Factors That Determine Innovation in Agrifood Firms
Abstract
:1. Introduction
1.1. Internal Factors
1.2. External Factors
2. Materials and Methods
2.1. Measurement of Innovation
2.2. Sample and Variables
2.3. Functional form of the Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos, M.; Couto, J.; Martins, M.; Tiago, T. Evaluating the determinants of national innovative capacity among European countries. Glob. J. Environ. Sci 2011, 11, 67–78. [Google Scholar]
- Hashi, I.; Stojcic, N. The Impact of Innovation Activities on Firm Performance Using a Multi-Stage Model: Evidence from the Community Innovation Survey 4. Res. Policy 2013, 42, 353–366. [Google Scholar] [CrossRef] [Green Version]
- OECD. Agricultural Innovation Systems: A Framework for Analysing the Role of the Government; OECD Publishing: Paris, France, 2013; Available online: http://dx.doi.org/10.1787/9789264200593-en (accessed on 21 January 2021).
- Sauer, J.; Latacz-Lohmann, U. Investment, technical change and efficiency: Empirical evidence from German dairy production. Eur. Rev. Agric. Econ. 2015, 42, 151–175. [Google Scholar] [CrossRef]
- Menrad, K. Innovations in the food industry in Germany. Res. Policy 2004, 33, 845–878. [Google Scholar] [CrossRef]
- FoodDrink Europe. Available online: https://www.fooddrinkeurope.eu/uploads/press-releases_documents/FINAL_competitiveness_web.pdf (accessed on 4 January 2021).
- Tóth, J.; Migliore, G.; Balogh, J.M.; Rizzo, G. Exploring Innovation Adoption Behavior for Sustainable Development: The Case of Hungarian Food Sector. Agronomy 2020, 10, 612. [Google Scholar] [CrossRef]
- Trott, P.; Simms, C. An examination of product innovation in low- and medium-technology industries: Cases from the UK packaged food sector. Res. Policy 2017, 46, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Bush, V. Ciencia, la Frontera sin Fin. Rev. Estud. Soc. 1999, 14, 89–137. [Google Scholar]
- Maclaurin, R. The Sequence from Invention to Innovation and Its Relation to Economic Growth. Q. J. Econ. 1953, 67, 97–111. [Google Scholar] [CrossRef]
- Arrow, K.J. Economic Welfare and the Allocation of Resources for Invention. In The Rate and Direction of Inventive Activity: Economic and Social Factors; Nelson, R., Ed.; Princeton University Press: New York, NY, USA, 1962; pp. 609–626. [Google Scholar]
- Pavitt, K. Public policies to support basic research: What can the rest of the world learn from US theory and practice? (And what they should not learn). Ind. Corp. Chang. 2001, 10, 761–779. [Google Scholar] [CrossRef]
- Fitjar, R.; Rodríguez-Pose, A. Firm collaboration and modes of innovation in Norway. Res. Policy 2013, 42, 128–138. [Google Scholar] [CrossRef]
- Kline, S.J. Innovation is not a linear process. Res. Manag. 1985, 28, 36–45. [Google Scholar] [CrossRef]
- Nelson, R.; Winter, S. An Evolutionary Theory of Economic Change, 1st ed.; Press of Harvard University Press: Cambridge, MA, USA, 1982; pp. 3–22. [Google Scholar]
- Schumpeter, J.A. The Theory of Economic Development, 1st ed.; Harvard University Press: Cambridge, MA, USA, 1934; p. 255. [Google Scholar]
- Rama, R. Innovación en la industria agroalimentaria. Características y factores de éxito. Cuad. Estud. Agroaliment. 2014, 6, 83–100. [Google Scholar]
- Park, Y.; Kim, C.; Lee, J. On The Characteristics of Innovative Firms in Korea: The Role of R&D and Innovation Type. Int. J. Innov. Manag. 1999, 3, 111–131. [Google Scholar]
- Hadjimanolis, A.; Dickson, K. Innovation strategies of SMEs in Cyprus, a small developing country. Int. Small Bus. J. 2000, 18, 62–79. [Google Scholar] [CrossRef]
