Assessment of Maize Growth and Development with High- and Medium-Resolution Remote Sensing Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. UAV Imagery
2.4. Satellite Data Acquisition and Preprocessing
2.5. Calculation of the Vegetation Indices and Parameters
2.6. Statistical Analysis
3. Results
3.1. Field Data Sampling
3.2. Relationships between the Predictors, LAI, and DAGB
3.3. Relationships between LAI and DAGB and the Predictor Variables Obtained from Sentinel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAOSTAT. Agricultural Statistical Data of Food and Agricultural Organization of the United Nations. Available online: http://www.fao.org/faostat/es/#data (accessed on 15 January 2021).
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Respuesta del Rendimiento de los Cultivos al Agua; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; Volume 66, ISBN 9789253085644. [Google Scholar]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 328–830. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and machine learning based refinement of a satellite-driven vegetation index for precision agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef]
- Chakhar, A.; Ortega-Terol, D.; Hernández-López, D.; Ballesteros, R.; Ortega, J.F.; Moreno, M.A. Assessing the accuracy of multiple classification algorithms for crop classification using landsat-8 and sentinel-2 data. Remote Sens. 2020, 12, 1735. [Google Scholar] [CrossRef]
- Xu, D. Compare NDVI Extracted from Landsat 8 Imagery with that from Landsat 7 Imagery. Am. J. Remote Sens. 2014, 2, 10. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Helder, D.; Morfitt, R.; Choate, M.J.; Merchant, J.W.; Bulley, H. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sens. Environ. 2001, 78, 55–70. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 2009, 13, 95–120. [Google Scholar] [CrossRef]
- Venancio, L.P.; Mantovani, E.C.; do Amaral, C.H.; Usher Neale, C.M.; Gonçalves, I.Z.; Filgueiras, R.; Campos, I. Forecasting corn yield at the farm level in Brazil based on the FAO-66 approach and soil-adjusted vegetation index (SAVI). Agric. Water Manag. 2019, 225, 105779. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Campo, A.; Moreno, M.A. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the spad ofwinter wheat in the reviving stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef]
- Del-Campo-Sanchez, A.; Ballesteros, R.; Hernandez-Lopez, D.; Fernando Ortega, J.; Moreno, M.A. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. PLoS ONE 2019, 14, 1–20. [Google Scholar] [CrossRef]
- Chen, A.; Orlov-Levin, V.; Meron, M. Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management. Agric. Water Manag. 2019. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; Sousa, J.J. Multi-temporal vineyard monitoring through UAV-based RGB imagery. Remote Sens. 2018, 10, 1907. [Google Scholar] [CrossRef]
- Santana, L.S.; Santos, L.M.; Maciel, D.A.; Barata, R.A.P.; Reynaldo, É.F.; Rossi, G. Vegetative vigor of maize crop obtained through vegetation indexes in orbital and aerial sensors images. Rev. Bras. Eng. Biossistemas 2019, 13, 195–206. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426. [Google Scholar] [CrossRef]
- Lukas, V.; Novák, J.; Neudert, L.; Svobodova, I.; Rodriguez-Moreno, F.; Edrees, M.; Kren, J. The combination of UAV survey and Landsat imagery for monitoring of crop vigor in precision agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 8. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017. [Google Scholar] [CrossRef]
- Soil Survey Staff; Natural Resources Conservation Service; U.S. Department Of Agriculture. Claves para la Taxonomía de Suelos; USDA United States Department Agriculture: Washington, DC, USA, 2014; ISBN 0926487221.
- IGN España. Mapas Edafológicos. 2005. Available online: https://www.ign.es/web/catalogo-cartoteca/resources/html/030769.html (accessed on 15 January 2021).
