Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts
Abstract
:1. Introduction
2. Results
2.1. trans-Resveratrol HPLC Analysis in the Different Plant Parts of Tan and Purple Seed Coat Peanuts
2.2. Hairy Root Induction from Tan and Purple Seed Coat Peanuts
2.3. trans-Resveratrol HPLC Analysis of Seedling Roots and Hairy Roots of Tan and Purple Seed Coat Peanuts
2.4. Expression Analysis of Resveratrol Synthase Genes in Seedling Roots and Hairy Roots of Tan and Purple Seed Coat Peanuts
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Hairy Root Induction
4.3. Extraction of Genomic DNA and Polymerase Chain Reaction (PCR) Analysis
4.4. Extraction of Total RNA and cDNA Synthesis
4.5. trans-Resveratrol HPLC Analysis
4.6. Gene Expression Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fabra, A.; Castro, S.; Taurian, T.; Angelini, J.; Ibañez, F.; Dardanelli, M.; Tonelli, M.; Bianucci, E.; Valetti, L. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: How much is it known? Crit. Rev. Microbiol. 2010, 36, 179–194. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA) Foreign Agricultural Service. Peanut. 2021. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2221000&sel_year=2021&rankby=Production (accessed on 6 May 2021).
- Jones, B.W. The Peanut Plant: Its Cultivation and Uses; Orange Judd Company: New York, NY, USA, 1885; pp. 1–69. [Google Scholar]
- Zu, X.Y.; Xiong, G.Q.; Geng, S.R.; Liao, T.; Li, X.; Zhang, Z.-Y. Arachis hypogaea L. stem and leaf extract improves the sleep behavior of pentobarbital-treated rats. Biomed. Rep. 2014, 2, 388–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuršvietienė, L.; Stanevičienė, I.; Mongirdienė, A.; Bernatonienė, J. Multiplicity of effects and health benefits of resveratrol. Medicina 2016, 52, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Sydor, T.; Schaffer, S.; Boles, E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl. Environ. Microbiol. 2010, 76, 3361–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlich, M.; Lai, F.; Pireddu, R.; Pini, E.; Ailuno, G.; Fadda, A.; Valenti, D.; Sinico, C. Resveratrol proniosomes as a convenient nanoingredient for functional food. Food Chem. 2020, 310, 125950. [Google Scholar] [CrossRef] [PubMed]
- Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to improve resveratrol systemic and topical bioavailability: An update. Antioxidants 2019, 8, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiroch, J.; Sterneder, S.; Di Pizio, A.; Lieder, B.; Hoelz, K.; Holik, A.-K.; Pignitter, M.; Behrens, M.; Somoza, M.; Ley, J.P.; et al. Bitter Sensing TAS2R50 Mediates the trans-Resveratrol-Induced Anti-inflammatory Effect on Interleukin 6 Release in HGF-1 Cells in Culture. J. Agric. Food Chem. 2021. [Google Scholar] [CrossRef]
- Sales, J.M.; Resurreccion, A.V. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr. 2014, 54, 734–770. [Google Scholar] [CrossRef]
- Hu, Z.B.; Du, M. Hairy root and its application in plant genetic engineering. J. Integr. Plant. Biol. 2006, 48, 121–127. [Google Scholar] [CrossRef]
- Shanks, J.V.; Morgan, J. Plant ‘hairy root’ culture. Curr. Opin. Biotechnol. 1999, 10, 151–155. [Google Scholar] [CrossRef]
- Makhzoum, A.B.; Sharma, P.; Bernards, M.A.; Trémouillaux-Guiller, J. Hairy roots: An ideal platform for transgenic plant production and other promising applications. In Phytochemicals, Plant Growth, and the Environment; Gang, D.R., Ed.; Springer: New York, NY, USA, 2013; Volume 42, pp. 95–142. [Google Scholar]
- Kim, J.S.; Lee, S.Y.; Park, S.U. Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr. J. Biotechnol. 2008, 7, 3788–3790. [Google Scholar]
