995; p. 889. [Google Scholar]
- Urrestarazu, M. Tratado De Cultivos Sin Suelo; Mundi-Prensa: Madrid, Spain, 2004; p. 874. [Google Scholar]
- Lao, M.T.; Jiménez, S.; Del Moral, E. Aplicación de las sondas de succión. Hortofruticultura 1996, 73, 39–42. [Google Scholar]
- Treder, W. Variation in soil pH, calcium and magnesium status influenced by drip irrigation and fertigation. J. Fruit Ornam. Plant Res. 2005, 13, 59–70. [Google Scholar]
- Bachmann, J.; Horton, R.; Van Der Ploeg, R.R. Isothermal and nonisothermal evaporation from four sandy soils of different water repellency. Soil Sci. Soc. Am. J. 2001, 65, 1599–1607. [Google Scholar] [CrossRef]
- Zibilske, L.M.; Materon, L.A. Biochemical properties of decomposing cotton and corn stem and root residues. Soil Sci. Soc. Am. J. 2005, 69, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, M.; Raymundo, S.; García, E.; Osuna, T.E.; Armenta, A.D. Efecto de dosis y fuente de nitrógeno en rendimiento y calidad postcosecha de tomate en fertirriego. Terra Latinoam. 2002, 20, 311–320. [Google Scholar]
- Chen, M.; Kang, Y.; Wan, S.; Liu, S. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agric. Water Manag. 2009, 96, 1766–1772. [Google Scholar] [CrossRef]
- Wang, R.; Kang, Y.; Wan, S.; Hu, W.; Liu, S.; Liu, S. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area. Agric. Water Manag. 2011, 100, 58–69. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guide Of Soilless Food-Growing Methods; Woodbridge Press Publication: Beaverton, OR, USA, 2001; p. 462. [Google Scholar]
- Badr, M.A.; Shaymaa, I.; Abou-Hussein, S.D. Fruit yield, nutrient availability and fertilizer recovery of eggplants under fertigation of acid forming fertilizer compounds. Curr. Sci. Int. 2015, 4, 393–401. [Google Scholar]
- Chaverría, C.J.; Muñoz, J.V.; Escobar, R.N.; Hernández, J.M.; García, P.S. Distribution of ions in the moist soil bulb as a product of drip fertigation. Agrociencia 2001, 35, 275–285. [Google Scholar]
- Thompson, R.B.; Gallardo, M.; Giménez, C. Assessing risk of nitrate leaching from the horticultural industry of Almeria, Spain. Acta Hortic. 2002, 571, 243–248. [Google Scholar] [CrossRef]
- Fernández, M.D. Necesidades hídricas y programación de riegos en los cultivos hortícolas en invernaderos y suelo enarenado de Almería. Ph.D. Thesis, University of Almeria, Almeria, Spain, 2000. [Google Scholar]
- Segura, M.L.; Granados, M.R.; Contreras, J.I.; Martín, E.; Rodríguez, J.M. Greenhouse management of the potassium fertilization of a green bean crop. Acta Hortic. 2006, 700, 145–148. [Google Scholar] [CrossRef]
- Ferguson, J.F.; Jenkins, D.; Eastman, D. Calcium phosphate precipitation at slightly alkaline pH values. J. Water Pol. Control Fed. 1973, 45, 620–631. [Google Scholar]