- Sevacherian, V.; Stern, V.M.; Mueller, A.J. Heat Accumulation for Timing Lygus Control Measures in a Safflower-Cotton Complex. J. Econ. Entomol. 1977, 70, 399–402. [Google Scholar] [CrossRef]
- Ballesteros, R.; Moreno, M.A.; Ortega, J.F. Calibration and validation of thermal requirement models for characterizing phenological stages. Ital. J. Agrometeorol. 2015, 3, 47–62. [Google Scholar]
- Barroso, F.R. Imágenes Aéreas de Muy Alta Resolución para la Caracterización del Maíz (Zea mays L.) de Regadío en una Zona Semiárida. Ph.D. Thesis, Castilla-La Mancha University, Albacete, Spain, 2017. [Google Scholar]
- Ballesteros, R.; Moreno, M.A.; Ortega, F. 47-62 ballesteros: Layout 1. Ital. J. Agrometeorol. Ital. Agrometeorol. 2015, 3, 47–62. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph; Federal Biological Research Centre of Agriculture and Forest: Braunschweig, Germany, 2001. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Hernandez-Lopez, D.; Felipe-Garcia, B.; Gonzalez-Aguilera, D.; Arias-Perez, B. An automatic approach to UAV flight planning and control for photogrammetric applications: A test case in the asturias region (Spain). Photogramm. Eng. Remote Sens. 2013, 79, 87–98. [Google Scholar] [CrossRef]
- Ribeiro-Gomes, K.; Hernandez-Lopez, D.; Ballesteros, R.; Moreno, M.A. Approximate georeferencing and automatic blurred image detection to reduce the costs of UAV use in environmental and agricultural applications. Biosyst. Eng. 2016, 151, 308–327. [Google Scholar] [CrossRef]
- Ortega-Terol, D.; Hernandez-Lopez, D.; Ballesteros, R.; Gonzalez-Aguilera, D. Automatic hotspot and sun glint detection in UAV multispectral images. Sensors 2017, 17, 2352. [Google Scholar] [CrossRef] [PubMed]
- United States Geological Survey EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 7 February 2021).
- Copernicus. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 1 January 2021).
- European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Rouse, J. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; National Aaeronautics and Space Administration: Washington, DC, USA, 1972.
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. Am. Soc. Agric. Eng. 1995. [Google Scholar] [CrossRef]
- Córcoles, J.I.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013. [Google Scholar] [CrossRef]
- Huang, C.; Townshend, J.R.G. A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover. Int. J. Remote Sens. 2003, 24, 75–90. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crop. Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
Season | Tmin | TMAX | P | ETo |
---|---|---|---|---|
2011 | 9.8 | 33.3 | 215.8 | 921.0 |
2012 | 9.2 | 33.8 | 311.6 | 899.9 |
2015 | 9.6 | 36.2 | 219.5 | 954.1 |
2016 | 7.7 | 33.6 | 175.3 | 995.5 |
Annual mean | 9.1 | 34.2 | 230.6 | 942.6 |
Field A (2011) | Field A (2012) | Field B (2015) | Field C (2016) | ||||
---|---|---|---|---|---|---|---|
L5 | 9 April 2011 | L7 | 10 April 2012 | L8 | 6 May 2015 | S2A | 1 May 2016 |
L5 | 11 May 2011 | L7 | 28 May 2012 | L8 | 22 May 2015 | S2A | 21 May 2016 |
L5 | 19 June 2011 | L7 | 13 June 2012 | L8 | 7 June 2015 | L8 | 9 June 2016 |
L5 | 28 June 2011 | L7 | 8 July 2012 | L8 | 30 June 2015 | S2A | 13 June 2016 |
L7 | 7 August 2011 | L7 | 31 July 2012 | L8 | 9 July 2015 | S2A | 20 June 2016 |
L7 | 23 August 2011 | L7 | 25 August 2012 | L8 | 16 July 2015 | S2A | 23 June 2016 |