- Hipskind, J.D.; Paiva, N.L. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant. Microbe Interact. 2000, 13, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Zhao, S.; Li, Z.; Wang, Q.; Yao, F.; Yang, L.; Pan, J.; Liu, W. Evaluating the effect of expressing a peanut resveratrol synthase gene in rice. PLoS ONE 2015, 10, e0136013. [Google Scholar]
- Lim, J.D.; Yun, S.J.; Chung, I.M.; Yu, C.Y. Resveratrol synthase transgene expression and accumulation of resveratrol glycoside in Rehmannia glutinosa. Mol. Breed. 2005, 16, 219–233. [Google Scholar] [CrossRef]
- Liu, S.; Hu, Y.; Wang, X.; Zhong, J.; Lin, Z. High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana. J. Agric. Food Chem. 2006, 54, 8082–8085. [Google Scholar] [CrossRef]
- Ma, B.G.; Duan, X.Y.; Niu, J.X.; Ma, C.; Hao, Q.N.; Zhang, L.X.; Zhang, H.P. Expression of stilbene synthase gene in transgenic tomato using salicylic acid-inducible Cre/loxP recombination system with self-excision of selectable marker. Biotechnol. Lett. 2009, 31, 163–169. [Google Scholar] [CrossRef]
- Fan, C.; Pu, N.; Wang, X.; Wang, Y.; Fang, L.; Xu, W.; Zhang, J. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ. Cult. 2008, 92, 197–206. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, H.; Yang, Y.; Yang, M.; Ma, L.; Wang, Y. Heterologous overexpression of resveratrol synthase (PcPKS5) gene enhances antifungal and mite aversion by resveratrol accumulation. Eur. J. Plant. Pathol. 2015, 142, 547–556. [Google Scholar] [CrossRef]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Park, N.I.; Park, S.U. Effect of Light and Dark on the Phenolic Compound Accumulation in Tartary Buckwheat Hairy Roots Overexpressing ZmLC. Int. J. Mol. Sci. 2021, 22, 4702. [Google Scholar] [CrossRef]
- Sharma, P.; Padh, H.; Shrivastava, N. Hairy root cultures: A suitable biological system for studying secondary metabolic pathways in plants. Eng. Life Sci. 2013, 13, 62–75. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Tchernoded, G.K.; Mischenko, N.P.; Khodakovskaya, M.V.; Glazunov, V.P.; Radchenko, S.V.; Zvereva, E.V.; Fedoreyev, S.A.; Zhuravlev, Y.N. Effects of salicylic acid, methyl jasmonate, etephone and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with rolB and rolC genes. J. Biotechnol. 2002, 97, 213–221. [Google Scholar] [CrossRef]
- Chandra, S. Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotechnol. Lett. 2012, 34, 407–415. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Xiao, A.; Rasmussen, M.; Skidmore, C.; Zhan, J. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab. Eng. 2015, 29, 153–159. [Google Scholar] [CrossRef]
- Sáez-Sáez, J.; Wang, G.; Marella, E.R.; Sudarsan, S.; Pastor, M.C.; Borodina, I. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metab. Eng. 2020, 62, 51–61. [Google Scholar] [CrossRef]
- Xiang, C.; Liu, J.; Ma, L.; Yang, M.F. Overexpressing codon-adapted fusion proteins of 4-coumaroyl-CoA ligase (4CL) and stilbene synthase (STS) for resveratrol production in Chlamydomonas reinhardtii. J. Appl. Phycol. 2020, 32, 1669–1676. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, S.Y.; Park, S.U. An efficient protocol for Peanut (Arachis hypogaea L.) transformation mediated by Agrobacterium rhizogenes. Rom. Biotechnol. Lett. 2009, 14, 4641–4647. [Google Scholar]
- Halder, M.; Jha, S. Enhanced trans-resveratrol production in genetically transformed root cultures of Peanut (Arachis hypogaea L.). Plant. Cell Tissue Organ. Cult. 2016, 124, 555–572. [Google Scholar] [CrossRef]
- Hoseinpanahi, B.; Bahramnejad, B.; Majdi, M.; Dastan, D.; Ashengroph, M. The effect of different elicitors on hairy root biomass and resveratrol production in wild Vitis vinifera. J. Appl. Biotechnol. Rep. 2020, 7, 25–31. [Google Scholar]