- Diederen, P.; van Meijl, H.; Wolters, A.; Bijak, K. Innovation adoption in agriculture: Innovators, early adopters and laggards. Cah. D’economie Et Sociol. Rural. 2003, 67, 29–50. [Google Scholar]
- Levenburg, N.; Magal, S.R.; Kosalge, P. An Exploratory Investigation of Organizational Factors and e-Business Motivations Among SMFOEs in the US. Electron. Mark. 2006, 16, 70–84. [Google Scholar] [CrossRef]
- Micheels, E.T.; Nolan, J. Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study. Agric. Syst. 2016, 145, 127–138. [Google Scholar] [CrossRef]
- Acs, Z.J.; Audretsch, D. Innovation and Small Firms, 1st ed.; MIT Press: Cambridge, MA, USA, 1990; pp. 1–9. [Google Scholar]
- Van Dijk, B.; Den Hertog, R.; Menkveld, B.; Thurik, R. Some New Evidence on the Determinants of Large- and Small-Firm Innovation. Small Bus. Econ. Group 1997, 9, 335–343. [Google Scholar] [CrossRef]
- Frenkel, A.; Shefer, D.; Koschatzky, K.; Walter, G.H. Firm Characteristics, Location and Regional Innovation: A Comparison Between Israeli and German Industrial Firms. Reg. Stud. 2001, 35, 415–429. [Google Scholar] [CrossRef]
- Noronha, M.T.; Cesário, M.; Fernandes, S. Interaction between Innovation in Small Firms and their Environments: An Exploratory Study. Eur. Plan. Stud. 2007, 14, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Läpple, D.; Renwick, A.; Cullinana, J.; Thorne, F. What drives innovation in the agricultural sector? A spatial analysis of knowledge spillovers. Land Use Policy 2016, 56, 238–250. [Google Scholar] [CrossRef]
- Forsman, H. Innovation capacity and innovation development in small enterprises. a comparison between the manufacturing and service sectors. Res. Policy 2011, 40, 739–750. [Google Scholar] [CrossRef]
- Yam, R.; Lo, W.; Tang, E.; Lau, A. Analysis of sources of innovation, technological innovation capabilities, and performance: An empirical study of Hong Kong manufacturing industries. Res. Policy 2011, 40, 391–402. [Google Scholar] [CrossRef]
- Benito, S.; Platero, M.; Rodríguez, A. Determinants of innovation in Spanish microenterprises: The importance of internal factors. Universia Bus. Rev. 2012, 33, 104–121. [Google Scholar]
- Martínez-Román, J.A.; Tamayo, J.A.; Gamero, J. Innovativeness and its influence on growth and market extension in construction firms in the Andalusian region. J. Eng. Technol. Manag. 2017, 43, 19–33. [Google Scholar] [CrossRef]
- Knickel, K.; Brunori, G.; Rand, S.; Proost, M. Towards a Better Conceptual Framework for Innovation Processes in Agriculture and Rural Development: From Linear Models to Systemic Approaches. J. Agric. Educ. Ext. 2009, 15, 883–893. [Google Scholar] [CrossRef]
- Águila, A.; Padilla, A. Factores determinantes de la innovación en empresas de economía social. La importancia de la formación y de la actitud estratégica. Rev. Econ. Públicasoc. Coop. 2010, 67, 129–155. [Google Scholar]
- Vanclay, F.; Russell, A.W.; Kimber, J. Enhancing innovation in agriculture at the policy level: The potential contribution of Technology Assessment. Land Use Policy 2013, 31, 406–411. [Google Scholar] [CrossRef]
- Läpple, D.; Renwick, A.; Thorne, F. Measuring and understanding the drivers of agricultural innovation: Evidence from Ireland. Food Policy 2015, 51, 1–8. [Google Scholar] [CrossRef]
- MAPA. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/indicadores_semestre.aspxURL (accessed on 11 August 2020).
- MAPA. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/AyP_serie_Territorial.asp (accessed on 11 August 2020).
