Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experiment Design
2.2. Osmotic Adjustment Substances, Enzyme Activities, and Salt Damage Score
2.3. Cucumber Seedling Growth and Na+, Ca2+, and K+ Distributions
2.4. Principal Component Analysis
2.5. Statistical Analysis
3. Results
3.1. Cucumber Seedling Growth
3.2. Enzyme Activities and Osmotic Adjustment Substances
3.3. Injury Degree and Salt Damage Score
3.4. Na+, Ca2+, and K+ Content Distribution in Plants
3.5. K+/Na+ and Ca2+/Na+ in Various Parts of Cucumber Seedlings
3.6. PCA
4. Discussion
4.1. Effects of Grafting and Ca2+ on Oxidization System
4.2. Effects of Grafting and Ca2+ on Salt Damage Score
4.3. Effects of Grafting and Ca2+ on Ion Absorption and Distribution
4.4. Effects of Grafting and Ca2+ on Plant Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Türkan, I.; Demiral, T. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Maximova, E.; Fuggi, A.; Carillo, P. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. Front. Plant Sci. 2016, 7, 366–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butcher, K.; Wick, A.F.; Desutter, T.; Chatterjee, A.; Harmon, J. Soil salinity: A threat to global food security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Feng, L.; Xu, W.; Sun, N.; Mandal, S.; Wang, H.; Geng, Z. Efficient improvement of soil salinization through phytoremediation induced by chemical remediation in extreme arid land northwest China. Int. J. Phytoremediat. 2019, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.F.; Guo, S.R.; Jiao, Y.S.; Zhang, R.H. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedling under NaCl stress. Front. Agric. China 2007, 1, 308–314. [Google Scholar] [CrossRef]
- Bot, P.J.; Abbasi, G.H.; Akhtar, J.; Anwar-Ul-Haq, M.; Malik, W. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pak. J. Bot. 2015, 46, 135–146. [Google Scholar]
- Petronia, C.; Chiara, C.; Veronica, D.M.; Carmen, A.; Stefania, D.P.; Youssef, R. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. Trained to different canopy shapes. Agric. Water Manag. 2018, 212, 12–22. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Salahshoor, F.; Kazemi, F. Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L. Plant Soil Environ. 2016, 62, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Wang, J.Z.; Chen, X.H. Effect of durative low temprature on morphological and physiological characteristics of cucumber seedling. North. Hortic. 2010, 16, 1–3. [Google Scholar]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [Google Scholar] [CrossRef]
- Deb, S.K.; Sharma, P.; Shukla, M.K.; Sammis, T.W.; Ashigh, J. Drip-irrigated Pecan Seedlings Response to Irrigation Water Salinity. Hortscience 2013, 48, 1548–1555. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Aroca, R.; Azcon, R.; Ruiz-Lozano, J.M. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 2016, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.M.; Oliveira, M.M.; Saibo, N.J. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017, 40, 326–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saied, A.S.; Keutgen, A.J.; Noga, G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci. Hortic. 2005, 103, 289–303. [Google Scholar] [CrossRef]
- Youssef, R.; Kyriacou, M.C.; Giuseppe, C. Vegetable Grafting: A Toolbox for Securing Yield Stability under Multiple Stress Conditions. Front. Plant Sci. 2017, 8, 2255. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Bie, Z.; He, S.; Hua, B.; Zhen, A.; Liu, Z. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp. Bot. 2010, 69, 32–38. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Leonardi, C.; Bie, Z. Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 2010, 127, 147–155. [Google Scholar] [CrossRef]