L5 | 7 September 2011 | L7 | 3 October 2012 | L8 | 1 August 2015 | L8 | 2 July 2016 |
L8 | 26 August 2015 | S2A | 10 July 2016 | ||||
L8 | 11 September 2015 | L8 | 11 July 2016 | ||||
L8 | 18 July 2016 | ||||||
L8 | 27 July 2016 | ||||||
S2A | 2 August 2016 | ||||||
S2A | 9 August 2016 | ||||||
L8 | 12 August 2016 | ||||||
L8 | 19 August 2016 | ||||||
S2A | 22 August 2016 | ||||||
S2A | 29 August 2016 | ||||||
L8 | 4 September 2016 | ||||||
S2A | 8 September 2016 |
Season | Sampling Date Event | Principal Growth Scale (BBCH Scale) a | GDD | Field Sampling Data | Satellite Vegetation Indices | UAV Indices and Data | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LAI | DAGB | NDVILandsat | VARILandsat | NDVISentinel | VARISentinel | GCC | VARIUAV | ||||||||||||
CV | CV | CV | CV | CV | CV | CV | CV | ||||||||||||
2011 | 22 June | 1: Leaf development | 409 | 0.85 | 9.74 | 66.12 | 19.27 | 0.43 | 3.42 | −0.13 | −3.49 | 21.44 | 4.43 | −0.23 | −42.45 | ||||
20 August | 7: Development of fruit | 1244 | 5.14 | 6.07 | 996.30 | 20.97 | 0.69 | 0.00 | 0.07 | 0.00 | 88.25 | 1.98 | 0.09 | 19.85 | |||||
30 August | 8: Ripening | 1412 | 4.78 | 22.09 | 3473.17 | 8.41 | 0.61 | 0.00 | −0.04 | 0.00 | 78.65 | 22.20 | −0.03 | −57.96 | |||||
2012 | 21 June | 1: Leaf development | 428 | 1.54 | 0.00 | 136.07 | 0.00 | 0.40 | 0.00 | −0.13 | 0.00 | 34.84 | 0.00 | −0.11 | 0.00 | ||||
12 July | 6: Flowering, anthesis | 698 | 4.36 | 8.39 | 1333.65 | 27.05 | 0.65 | 0.00 | −0.01 | 0.00 | 75.32 | 16.75 | 0.08 | 22.45 | |||||
14 August | 7: Development of fruit | 1198 | 4.61 | 5.69 | 2096.95 | 2.12 | 0.71 | 0.00 | 0.09 | 0.00 | 95.36 | 0.16 | 0.05 | 15.60 | |||||
28 August | 8: Ripening | 1455 | 3.84 | 18.90 | 2750.07 | 16.76 | 0.68 | 0.73 | 0.09 | 20.61 | 58.56 | 6.38 | −0.03 | −21.79 | |||||
10 September | 8: Ripening | 1640 | 2.88 | 29.09 | 3478.70 | 36.24 | 0.52 | 1.47 | −0.04 | −16.95 | 37.23 | 6.50 | −0.09 | −21.88 | |||||
2015 | 29 May | 1: Leaf development | 403 | 0.44 | 14.46 | 32.33 | 20.40 | 0.34 | 66.69 | −0.06 | −66.83 | 12.60 | 7.19 | −0.23 | −2.81 | ||||
10 June | 3: Stem elongation | 576 | 2.14 | 9.41 | 191.33 | 10.12 | 0.60 | 11.24 | 0.02 | 90.36 | 47.98 | 8.65 | −0.03 | −47.38 | |||||
25 June | 6: Flowering, anthesis | 784 | 5.36 | 10.42 | 658.52 | 19.20 | 0.58 | 66.69 | 0.08 | 66.68 | 84.13 | 7.48 | 0.05 | 8.57 | |||||
8 July | 6: Flowering, anthesis | 1016 | 5.35 | 10.12 | 1098.14 | 2.29 | 0.85 | 0.52 | 0.19 | 9.31 | 84.90 | 3.29 | 0.05 | 3.14 | |||||
24 July | 7: Development of fruit | 1300 | 5.26 | 7.38 | 1770.14 | 11.59 | 0.86 | 0.99 | 0.21 | 3.36 | 82.48 | 6.16 | 0.05 | 9.62 | |||||
6 August | 7: Development of fruit | 1534 | 5.29 | 16.17 | 2565.51 | 16.79 | 0.87 | 0.53 | 0.25 | 4.87 | 78.23 | 7.35 | 0.04 | 18.80 | |||||
19 August | 8: Ripening | 1757 | 4.77 | 8.05 | 2910.24 | 9.11 | 0.84 | 0.41 | 0.22 | 4.62 | 66.93 | 8.37 | 0.02 | 51.00 | |||||
2 September | 8: Ripening | 1984 | 2.14 | 6.48 | 2477.75 | 11.03 | 0.73 | 1.29 | 0.10 | 12.75 | 16.15 | 8.42 | −0.21 | −4.53 | |||||
2016 | 14 June | 1: Leaf development | 561 | 0.31 | 49.49 | 32.26 | 25.04 | 0.37 | 7.54 | −0.14 | −14.65 | 0.29 | 11.93 | −0.20 | −11.90 | 23.00 | 4.16 | −0.15 | −3.94 |
27 June | 3: Stem elongation | 739 | 1.14 | 41.16 | 130.56 | 66.27 | 0.56 | 12.39 | −0.04 | −148.53 | 0.57 | 10.75 | −0.05 | −46.35 | 32.34 | 2.30 | −0.10 | −4.12 | |
13 July | 6: Flowering, anthesis | 1011 | 3.88 | 10.44 | 362.86 | 76.27 | 0.79 | 4.07 | 0.12 | 25.60 | 0.82 | 6.48 | 0.25 | 33.29 | 58.26 | 16.61 | 0.03 | 33.49 | |