- Segura, M.L.; Contreras, J.I.; Plaza, B.M.; Lao, M.T. Assessment of the nitrogen and potassium fertilizer in green bean irrigated with disinfected urban wastewater. Commun. Soil Sci. Plant Anal. 2012, 43, 426–433. [Google Scholar] [CrossRef]
- Martínez, A. Comportamiento del Agua de Riego Bajo Enarenado en Invernadero. Balance de Salinidad y Fertilizantes en Especial en el Cultivo de Pimiento y judía. Ph.D. Thesis, Polytechnic University of Madrid, Madrid, Spain, 1987. [Google Scholar]
- O’Neil, M.K.; Gardner, B.R.; Roth, R.L. Orthophosphoric acid as a phosphorus fertilizer in trickle irrigation. Soil Sci. Soc. Am. J. 1979, 43, 283–286. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D.; Peryea, F. Response of soil and irrigated fruit trees to fertirrigation or broadcast application of nitrogen, phosphorus, and potassium. HortTechnology 1999, 9, 393–401. [Google Scholar] [CrossRef]
Soil 1 | Soil 2 | ||
---|---|---|---|
Chemical Soil Properties | |||
pH | 8.11 ± 0.28 | 8.02 ± 0.33 | ns |
EC | 1.30 ± 0.14 | 1.35 ± 0.11 | ns |
Organic matter content (%) | 1.00 ± 0.08 b | 2.50 ± 0.18 a | * |
C.E.C (meq 100 g−1) | 9.80 ± 0.88 b | 14.50 ± 1.17 a | * |
Nutrients (mg kg−1) | |||
NO3−-N | 6.40 ± 0.49 b | 7.71 ± 0.68 a | * |
NH4+-N | 3.70 ± 1.17 | 5.80 ± 1.24 | ns |
P | 118.50 ± 12.15 a | 69.23 ± 6.74 b | * |
Ca | 2213.92 ± 212.43 b | 3044.01 ± 269.75 a | * |
Mg | 284.31 ± 46.48 | 379.30 ± 48.88 | ns |
K | 396.82 ± 34.56 a | 289.33 ± 24.67 b | * |
Physical Soil properties | |||
Texture | loamy-sandy | loamy-sandy | |
Particle size distribution (%) | |||
Sand | 73 ± 5 a | 58 ± 4 b | * |
Silt | 12 ± 1 b | 30 ± 4 a | * |
Clay | 15 ± 1 | 13 ± 2 | ns |
Stoniness (g·g−1) | 0.30 ± 0.04 b | 0.51 ± 0.06 a | * |
Apparent density (g·cm−3) | 1.52 ± 0.08 b | 1.71 ± 0.07 a | * |
Factor | pH | EC | NH4+-N | NO3−-N | P | K | Ca | Mg | |
---|---|---|---|---|---|---|---|---|---|
Soil Type | ns | * | ns | ns | ns | * | ns | ns | |
S1 | 7.51 ± 0.18 | 4.30 ± 0.37 a | 6.79 ± 0.55 | 18.12 ± 1.48 | 26.38 ± 2.51 | 181.90 ± 42.25 a | 1455.63 ± 100.54 | 56.22 ± 9.26 | |
S2 | 7.56 ± 0.19 | 3.41 ± 0.44 b | 6.68 ± 0.40 | 15.94 ± 1.05 | 27.12 ± 2.12 | 108.54 ± 38.78 b | 1512.78 ± 173.36 | 56.91 ± 7.72 | |
T. sampling | ns | * | ns | * | * | * | * | ns | |
Initial | 7.63 ± 0.17 | 2.24 ± 0.15 b | 6.82 ± 0.47 | 15.25 ± 1.17 b | 34.74 ± 4.56 a | 95.63 ± 15.69 b | 1419.24 ± 57.62 b | 55.74 ± 7.36 | |
Final | 7.44 ± 0.14 | 5.47 ± 0.35 a | 6.61 ± 0.37 | 18.84 ± 1.22 a | 18.78 ± 5.65 b | 194.71 ± 19.12 a | 1549.20 ± 61.24 a | 57.33 ± 6.54 | |
Distance | ns | * | ns | * | ns | * | ns | * | |
0.1 | 7.64 ± 0.25 | 3.33 ± 0.25 b | 7.03 ± 0.38 | 13.73 ± 2.17 b | 23.23 ± 3.64 | 117.46 ± 15.74 b | 1487.25 ± 184.65 | 41.90 ± 7.36 b | |