- Savvas, D.; Öztekin, G.B.; Tepecik, M.; Ropokis, A.; Tüzel, Y.; Ntatsi, G.; Schwarz, D. Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. J. Hortic. Sci. Biotechnol. 2017, 92, 294–302. [Google Scholar] [CrossRef]
- Plaut, Z.; Edelstein, M.; Ben-Hur, M. Overcoming salinity barriers to crop production using traditional methods. Crit. Rev. Plant Sci. 2013, 32, 250–291. [Google Scholar] [CrossRef]
- Cha-Um, S.; Singh, H.P.; Samphumphuang, T.; Kirdmanee, C. Calcium-alleviated salt tolerance in indica rice (‘Oryza sativa’ L. spp. ‘indica’): Physiological and morphological changes. Aust. J. Crop Sci. 2012, 6, 176–182. [Google Scholar]
- Liu, G. Role of nitric oxide and calcium signaling in oxalate-induced resistance of cucumber leaves to Pseudoperonospora cubensis. Acta Bot. Boreali Occident. Sin. 2019, 32, 969–974. [Google Scholar]
- Roy, P.R.; Tahjib-Ul-Arif, M.; Polash, M.A.S.; Hossen, M.Z.; Hossain, M.A. Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol. Mol. Biol. Plants 2019, 25, 611–624. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef]
- Tang, R.J.; Zhao, F.G.; Garcia, V.J.; Kleist, T.J.; Yang, L.; Zhang, H.X.; Luan, S. Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, 3134–3139. [Google Scholar] [CrossRef] [Green Version]
- Lei, B.; Huang, Y.; Xie, J.J.; Liu, Z.X.; Zhen, A.; Fan, M.L.; Bie, Z.L. Increased cucumber salt tolerance by grafting on pumpkin rootstock and after application of calcium. Biol. Plant. 2013, 58, 179–184. [Google Scholar] [CrossRef]
- Moez, H.; Chantal, E.; Mariama, N.; Laurent, L.; Khaled, M. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front. Plant Sci. 2016, 7, 1787. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, R. Effects of salinity on growth and concentrations of sodium, potassium, and calcium in grafted cucumber seedlings. Acta Hortic. 2008, 771, 217–224. [Google Scholar] [CrossRef]
- Alizadeh, M.; Singh, S.K.; Patel, V.B.; Bhattacharya, R.C.; Yadav, B.P. In vitro responses of grape rootstocks to NaCl. Biol. Plant. 2010, 54, 381–385. [Google Scholar] [CrossRef]
- Feng, G.J. Plant Physiology Experiment Guide, 3rd ed.; Higher Education Press: Beijing, China, 2006; pp. 87–92. [Google Scholar]
- Zhong, X.; Lin, L.; Liang, H. The improvement of electric conductivity method-the measurement of hurt degree of plant tissue under stress. J. Biol. 2003, 20, 45–63. [Google Scholar]
- Kingsbury, R.W.; Epstein, E.; Pearcy, R.W. Physiological responses to salinity in selected lines of wheat. Plant Physiol. 1984, 74, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Schaffert, R.E.; Santos, H.L.D.; Pitta, G.V.E.; Filho, A.F.D.C.B. Growth and Nutrient Uptake Parameters in Sorghum as Influenced by Aluminum. Agron. J. 1993, 85, 1068–1074. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Chen, Z.; Hu, Z.; Leng, P. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress. Plant Soil Environ. 2018, 36, 282–290. [Google Scholar]
- Chaturvedi, K.; Sharma, N.; Yadav, S.K. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 2019, 133, 284–293. [Google Scholar] [CrossRef]
- Albacete, A.; Martinez-Andujar, C.; Ghanem, M.E.; Acosta, M.; Sanchez-Bravo, J.; Asins, M.J.; Cuartero, J.; Lutts, S.; Dodd, I.C.; Perez-Alfocea, F. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ. 2010, 32, 928–938. [Google Scholar] [CrossRef]
- Huang, W.; Liao, S.; Lv, H.; Khaldun, A.B.M.; Wang, Y. Characterization of the growth and fruit quality of tomato grafted on a woody medicinal plant, Lycium chinense. Sci. Hortic. 2015, 197, 447–453. [Google Scholar] [CrossRef]
- Brookes, P.S. Calcium, ATP and ROS: A mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004, 287, C817–C833. [Google Scholar] [CrossRef]
- Tian, X.; He, M.; Wang, Z.; Zhang, J.; Song, Y.; He, Z.; Dong, Y. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 2015, 77, 343–356. [Google Scholar] [CrossRef]
