DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cajamar, F. Análisis de la campaña hortofrutícola de Almería 2019/2020. In Informes y Monografías; Caja Rural Almeria: Almeria, Spain, 2021; p. 9. [Google Scholar]
- Valera, D.M.; Belmonte, L.; Molina, F.D.; Lopez, A. Greenhouse Agriculture in Almería: A Comprehensive Techno-Economic Análisis; Cajamar Caja Rural: Almería, Spain, 2016; p. 408. [Google Scholar]
- Hallmark, W.B.; Beverly, R.B. Review: An update in the use of the diagnosis and recommendation integrated system. J. Fer. 1991, 8, 74–88. [Google Scholar]
- Llanderal, A. Study of Diagnostic Methods and Evaluation of Nutritional Parameters in the Intensive Horticulture Cropping Systems as Basis for a Sustainable Management of the Fertigation. Ph.D. Thesis, Universidad de Almería, Almeria, Spain, September 2017; p. 197. [Google Scholar]
- Llanderal, A.; Lao, M.T.; Contreras, J.I.; Segura, M.L. Diagnosis and recommendation integrated system norms and sufficiency ranges for tomato greenhouse in Mediterranean climate. HortScience 2018, 53, 479–482. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M. Nutrient sufficiency ranges in mango using boundary-line approach and compositional nutrient diagnosis norms in El-Salhiya, Egypt. Comm. Soil Sci. Plant Anal. 2018, 49, 188–201. [Google Scholar] [CrossRef]
- Sumner, M.E. Interpretation of foliar analysis for diagnostic purposes. Agron. J. 1979, 71, 343–348. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 3nd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 672. [Google Scholar]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E. Plnt Tissue Analysis and Interpretation for Vegetable Crops in Florida; Florida Coop. Ext. Spec. Ser. SS-VEC-42; University of Florida: Gainesville, FL, USA, 1991. [Google Scholar]
- Cadahía, C. La Savia Como Índice De Fertilización. Cultivos Agroenergéticos, Hortícolas, Frutales Y Ornamentales; Mundi-Prensa: Madrid, Spain, 2008; p. 256. [Google Scholar]
- Sánchez, E.; Soto-Parra, J.M.; Preciado-Rangel, P.; Llanderal, A.; Lao, M.T. DRIS Norms for grafted and non-grafted red bell pepper in semiarid climate conditions in a greenhouse. Hortic. Bras. 2018, 36, 371–376. [Google Scholar] [CrossRef]
- Beaufils, E.R. Physiological diagnosis: A guide for improving maize production based on principles developed for rubber trees. Fert. Soc. S. Afr. J. 1971, 1, 1–28. [Google Scholar]
- Walworth, J.L.; Sumner, M.E. The diagnosis and recommendation integrated system (DRIS). Adv. Soil Sci. 1987, 6, 149–188. [Google Scholar]
- Nick, J.A. DRIS for Coffee Plants; USP/ESALQ: Piracicaba, Brazil, 1998. (In Portuguese) [Google Scholar]
- El-Rheem, K.M.A.; Khaled, S.M.; Zaghoul, S.M. Preliminary DRIS norms for evaluating the nutritional statue of sweet pepper crop. Aust. J. Basic Appl. Sci. 2012, 6, 661–664. [Google Scholar]
- Hernando, V.; Cadahía, C. El Análisis De Savia Como Índice De Fertilización; CSIC, Instituto de Edafología y Biología Vegetal: Madrid, Spain, 1973. [Google Scholar]
- MAPA. Métodos Oficiales de Análisis; Tomo III; Secretaría General Técnica del Ministerios de Agricultura, Pesca y Alimentación: Madrid, Spain, 1986. [Google Scholar]
- Ma, T.; Zuazaga, G. Micro-Kjeldahl Determination of Nitrogen. A new indicator and an improved rapid method. Ind. Eng. Chem. Anal. Ed. 1942, 14, 280–282. [Google Scholar] [CrossRef]