- Lee, S.-W.; Kim, Y.S.; Uddin, M.R.; Kwon, D.Y.; Kim, Y.B.; Lee, M.Y.; Kim, S.-J.; Park, S.U. Resveratrol production from hairy root cultures of Scutellaria baicalensis. Nat. Prod. Commun. 2013, 8, 609–611. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-Y.; Chung, I.-M.; Thiruvengadam, M. Evaluation of phenolic compounds, antioxidant and antimicrobial activities from transgenic hairy root cultures of gherkin (Cucumis anguria L.). S. Afr. J. Bot. 2015, 100, 80–86. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Praveen, N.; John, K.M.; Yang, Y.-S.; Kim, S.-H.; Chung, I.-M. Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Organ. Cult. 2014, 118, 545–557. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Rekha, K.; Chung, I.-M. Induction of hairy roots by Agrobacterium rhizogenes-mediated transformation of spine gourd (Momordica dioica Roxb. ex. willd) for the assessment of phenolic compounds and biological activities. Sci. Hortic. 2016, 198, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Xu, H.; Yeo, H.J.; Park, Y.E.; Hwang, G.-S.; Park, N.I.; Park, S.U. Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Metab. Eng. 2021, 64, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Cuong, D.M.; Park, C.H.; Bong, S.J.; Kim, N.S.; Kim, J.K.; Park, S.U. Enhancement of glucosinolate production in watercress (Nasturtium officinale) hairy roots by overexpressing cabbage transcription factors. J. Agric. Food Chem. 2019, 67, 4860–4867. [Google Scholar] [CrossRef]
- Ji, M.; Li, Q.; Ji, H.; Lou, H. Investigation of the distribution and season regularity of resveratrol in Vitis amurensis via HPLC–DAD–MS/MS. Food Chem. 2014, 142, 61–65. [Google Scholar] [CrossRef]
- Zhu, F.; Han, J.; Liu, S.; Chen, X.; Varshney, R.K.; Liang, X. Cloning, expression pattern analysis and subcellular localization of resveratrol synthase gene in peanut (Arachis hypogaea L.). Am. J. Plant. Sci. 2014, 5, 3619–3631. [Google Scholar] [CrossRef] [Green Version]
Cultivars | Organ | Resveratrol Content (μg/g) |
---|---|---|
Tan seed coat peanut | Root | 7.23 ± 1.18 c 1 |
Stem | 6.31 ± 1.22 c | |
Leaf | 5.17 ± 0.03 c | |
Purple seed coat peanut | Root | 53.55 ± 1.07 a |
Stem | 25.72 ± 4.58 b | |
Leaf | 5.39 ± 0.07 c |
Cultivars | Root | Fresh Weight (g) |
---|---|---|
Tan seed coat peanut | Seedling root | 3.10 ± 0.11 c 1 |
Hairy root line 1 | 5.02 ± 0.37 ab | |
Hairy root line 2 | 4.77 ± 0.39 b | |
Hairy root line 3 | 5.20 ± 0.14 ab | |
Purple seed coat peanut | Seedling root | 2.88 ± 0.41 c |
Hairy root line 1 | 5.22 ± 0.36 ab | |
Hairy root line 2 | 5.06 ± 0.20 ab | |
Hairy root line 3 | 5.41 ± 0.37 a |
Cultivars | Root | Resveratrol Content (μg/g) |
---|---|---|
Tan seed coat peanut | Seedling root | 6.88 ± 0.21 g 1 |
Hairy root line 1 | 47.54 ± 4.64 de | |
Hairy root line 2 | 46.61 ± 0.64 e | |
Hairy root line 3 | 54.31 ± 6.43 d | |
Purple seed coat peanut | Seedling root | 28.07 ± 0.46 f |
Hairy root line 1 | 166.76 ± 3.66 a | |
Hairy root line 2 | 70.16 ± 3.27 c | |
Hairy root line 3 | 155.94 ± 7.37 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.-E.; Park, C.-H.; Yeo, H.-J.; Chung, Y.-S.; Park, S.-U. Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts. Agronomy 2021, 11, 975. https://doi.org/10.3390/agronomy11050975
Park Y-E, Park C-H, Yeo H-J, Chung Y-S, Park S-U. Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts. Agronomy. 2021; 11(5):975. https://doi.org/10.3390/agronomy11050975
Chicago/Turabian StylePark, Ye-Eun, Chang-Ha Park, Hyeon-Ji Yeo, Yong-Suk Chung, and Sang-Un Park. 2021. "Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts" Agronomy 11, no. 5: 975. https://doi.org/10.3390/agronomy11050975
APA StylePark, Y. -E., Park, C. -H., Yeo, H. -J., Chung, Y. -S., & Park, S. -U. (2021). Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts. Agronomy, 11(5), 975. https://doi.org/10.3390/agronomy11050975