- Fan, H.F.; Guo, S.R.; Jiao, Y.S.; Zhang, R.H.; Li, J. Ameliorating effects of exogenous Ca2+ on foxtail millet seedlings under salt stress. Funct. Plant Biol. 2019, 46, 407–416. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Singer, J.W.; Fessehaie, A.; Krebs, S.L.; Arora, R. Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: A comparison of photoprotective strategies in overwintering plants. Plant Sci. 2009, 177, 607–617. [Google Scholar] [CrossRef]
- Li, L.; Zhu, T.; Liu, J.; Zhao, C.; Li, L.; Chen, M. An orthogonal test of the effect of NO3−, PO43−, K+, and Ca2+ on the growth and ion absorption of Elaeagnus angustifolia L. seedlings under salt stress. Acta Physiol. Plant. 2019, 41, 1–11. [Google Scholar] [CrossRef]
- Chen, X.J.; Chen, G.; Chang, X.C.; Tursun, Z.; Jian-Ping, L.I.; Hao, X.Y.; Gao, S.Q.; Huang, Q.S. Physiological Response Mechanism of Corn Seedlings under Salt. Acta Agric. Zhejiangensis 2020, 32, 1141–1148. [Google Scholar] [CrossRef]
- Fan, M.; Bie, Z.; Krumbein, A.; Schwarz, D. Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Sci. Hortic. 2011, 130, 615–623. [Google Scholar] [CrossRef]
- Grigore, M.N.; Boscaiu, M.; Llinares, J.; Vicente, O. Mitigation of Salt Stress-Induced Inhibition of Plantago crassifolia Reproductive Development by Supplemental Calcium or Magnesium. Not. Bot. Horti Agrobot. Cluj Napoca 2012, 40, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Saeidi-Sar, S.; Abbaspour, H.; Afshari, H.; Yaghoobi, S.R. Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol. Plant. 2013, 35, 667–677. [Google Scholar] [CrossRef]
- Liu, J.; Niu, Y.; Zhang, J.; Zhou, Y.; Ma, Z.; Huang, X. Ca2+ channels and Ca2+ signals involved in abiotic stress responses in plant cells: Recent advances. Plant Cell Tissue Organ Cult. 2018, 132, 413–424. [Google Scholar] [CrossRef]
- Qian, H.F.; Peng, X.F.; Han, X.; Ren, J.; Zhan, K.Y.; Zhu, M. The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. Russ. J. Plant Physiol. 2014, 61, 467–475. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Cheng, Y.; Zhou, T.; Duan, X.; Gong, M.; Zou, Z. Generation of reactive oxygen species and their functions and deleterious effects in plants. Acta Bot. Boreali Occident. Sin. 2014, 34, 1916–1926. [Google Scholar]
- Huang, Y.; Bie, Z.; Liu, P.; Niu, M.; Zhen, A.; Liu, Z.; Lei, B.; Gu, D.; Lu, C.; Wang, B. Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Sci. Hortic. 2013, 149, 47–54. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.; Chun-Mei, H.; Liu, Z.; Wei, G. Effects of Salt Stress on Biomass Formation and Ion Partition in Hydroponicaly—Cultured Grafted Cucumber. Acta Bot. Boreali Occident. Sin. 2006, 26, 2500–2505. [Google Scholar]
- Zhu, S.; Guo, S. Effects of grafting on K+, Na+ contents and distribution of watermelon (Citrullus vulgaris Schrad.) seedlings under salt stress. Acta Hortic. Sin. 2009, 36, 814–820. [Google Scholar] [CrossRef]
- Anisur, R.; Kamrun, N.; Mirza, H.; Masayuki, F. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. Front. Plant Sci. 2016, 7, 609. [Google Scholar] [CrossRef] [Green Version]
- Cuin, T.A.; Betts, S.A.; Chalmandrier, R.; Shabala, S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J. Exp. Bot. 2008, 59, 2697–2706. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- Gong, B.; Li, X.; Vandenlangenberg, K.M.; Wen, D.; Sun, S.; Wei, M.; Li, Y.; Yang, F.; Shi, Q.; Wang, X. Overexpression of S-adenosyl-l-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol. J. 2014, 12, 694–708. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.P.; Ye, J.; Gao, W.; Qiao, Y.J.; Dai, C.J.; Zhao, Y.X.; Shi, S.J. Effects of exogenous Ca2+ on stomatal traits, photosynthesis, and biomass of maize seedings under salt stress. Chin. J. Appl. Ecol. 2019, 30, 923–930. [Google Scholar] [CrossRef]
Characteristics | G | Ca2+ | G × Ca2+ |
---|---|---|---|