- Bhargava, B.S. Leaf analysis for nutrient diagnosis, recommendation and management in fruit crops. J. Ind. Soc. Soil Sci. 2002, 50, 352–373. [Google Scholar]
- García-Caparrós, P.; Llanderal, A.; Majsztrik, J.; Maksimovic, I.; Lao, M.T. Preliminary nutrient diagnosis norms and optimum ranges in potted ornamental plants grown under saline conditions. J. Plant Nutr. 2019, 42, 2805–2813. [Google Scholar] [CrossRef]
- Guzman, J.M. Nutritional Balance in Greenhouse Conditions: Correction and Improvement of Harvesting. Ph.D. Thesis, University of Granada, Granada, Spain, 1987. (In Spanish). [Google Scholar]
- Casas, A.; Casas, E. Soil-Water-Plant Analysis and Their Application in the Nutrition of Horticultural Crops in the Southeastern of Almeria; Caja Rural Almeria: Almeria, Spain, 1999. [Google Scholar]
- Benton Jones, J.J.; Wolf, B.; Mills, H.A. Plant Analysis Handbook; MicroMacro Publishing, Inc.: Athens, GA, USA, 1991; p. 213. [Google Scholar]
- Maynard, D.N.; Hochmuth, G.J. Knott’s Handbook for Vegetable Growers, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Caront, J.; Parent, L.E. Derivation and assessment of DRIS norms for greenhouse tomatoes. Can. J. Plant Sci. 1989, 69, 1027–1035. [Google Scholar] [CrossRef]
- English, J.E.; Barker, A.V. Ion interactions in Ca-efficient and Ca-inefficient tomato lines. J. Plant Nutr. 1987, 10, 857–869. [Google Scholar] [CrossRef]
- Segura, M.L.; Contreras, J.I.; Salinas, R.; Lao, M.T. Influence of salinity and fertilization level on greenhouse tomato yield and quality. Commun. Soil Sci. Plant Anal. 2009, 40, 485–497. [Google Scholar] [CrossRef]
- Tremblay, N.; Gasia, M.C.; Ferauge, M.T.; Gosselin, A.; Trudel, M.J. Influence of photosynthetic irradiance on nitrate reductase activity, nutrient uptake and partitioning in tomato plants. J. Plant Nutr. 1988, 11, 17–36. [Google Scholar] [CrossRef]
- Hermida, J.J.F.; Toro, M.C.H.; Guzman, M.; Cabrera, R.I. Determining nutrient diagnostic norms for greenhouse roses. HortScience 2013, 48, 1403–1410. [Google Scholar] [CrossRef] [Green Version]
- Noh-Medina, J.; Borges-Gómez, L.; Soria-Fregoso, M. Composición nutrimental de biomasa y tejidos conductores en chile habanero (Capsicum chinense Jacq.). Trop. Subtro. Agroeco. 2010, 12, 219–228. [Google Scholar]
- Contreras, J.I.; Galindo, P.; Catala, J.J.; Segura, M.L. Response of greenhouse pepper crop to fertilizer levels and different qualities of irrigation water. Acta Hortic. 2006, 203–206. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Contreras, J.I.; Segura, M.L.; Teresa Lao, M. Testing foliar nutritional changes in space and over time in greenhouse tomato. J. Plant Nutr. 2019, 42, 333–343. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Pérez-Alonso, J.; Contreras, J.I.; Segura, M.L.; Reca, J.; Lao, M.T. Approach to petiole sap nutritional diagnosis method by empirical model based on climatic and growth parameters. Agronomy 2020, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Marti, H.R.; Mills, H.A. Calcium uptake and concentration in bell pepper plants as influenced by nitrogen form and stages of development. J. Plant Nutr. 1991, 14, 1177–1185. [Google Scholar] [CrossRef]
- Betancourt, P.; Pierre, F. Extracción de macronutrientes por el cultivo de tomate (Solanum lycopersicum Mill. var. “Alba”) en casas de cultivo en Quíbor, estado Lara. Bioagro 2013, 25, 181–188. [Google Scholar]
- Fernández, M.T. Fósforo: Amigo o enemigo. ICIDCA. Sobre Los Deriv. De La Caña De Azúcar 2007, 41, 51–57. [Google Scholar]