- Galbraith, J.K. American Capitalism: The Concept of Countervailing Power; Houghton Mifflin: Boston, MA, USA, 1952. [Google Scholar]
- Cohen, W.; Klepper, S. A Reprise of Size and R&D. Econ. J. 1996, 106, 925–951. [Google Scholar]
- Lasch, F.; le Roy, F.; Yami, S. Critical Growth factos of ICT Start-Ups. Manag. Decis. 2007, 45, 62–75. [Google Scholar] [CrossRef]
- Rothwell, J. Innovation and firm size: A case for dynamic complementarity; or small really beautiful? J. Gen. Manag. 1983, 8, 5–25. [Google Scholar] [CrossRef]
- Adeyeye, A.; Jegede, O.; Oluwadare, A.; Aremu, F. Micro-level determinants of innovation: Analysis of the Nigerian manufacturing sector. Innov. Dev. 2015, 1–14. [Google Scholar] [CrossRef]
- Laforet, S. Size, strategic, and market orientation effects on innovation. J. Bus. Res. 2008, 61, 753–764. [Google Scholar] [CrossRef]
- Gonçalves, E.; Lemos, M.B.; Nedri, J. Determinants of technological innovation in Argentina and Brazil. Cepal Rev. 2008, 94, 71–95. [Google Scholar] [CrossRef]
- Tether, B. The sources and aims of innovation in services: Variety between and within sectors. Econ. Innov. New Technol. 2010, 12, 481–505. [Google Scholar] [CrossRef]
- Milesi, D.; Petelski, N.; Verre, V. The Determinants of Innovation: Evidence from Argentine Manufacturing Firms; Working Document (03); Instituto de la Industria, Universidad General Sarmiento: Provincia de Buenos Aires, Argentina, 2011. [Google Scholar]
- Álvarez, E.; García, W. Determinantes de la innovación: Evidencia en el sector manufacturero de Bogotá. Semest. Económico 2012, 15, 129–160. [Google Scholar] [CrossRef] [Green Version]
- SSRN. Available online: https://ssrn.com/abstract=1496716 (accessed on 14 December 2020).
- Mansfield, E. Patents and innovation: An empirical study. Manag. Sci. 1998, 32, 173–181. [Google Scholar] [CrossRef]
- Cohen, W. Fifty years of Empirical Studies on Innovative Activity and Performance. In Handbook of the Economics of Innovation; Hall, B., Rosenberg, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 129–213. [Google Scholar] [CrossRef]
- De Jong, J.P.; Vermeulen, P.A. Determinants of product innovation in small firms a comparison across industries. Int. Small Bus. J. 2006, 24, 587–609. [Google Scholar] [CrossRef]
- Buesa, M.; Molero, J. Tamaño empresarial e innovación tecnológica en la economía española. Cuad. Ice 1998, 773, 155–173. [Google Scholar] [CrossRef]
- Jung, D.; Chow, C.; Wu, A. The role of transformational leadership in enhancing organizational innovation: Hypotheses and some preliminary findings. Lead. Innov. 2003, 14, 525–544. [Google Scholar] [CrossRef]
- Chesbrough, H. Open Innovation, 1st ed.; Harvard Business School Press: Brighton, MA, USA, 2005; pp. 63–92. [Google Scholar]
- Díaz, N.L.; Aguiar, I.; de Saá, J. El Conocimiento Organizativo Tecnológico y la Capacidad de Innovación. Evidencia Para la Empresa Industrial Española. Cuad. Econ. Dir. Empresa 2006, 27, 33–60. [Google Scholar]
- Jiménez, D.; Sanz, R. Innovación, aprendizaje organizativo y resultados empresariales. Un estudio empírico. Cuad. Econ. Dir. Empresa 2006, 29, 031–056. [Google Scholar]
- Goode, S.; Stevens, K. An Analysis of the Business Characteristics of Adopters and Non-adopters of World Wide Web Technology. Inf. Technol. Manag. 2000, 1, 129–154. [Google Scholar] [CrossRef]
- Sørensen, J.B.; Stuart, T.E. Aging, obsolescence, and organizational innovation. Adm. Sci. Q. 2000, 45, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Teece, D.J.; Rumelt, R.; Dosi, G.; Winter, S. Understanding corporate Coherence. J. Econ. Behav. Organ. 1994, 23, 1–30. [Google Scholar] [CrossRef]