Osmotic adjustment substance and enzyme activity-related parameters | |||
Pro | 55,759.14 ** | 1620.07 ** | 4880.21 * |
MDA | 17.86 ** | 367.62 ** | 78.03 ** |
Soluble sugar | 31.27 ** | 143.01 ** | 85.71 ** |
SOD | 6861.4 ** | 4167.56 ** | 2808.94 ** |
POD | 83.92 ** | 237.95 ** | 100.22 ** |
Relative electrical conductivity | 54,472.57 ** | 400.83 ** | 390.81 ** |
Injury degree | 26,425.11 ** | 1195.94 ** | 1164.35 ** |
Salt damage score | 47.87 ** | 34.58 ** | 5.35 ** |
Ion distribution-related parameters | |||
Na+ of pumpkin root | 6631.15 ** | 50.09 ** | 50.09 ** |
Na+ of pumpkin stem | 477.15 ** | 10.55 ** | 10.55 ** |
Na+ of cucumber stem | 49.33 ** | 16.01 ** | 14.51 ** |
Na+ of cucumber leaf | 38.57 ** | 40.03 ** | 20.16 ** |
K+ of pumpkin root | 799.34 ** | 27.21 ** | 27.21 ** |
K+ of pumpkin stem | 1754.35 ** | 133.78 ** | 133.78 ** |
K+ of cucumber stem | 203.16 ** | 39.21 ** | 25.09 ** |
K+ of cucumber leaf | 23.56 ** | 25.26 ** | 9.11 ** |
Ca2+ of pumpkin root | 60.11 ** | 2.34 ns | 2.34 ns |
Ca2+ of pumpkin stem | 771.85 ** | 20.22 ** | 20.22 ** |
Ca2+ of cucumber stem | 23.75 ** | 11.11 ** | 5.51 * |
Ca2+ of cucumber leaf | 4.25 * | 2.47 * | 4.56 * |
Na+ of cucumber root | 176.38 ** | 2.48 ** | 6.1 ** |
K+ of cucumber root | 184.52 ** | 2.49 * | 4.58 * |
Ca2+ of cucumber root | 51.3 ** | 2.50 ns | 2.11 ns |
K+/Na+ of cucumber leaf | 148.21 ** | 7.44 ** | 4.56 ** |
K+/Ca2+ of cucumber leaf | 127.59 ** | 5.66 * | 3.84 * |
Plant growth-related parameters | |||
Shoot biomass | 82.36 ** | 73.21 ** | 26.85 ** |
Root biomass | 19.29 ** | 2.51 ns | 2.92 ns |
Plant height relative growth rate | 520.42 ** | 182.97 ** | 329.32 ** |
Stem volume relative growth rate | 774.35 ** | 989.66 ** | 865.34 ** |
Ion Ratio | Treatment | Pumpkin Root | Pumpkin Stem | Cucumber Root | Cucumber Stem | Cucumber Leaf |
---|---|---|---|---|---|---|
CK | 0.74 ± 0.02 a | 3.35 ± 0.02 a | 11.46 ± 0.28 a | 15 ± 0.49 a | ||
NG | 1.36 ± 0.02 a | 2.41 ± 0.01 d | 1.37 ± 0.01 d | |||
0 | 0.3 ± 0.02b c | 0.8 ± 0.01 c | 0.67 ± 0.01 e | 0.77 ± 0.01d ef | ||
K+/Na+ | 5 | 0.16 ± 0.12 c | 0.42 ± 0.29 cd | 0.67 ± 0.46 e | 0.58 ± 0.39 de | |
10 | 0.26 ± 0.01 c | 0.45 ± 0.02 d | 3.36 ± 0.08 c | 2.07 ± 0.04 c | ||
15 | 0.27 ± 0.01 c | 0.44 ± 0.01 d | 0.51 ± 0.01 e | 0.47 ± 0.01 ef | ||
20 | 0.79 ± 0.01 a | 0.05 ± 0.01 e | 2.21 ± 0.02 d | 0.2 ± 0.01 f | ||
30 | 0.42 ± 0.01 b | 1.61 ± 0.01 b | 4.76 ± 0.09 b | 4.21 ± 0.06 b | ||
CK | 0.29 ± 0.01 c | 0.45 ± 0.01 a | 1.99 ± 0.05 a | 12.83 ± 1.06 a | ||
NG | 1.78 ± 0.02 a | 0.5 ± 0.06 c | 1.5 ± 0.05 d | |||
0 | 0.23 ± 0.01 d | 0.16 ± 0.57 a | 0.23 ± 0.03 d | 0.77 ± 0.04 d | ||
Ca2+/Na+ | 5 | 0.11 ± 0 f | 0.14 ± 0.01 a | 0.26 ± 0.03 d | 0.97 ± 0.04 d | |
10 | 0.18 ± 0.01 e | 0.51 ± 0.01 a | 0.46 ± 0.04 c | 3.88 ± 0.05 c | ||
15 | 0.7 ± 0.01 a | 0.17 ± 0.01 a | 0.32 ± 0.02 d | 0.62 ± 0.01 d | ||
20 | 0.35 ± 0.02 b | 0.26 ± 0.01 a | 0.73 ± 0.03 b | 1.5 ± 0.01 d | ||
30 | 0.23 ± 0.01 d | 0.4 ± 0.01 a | 1.9 ± 0.06 a | 8.48 ± 0.02 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lan, Z.; Tian, L.; Li, J.; Yang, G.; Gao, Y.; Zhang, X. Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings. Agronomy 2021, 11, 848. https://doi.org/10.3390/agronomy11050848
Wang X, Lan Z, Tian L, Li J, Yang G, Gao Y, Zhang X. Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings. Agronomy. 2021; 11(5):848. https://doi.org/10.3390/agronomy11050848
Chicago/Turabian StyleWang, Xiaodong, Zhiqian Lan, Lei Tian, Jianshe Li, Guankai Yang, Yanming Gao, and Xueyan Zhang. 2021. "Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings" Agronomy 11, no. 5: 848. https://doi.org/10.3390/agronomy11050848
APA StyleWang, X., Lan, Z., Tian, L., Li, J., Yang, G., Gao, Y., & Zhang, X. (2021). Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings. Agronomy, 11(5), 848. https://doi.org/10.3390/agronomy11050848