21 July | 6: Flowering, anthesis | 1143 | 4.03 | 13.61 | 650.56 | 23.61 | 0.83 | 1.64 | 0.17 | 8.54 | 0.87 | 3.36 | 0.37 | 16.33 | 64.15 | 12.14 | 0.04 | 12.13 | |
3 August | 7: Development of fruit | 1368 | 3.85 | 13.57 | 1102.88 | 2.59 | 0.84 | 0.89 | 0.19 | 6.39 | 0.97 | 0.31 | 0.64 | 2.35 | 66.63 | 3.59 | 0.03 | 15.82 | |
19 August | 7: Development of fruit | 1628 | 4.35 | 13.22 | 1533.02 | 27.67 | 0.86 | 1.16 | 0.25 | 2.41 | 0.94 | 0.23 | 0.45 | 3.23 | 75.88 | 6.00 | 0.05 | 11.96 | |
26 August | 8: Ripening | 1745 | 3.65 | 6.36 | 2074.10 | 25.91 | 0.81 | 0.40 | 0.16 | 6.39 | 0.88 | 1.18 | 0.35 | 9.87 | 72.72 | 6.45 | 0.05 | 17.76 | |
7 September | 8: Ripening | 1952 | 3.64 | 7.07 | 2535.06 | 20.61 | 0.73 | 0.07 | 0.05 | 7.47 | 0.80 | 2.85 | 0.18 | 17.95 | 74.96 | 4.53 | 0.05 | 10.79 | |
23 September | 8: Ripening | 2160 | 1.48 | 58.53 | 2924.51 | 11.04 | 0.57 | 0.64 | −0.07 | −3.51 | 0.59 | 5.40 | −0.09 | −35.13 | 34.81 | 19.75 | −0.09 | −41.99 |
Variable | Predictors | Equation | R2adj | RMSE |
---|---|---|---|---|
LAI | NDVILandsat, GDD | LAI = −2.4829 + 9.1596NDVILandsat + 2.1015*10^-5GDD | 0.723 | 1.01 |
VARILandsat, GDD | LAI = 3.0711 + 11.68VARILandsat−0.00012514GDD | 0.613 | 1.19 | |
GCCUAV, GDD | LAI = −0.75607 + 5.4966GCCUAV + 0.00095473GDD | 0.931 | 0.468 | |
VARIUAV, GDD | LAI = 2.8943 + 14.353VARIUAV + 0.0010841GDD | 0.853 | 0.682 | |
DAGB | NDVILandsat, GDD | DAGB = −174.24–1317.3NDVILansat + 2.3997GDD | 0.770 | 589 |
VARILandsat, GDD | DAGB = −1001.9–2106.3VARILansat + 2.4677GDD | 0.779 | 578 | |
GCCUAV, GDD | DAGB = −941.17 + 426.42GCCUAV + 2.0389GDD | 0.746 | 615 | |
VARIUAV, GDD | DAGB = −685.97 + 785.29792. 66VARIUAV + 2.0598GDD | 0.741 | 621 |
Variable | Predictor | Equation | R2adj | RMSE |
---|---|---|---|---|
LAI | NDVISentinel, GDD | LAI = −1.9427 + 6.5039NDVISentinel | 0.871 | 0.54 |
VARISentinel, GDD | LAI = 1.8985 + 4.906VARISentinel | 0.754 | 0.747 | |
DAGB | NDVISentinel, GDD | DAGB = −1111.4 + 1.7402GDD | 0.944 | 244 |
VARISentinel, GDD | DAGB = −1111.4 + 1.7402GDD | 0.944 | 244 |
Variable | Predictor | Equation | R2adj | RMSE |
---|---|---|---|---|
DAGB | NDVISentinel, GDD | DAGB = −1092.6–29.079NDVISentinel + 1.7415GDD | 0.942 | 248 |
VARISentinel, GDD | DAGB = −1111.4 + 15.86VARISentinel + 1.7407GDD | 0.942 | 248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros, R.; Moreno, M.A.; Barroso, F.; González-Gómez, L.; Ortega, J.F. Assessment of Maize Growth and Development with High- and Medium-Resolution Remote Sensing Products. Agronomy 2021, 11, 940. https://doi.org/10.3390/agronomy11050940
Ballesteros R, Moreno MA, Barroso F, González-Gómez L, Ortega JF. Assessment of Maize Growth and Development with High- and Medium-Resolution Remote Sensing Products. Agronomy. 2021; 11(5):940. https://doi.org/10.3390/agronomy11050940
Chicago/Turabian StyleBallesteros, Rocío, Miguel A. Moreno, Fellype Barroso, Laura González-Gómez, and José F. Ortega. 2021. "Assessment of Maize Growth and Development with High- and Medium-Resolution Remote Sensing Products" Agronomy 11, no. 5: 940. https://doi.org/10.3390/agronomy11050940
APA StyleBallesteros, R., Moreno, M. A., Barroso, F., González-Gómez, L., & Ortega, J. F. (2021). Assessment of Maize Growth and Development with High- and Medium-Resolution Remote Sensing Products. Agronomy, 11(5), 940. https://doi.org/10.3390/agronomy11050940