Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. C4 Grasses
2.2. Anaerobic Digestion
2.3. Hot Water Pretreatment and Enzymatic Hydrolysis
2.4. Mass, Carbon, and Energy Calculations
2.5. Mass, Carbon, and Energy Yields by Harvest Area
3. Results and Discussion
3.1. Washing Losses, Final Fuels, and Postprocess Biomass from Field
3.2. Overall Mass, Carbon, and Energy per Hectare Across Crops and Pathways
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Anderson-Teixeira, K.J.; Masters, M.D.; Black, C.K.; Zeri, M.; Hussain, M.Z.; Bernacchi, C.J.; DeLucia, E.H. Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops. Ecosystems 2013, 16, 508–520. [Google Scholar] [CrossRef]
- Sumiyoshi, Y.; Crow, S.E.; Litton, C.M.; Deenik, J.L.; Taylor, A.D.; Turano, B.; Ogoshi, R. Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics. GCB Bioenergy 2017, 9, 694–709. [Google Scholar] [CrossRef]
- Crow, S.E.; Deem, L.M.; Wells, J.M.; Sierra, C.A. Belowground carbon dynamics in tropical perennial C4 grass agroecosystems. Front. Environ. Sci. 2018, 6, 18. [Google Scholar] [CrossRef]
- Crow, S.E.; Wells, J.M.; Sierra, C.A.; Youkhana, A.H.; Ogoshi, R.M.; Richardson, D.; Tallamy Glazer, C.; Meki, M.N.; Kiniry, J.R. Carbon flow through energycane agroecosystems established post-intensive agriculture. GCB Bioenergy 2020, 12, 806–817. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef] [Green Version]
- Morgan, T.J.; Youkhana, A.; Turn, S.Q.; Ogoshi, R.; Garcia-Pérez, M. Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawai’i and Tropical Regions. Energy Fuels 2019, 33, 2699–2762. [Google Scholar] [CrossRef]
- Wells, J.M.; Crow, S.E.; Ogoshi, R.; Turano, B.; Hashimoto, A. Optimizing feedstock selection for biofuel production in Hawaii: CuO oxidative lignin products in C4 grasses. Biomass Bioenergy 2015, 83, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Surendra, K.; Ogoshi, R.; Zaleski, H.M.; Hashimoto, A.G.; Khanal, S.K. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresour. Technol. 2018, 251, 218–229. [Google Scholar] [CrossRef] [PubMed]
- State of Hawaii; U.S. Department of Energy. Hawaii Clean Energy Initiative. Available online: http://www.hawaiicleanenergyinitiative.org (accessed on 12 March 2017).
- State of Hawaii Office of Planning. Feasibility and Implications of Establishing a Carbon Offset Program for the State of Hawaii; State of Hawaii Office of Planning: Honolulu, HI, USA, 2019. [Google Scholar]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science 2008, 319, 1238. [Google Scholar] [CrossRef]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Youkhana, A.H.; Ogoshi, R.M.; Kiniry, J.R.; Meki, M.N.; Nakahata, M.H.; Crow, S.E. Allometric Models for Predicting Aboveground Biomass and Carbon Stock of Tropical Perennial C4 Grasses in Hawaii. Front. Plant Sci. 2017, 8, 650. [Google Scholar] [CrossRef] [Green Version]
- Vanessa, S.S.; Sebastian, M.; Kerstin, S.; Jens, H.; Sebastian, W.; Klaus, M.; Kurt, M.; Wilhelm, C.; Simone, G.-H. Biomass and Biogas Yield of Maize (Zea mays L.) Grown under Artificial Shading. Agriculture 2018, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Venuto, B.; Kindiger, B. Forage and biomass feedstock production from hybrid forage sorghum and sorghum–sudangrass hybrids. Grassl. Sci. 2008, 54, 189–196. [Google Scholar] [CrossRef]
- Surendra, K.C.; Khanal, S.K. Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop. Bioresour. Technol. 2015, 178, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Mok, W.S.L.; Antal, M.J. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res. 1992, 31, 1157–1161. [Google Scholar] [CrossRef]
- Laser, M.; Schulman, D.; Allen, S.G.; Lichwa, J.; Antal, M.J.; Lynd, L.R. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour. Technol. 2002, 81, 33–44. [Google Scholar] [CrossRef]
- Mosier, N.; Hendrickson, R.; Ho, N.; Sedlak, M.; Ladisch, M.R. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 2005, 96, 1986–1993. [Google Scholar] [CrossRef]