0.2 | 7.49 ± 0.17 | 3.74 ± 0.28 b | 6.77 ± 0.24 | 18.21 ± 1.85 a | 25.28 ± 2.64 | 154.87 ± 21.36 a | 1523.64 ± 151.46 | 66.54 ± 5.67 a | |
0.3 | 7.47 ± 0.11 | 4.52 ± 0.39 a | 6.50 ± 0.44 | 19.19 ± 1.59 a | 26.60 ± 3.51 | 163.12 ± 18.54 a | 1441.63 ± 118.69 | 61.19 ± 7.48 a | |
Interaction | |||||||||
Soil Type × T. sampling | ns | ns | ns | ns | ns | ns | ns | ns | |
Soil Type × Distance | ns | ns | ns | ns | ns | ns | ns | ns | |
T. sampling × Distance | ns | ns | ns | ns | ns | ns | ns | ns |
Factor | pH | EC | NH4+-N | NO3−-N | P | K | Ca | Mg | |
---|---|---|---|---|---|---|---|---|---|
Soil Type | ns | * | * | * | * | * | * | * | |
S1 | 8.11 ± 0.30 | 1.04 ± 0.03 b | 8.81 ± 0.72 a | 14.05 ± 2.02 b | 68.43 ± 9.73 b | 220.16 ± 9.21 b | 1453.61 ± 101.13 b | 249.83 ± 11.98 b | |
S2 | 8.12 ± 0.22 | 1.24 ± 0.03 a | 7.31 ± 0.62 b | 27.62 ± 3.08 a | 106.22 ± 11.54 a | 254.64 ± 10.23 a | 1911.84 ± 117.54 a | 318.42 ± 17.35 a | |
T. sampling | ns | * | * | * | * | ns | * | ns | |
Initial | 8.12 ± 0.17 | 1.02 ± 0.03 b | 8.52 ± 0.36 a | 23.03 ± 1.15 a | 100.14 ± 9.31 a | 235.53 ± 17.59 | 1725.36 ± 16.42 a | 268.66 ± 25.64 | |
Final | 8.03 ± 0.31 | 1.23 ± 0.03 a | 7.53 ± 0.29 b | 18.61 ± 1.36 b | 74.31 ± 7.36 b | 240.27 ± 22.35 | 1640.24 ± 20.45 b | 299.62 ± 32.67 | |
Distance | ns | * | ns | * | * | * | ns | ns | |
0.1 | 8.13 ± 0.24 | 1.04 ± 0.14 b | 7.82 ± 1.02 | 18.87 ± 3.15 b | 74.23 ± 2.84 c | 207.22 ± 28.94 b | 1700.33 ± 50.35 | 290.71 ± 21.36 | |
0.2 | 8.02 ± 0.28 | 1.12 ± 0.09 b | 7.92 ± 0.98 | 18.81 ± 2.94 b | 85.94 ± 3.64 b | 208.03 ± 28.65 b | 1648.19 ± 65.65 | 267.14 ± 33.98 | |
0.3 | 8.10 ± 0.24 | 1.31 ± 0.08 a | 8.21 ± 1.10 | 24.92 ± 2.55 a | 102.26 ± 4.17 a | 301.02 ± 30.65 a | 1710.33 ± 49.36 | 288.16 ± 41.36 | |
Depth | ns | ns | * | ns | * | * | * | * | |
(0.1–0.2) | 8.10 ± 0.30 | 1.15 ± 0.07 a | 8.77 ± 0.35 a | 22.34 ± 3.25 | 100.82 ± 5.65 a | 265.64 ± 22.65 a | 1755.92 ± 54.35 a | 319.87 ± 17.36 a | |
(0.2–0.3) | 8.11 ± 0.24 | 1.17 ± 0.06 a | 8.12 ± 0.28 b | 21.22 ± 3.21 | 89.01 ± 6.47 b | 233.92 ± 19.24 ab | 1694.85 ± 47.36 a | 276.42 ± 13.74 b | |
(0.3–0.4) | 8.13 ± 0.22 | 1.01 ± 0.06 b | 7.45 ± 0.34 c | 18.91 ± 2.99 | 71.86 ± 7.64 c | 212.65 ± 21.21 b | 1597.56 ± 39.41 b | 255.13 ± 11.68 b | |
Interaction | |||||||||
Soil type × T. sampling | ns | ns | * | ns | ns | ns | ns | * | |
Soil type × Distance | ns | ns | ns | ns | ns | * | ns | ns | |
Soil type × Depth | ns | ns | ns | ns | ns | * | * | ns | |
T. sampling × Distance | ns | ns | ns | * | ns | ns | ns | ns | |
T. sampling × Depth | ns | ns | ns | ns | ns | ns | ns | ns | |
Distance × Depth | ns | ns | ns | ns | ns | ns | ns | ns |
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
Parameter | T. of Sampling | Sand | Soil Profile | Sand | Soil Profile | ||