- Lao, M.T. Fertigation Management in the Greenhouses from Almeria by Means of Suction Cups. Ph.D. Thesis, University of Almería, Almería, Spain, 2002. (In Spanish). [Google Scholar]
Norms | Mean | CV (%) | r |
---|---|---|---|
N/P | 13.44 | 23.58 | −0.44 * |
N/K | 1.23 | 41.40 | 0.31 * |
P/K | 0.09 | 41.48 | 0.33 * |
P/Ca | 0.11 | 57.02 | 0.28 * |
Ca/N | 0.84 | 36.28 | 0.32 * |
Ca/K | 1.10 | 68.22 | 0.24 * |
Ca/Mg | 2.37 | 31.05 | −0.27 * |
Mg/N | 0.37 | 35.01 | 0.38 * |
Mg/P | 4.95 | 41.79 | 0.29 * |
Mg/K | 0.47 | 64.41 | 0.28 * |
FL | FT | FD | HV | |||||
---|---|---|---|---|---|---|---|---|
Norms | Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | Mean | CV (%) |
N/P | 17.78 a | 26.44 | 15.29 b | 36.30 | 18.20 a | 30.34 | 13.44 c | 23.58 |
N/K | 1.23 a | 19.22 | 1.21 a | 37.14 | 1.30 a | 33.97 | 1.23 a | 41.40 |
P/K | 0.07 a | 33.51 | 0.09 a | 40.34 | 0.08 a | 53.74 | 0.09 a | 41.48 |
P/Ca | 0.27 a | 44.12 | 0.29 a | 49.13 | 0.17 b | 38.76 | 0.11 c | 57.02 |
Ca/N | 0.26 c | 32.67 | 0.28 c | 34.59 | 0.37 b | 24.85 | 0.84 a | 36.28 |
Ca/K | 0.32 c | 33.82 | 0.33 c | 42.31 | 0.47 b | 36.30 | 1.10 a | 68.22 |
Ca/Mg | 2.14 a | 38.16 | 1.79 b | 32.11 | 2.20 a | 39.53 | 2.37 a | 31.05 |
Mg/N | 0.13 c | 34.15 | 0.16 cb | 31.57 | 0.18 b | 31.57 | 0.37 a | 35.01 |
Mg/P | 2.36 c | 44.90 | 2.49 c | 48.33 | 3.32 b | 45.64 | 4.95 a | 41.79 |
Mg/K | 0.16 c | 35.20 | 0.20 cb | 50.62 | 0.24 b | 55.26 | 0.47 a | 64.41 |
N | P | K | Ca | Mg | |
---|---|---|---|---|---|
DRIS sufficiency | 34–56 | 1.9–4.3 | 30–51 | 12–33 | 4–15 |
Guzmán [21] | 36–37 | 3.2–3.5 | 31–33 | 31–33 | 5.6–6.1 |
Casas and Casas [22] | 33–50 | 3.0–6.0 | 45–55 | 15–35 | 7.5–13 |
Benton et al. [23] | 35–50 | 1.8–7.0 | 30–45 | 10–28 | 2.6–10.1 |
N | P | K | Ca | Mg | ||
---|---|---|---|---|---|---|
FL | DRIS sufficiency | 47–64 | 2.2–4.4 | 38–55 | 8–21 | 4–10 |
Cadahia [10] | 54–67 | 1.5–5.0 | 33–48 | 12–23 | 6–14 | |
Maynard and Hochmuth [24] | 30–50 | 3–5 | 25–50 | 9–15 | 3–5 | |
FT | DRIS sufficiency | 45–53 | 2.5–4.6 | 34–53 | 9–18 | 5–10 |
Cadahia [10] | 50–57 | 2.1–4.0 | 31–50 | 14–24 | 7–11 | |
Maynard and Hochmuth [24] | ||||||
FD | DRIS sufficiency | 41–52 | 1.6–4.1 | 20–57 | 9–25 | 4–13 |
Cadahia [10] | 44–52 | 2–4 | 20–49 | 17–30 | 6–11 | |
Maynard and Hochmuth [24] | 29–40 | 2.5–4.0 | 25–40 | 10–15 | 3–4 | |
HV | DRIS sufficiency | 28–40 | 2.0–3.6 | 17–40 | 20–44 | 7–19 |
Cadahia [10] | 29–37 | 1.6–3.0 | 21–40 | 29–42 | 8–19 | |
Maynard and Hochmuth [24] | 25–30 | 2–4 | 20–30 | 10–15 | 3.0–4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanderal, A.; García-Caparrós, P.; Lao, M.T.; Segura, M.L. DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain. Agronomy 2021, 11, 837. https://doi.org/10.3390/agronomy11050837
Llanderal A, García-Caparrós P, Lao MT, Segura ML. DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain. Agronomy. 2021; 11(5):837. https://doi.org/10.3390/agronomy11050837
Chicago/Turabian StyleLlanderal, Alfonso, Pedro García-Caparrós, María Teresa Lao, and Maria Luz Segura. 2021. "DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain" Agronomy 11, no. 5: 837. https://doi.org/10.3390/agronomy11050837
APA StyleLlanderal, A., García-Caparrós, P., Lao, M. T., & Segura, M. L. (2021). DRIS Norms and Sufficiency Ranges for Pepper Grown under Greenhouses Conditions in the Southeast of Spain. Agronomy, 11(5), 837. https://doi.org/10.3390/agronomy11050837