- Pérez, J.A.; Ballesteros, I.; Ballesteros, M.; Sáez, F.; Negro, M.J.; Manzanares, P. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 2008, 87, 3640–3647. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Wells, J.M.; Drielak, E.; Surendra, K.C.; Kumar Khanal, S. Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresour. Technol. 2020, 300, 122593. [Google Scholar] [CrossRef] [PubMed]
- Bhagia, S.; Dhir, R.; Kumar, R.; Wyman, C.E. Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Loadings. Sci. Rep. 2018, 8, 1350. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Negro, M.J.; Ballesteros, M. Effect of endoxylanase and α-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour. Technol. 2011, 102, 4552–4558. [Google Scholar] [CrossRef]
- Kumar, R.; Hu, F.; Sannigrahi, P.; Jung, S.; Ragauskas, A.J.; Wyman, C.E. Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol. Bioeng. 2013, 110, 737–753. [Google Scholar] [CrossRef]
- Fu, N.; Peiris, P.; Markham, J.; Bavor, J. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzym. Microb. Technol. 2009, 45, 210–217. [Google Scholar] [CrossRef]
- Pereira, R.D.; Badino, A.C.; Cruz, A.J.G. Assessing the Performance of Industrial Ethanol Fermentation Unit Using Neural Networks. In Computer Aided Chemical Engineering; Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 175–180. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 2021. [Google Scholar] [CrossRef]
- Medrano-García, J.D.; Ruiz-Femenia, R.; Caballero, J.A. Revisiting Classic Acetic Acid Synthesis: Optimal Hydrogen Consumption and Carbon Dioxide Utilization. In Computer Aided Chemical Engineering; Kiss, A.A., Zondervan, E., Lakerveld, R., Özkan, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 145–150. [Google Scholar]
- Cayuela, M.L.; Oenema, O.; Kuikman, P.J.; Bakker, R.R.; Van Groenigen, J.W. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GCB Bioenergy 2010, 2, 201–213. [Google Scholar] [CrossRef]
- Kim, D. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules 2018, 23, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzek, T.W. Thermodynamics of the Corn-Ethanol Biofuel Cycle. Crit. Rev. Plant Sci. 2004, 23, 519–567. [Google Scholar] [CrossRef]
- Patzek, T.W.; Pimentel, D. Thermodynamics of Energy Production from Biomass. Crit. Rev. Plant Sci. 2005, 24, 327–364. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Fivga, A.; Speranza, L.G.; Branco, C.M.; Ouadi, M.; Hornung, A. A review on the current state of the art for the production of advanced liquid biofuels. Aims Energy 2019, 7, 46–76. [Google Scholar] [CrossRef]
C4 Grasses | Taxonomy | Variety | Yield (Mg ha−1 Year−1) |
---|---|---|---|
Maize | Zea mays | 21.1 a | |
Sorghum | Sorghum bicolor | 21.3 b | |
Sudex | Sorghum bicolor x S. bicolor var. sudanese | 26.4 c | |
Napiergrass | Pennisetum purpureum | 255 | 19.8 |
Green | 24.2 | ||
Purple | 19.3 | ||
Energycane | Saccharum officinarum x Saccharum robustum | EC6081 | 38.4 |
EC6136 | 29.2 | ||
EC9271 | 31.5 | ||
Sugarcane | Saccharum officinarum | SC3792 | 24.6 |
SC5867 | 25.5 | ||
SC7052 | 35.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wells, J.M.; Crow, S.E.; Khanal, S.K.; Turn, S.; Hashimoto, A.; Kiniry, J.; Meki, N. Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels. Agronomy 2021, 11, 838. https://doi.org/10.3390/agronomy11050838
Wells JM, Crow SE, Khanal SK, Turn S, Hashimoto A, Kiniry J, Meki N. Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels. Agronomy. 2021; 11(5):838. https://doi.org/10.3390/agronomy11050838
Chicago/Turabian StyleWells, Jon M., Susan E. Crow, Samir Kumar Khanal, Scott Turn, Andrew Hashimoto, Jim Kiniry, and Norman Meki. 2021. "Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels" Agronomy 11, no. 5: 838. https://doi.org/10.3390/agronomy11050838
APA StyleWells, J. M., Crow, S. E., Khanal, S. K., Turn, S., Hashimoto, A., Kiniry, J., & Meki, N. (2021). Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels. Agronomy, 11(5), 838. https://doi.org/10.3390/agronomy11050838