pH | Initial | 7.54 ± 0.12 b | 8.13 ± 0.14 a | * | 7.67 ± 0.12 b | 8.13 ± 0.15 a | * |
Final | 7.34 ± 0.11 b | 7.87 ± 0.12 a | * | 7.48 ± 0.13 b | 8.08 ± 0.13 a | * | |
EC | Initial | 2.47 ± 0.23 a | 0.94 ± 0.13 b | * | 1.76 ± 0.24 a | 1.10 ± 0.12 b | * |
Final | 5.90 ± 0.54 a | 1.13 ± 0.14 b | * | 5.12 ± 0.55 a | 1.22 ± 0.14 b | * | |
NH4+-N | Initial | 6.24 ± 0.45 b | 7.67 ± 0.5 a | * | 6.91 ± 0.56 a | 5.43 ± 0.47 b | * |
Final | 6.33 ± 0.36 a | 5.40 ± 0.34 b | * | 6.60 ± 0.50 a | 5.55 ± 0.43 b | * | |
NO3--N | Initial | 16.38 ± 1.12 a | 3.81 ± 0.49 b | * | 14.24 ± 1.19 a | 6.34 ± 0.72 b | * |
Final | 20.14 ± 1.16 a | 2.28 ± 0.23 b | * | 17.39 ± 1.44 a | 6.05 ± 0.63 b | * | |
P | Initial | 32.22 ± 2.48 b | 120.04 ± 9.16 a | * | 37.18 ± 2.58 b | 80.04 ± 6.46 a | * |
Final | 21.76 ± 2.11 b | 92.75 ± 8.37 a | * | 15.63 ± 1.33 b | 56.84 ± 5.39 a | * | |
K | Initial | 118.85 ± 11.78 b | 212.94 ± 20.15 a | * | 75.74 ± 6.75 b | 260.28 ± 21.58 a | * |
Final | 248.13 ± 21.49 | 226.83 ± 23.76 | ns | 141.08 ± 12.46 b | 254.21 ± 21.46 a | * | |
Ca | Initial | 1378.65 ± 48.16 b | 1508.3 ± 42.37 a | * | 1459.72 ± 43.50 b | 1957.43 ± 42.15 a | * |
Final | 1532.46 ± 44.37 a | 1403.56 ± 41.84 b | * | 1568.94 ± 55.17 b | 1875.62 ± 58.64 a | * | |
Mg | Initial | 43.29 ± 4.15 b | 244.02 ± 19.53 a | * | 68.13 ± 8.49 b | 290.64 ± 18.33 a | * |
Final | 63.71 ± 6.16 b | 250.94 ± 23.18 a | * | 44.34 ± 4.18 b | 343.04 ± 28.72 a | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanderal, A.; Garcia-Caparros, P.; Contreras, J.I.; Lao, M.T.; Segura, M.L. Spatial Distribution and Mobility of Nutrients on Sand Mulching Soil for Fertigated Green Bean Crops under Greenhouse Conditions in Southern Spain: (I) Macronutrients. Agronomy 2021, 11, 842. https://doi.org/10.3390/agronomy11050842
Llanderal A, Garcia-Caparros P, Contreras JI, Lao MT, Segura ML. Spatial Distribution and Mobility of Nutrients on Sand Mulching Soil for Fertigated Green Bean Crops under Greenhouse Conditions in Southern Spain: (I) Macronutrients. Agronomy. 2021; 11(5):842. https://doi.org/10.3390/agronomy11050842
Chicago/Turabian StyleLlanderal, Alfonso, Pedro Garcia-Caparros, Juana Isabel Contreras, María Teresa Lao, and María Luz Segura. 2021. "Spatial Distribution and Mobility of Nutrients on Sand Mulching Soil for Fertigated Green Bean Crops under Greenhouse Conditions in Southern Spain: (I) Macronutrients" Agronomy 11, no. 5: 842. https://doi.org/10.3390/agronomy11050842
APA StyleLlanderal, A., Garcia-Caparros, P., Contreras, J. I., Lao, M. T., & Segura, M. L. (2021). Spatial Distribution and Mobility of Nutrients on Sand Mulching Soil for Fertigated Green Bean Crops under Greenhouse Conditions in Southern Spain: (I) Macronutrients. Agronomy, 11(5), 842. https://doi.org/10.3390/agronomy11050842