- Cooper, R.B.; Zmud, R.W. Information Technology Implementation Research: A Technological Diffusion Approach. Manag. Sci. 1990, 36, 123–139. [Google Scholar] [CrossRef]
- Porter, M.E. The Competitive Advantage of Nations, 1st ed.; Free Press: Washington, DC, USA, 1990. [Google Scholar]
- Borra, M.; García, A.; Espasandín, G. Empresa, comportamiento innovador y Universidad: El caso de la Economía Social Andaluza. Est. Econ. Aplic 2005, 23, 583–606. [Google Scholar]
- Morales, A.C. La economía social y las políticas de innovación: Especial referencia al caso andaluz. In La Economía Social en Las Políticas Públicas en España, 1st ed.; Chaves, R., Ed.; CIRIEC: Valencia, Spain, 2007; pp. 202–222. [Google Scholar]
- Wheelen, T.L.; Hunger, D.J. Strategy Management and Business Policy, 13th ed.; Pearson Education: London, UK, 2012; pp. 13–26. [Google Scholar]
- López, N.; Montes, J.; Vázquez, C. ¿Qué necesita una empresa para innovar? Investigación, experiencia y persistencia. Rev. Eur. Direc. Econ. Empresa 2012, 21, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Palacios, R. Necesidades Formativas de la Juventud Rural, 1st ed.; MAPA: Madrid, Spain, 2020; p. 11. [Google Scholar]
- Gallego, J.R. Economía Social y dinámica innovadora en los sistemas territoriales de producción y de innovación. Especial referencia a los sistemas agroalimentarios. Rev. Econ. Públicasoc. Y Coop. 2008, 60, 7–40. [Google Scholar]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Haile, M.G.; Feleke, S.; Olanrewaju, A.; Manyong, V. Impacts of extension access and cooperative membership on technology adoption and household welfare. J. Rural Stud. 2017, 54, 223–233. [Google Scholar] [CrossRef]
- Meyer, M.; Narjoud, S.; Granata, J. When collective action drives corporate social responsibility implementation in small and medium-sized enterprises: The case of a network of French wine-making cooperatives. Int. J. Entrep. Small Bus. 2017, X, 7–27. [Google Scholar] [CrossRef]
- Marcuello, C.; Sanz, I. Los principios cooperativos facilitadores de la innovación: Un modelo teórico. Revesco. Rev. Estud. Coop. 2008, 94, 59–79. [Google Scholar]
- Souitaris, V. Research on The Determinants of Technological Innovation: A Contingency Approach. Int. J. Innov. Manag. 1999, 3, 287–305. [Google Scholar] [CrossRef]
- Schutjens, V.; Wever, E. Determinants of New Firm Success. Pap. Reg. Sci. 2000, 79, 135–153. [Google Scholar] [CrossRef]
- Vargas, A. Empresas cooperativas, ventaja competitiva y tecnologías de la información. Rev. Econ. Públicasoc. Coop. 2004, 49, 13–29. [Google Scholar]
- Fernández, M.V.; Peña, I. Estrategia de innovación como factor determinante del éxito de las cooperativas vitivinícolas de Castilla La Mancha. Revesco. Rev. Estud. Coop. 2009, 98, 70–96. [Google Scholar]
- Vézina, M.; Malo, M.C.; Ben Selma, M. Mature social economy Entreprise and Social Innovation: The case of Desjardins Environmental Fund. Ann. Public Coop. Econ. 2017, 88, 257–278. [Google Scholar] [CrossRef] [Green Version]
- Borgen, S.O.; Aarset, B. Participatory Innovation: Lessons from breeding cooperatives. Agric. Syst. 2016, 145, 99–105. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 9–120. [Google Scholar] [CrossRef]
- Nadiri, M.I. Innovations and Technological Spillovers, C.V. Starr Center for Applied Economics. Econ. Res. Rep. 1993, 9, 3–31. [Google Scholar]
- Escanciano, R. La Cooperación Como Estrategia Para el Desarrollo de Innovaciones en Empresas Multinacionales; Degree Final Project, Grado en Comercio Internacional; Universidad de León: Leon, Spain, 14 July 2014. [Google Scholar]
- Fernández, E. Estrategia de Innovación; Ediciones Paraninfo: Madrid, Spain, 2010. [Google Scholar]
- Lundvall, B. National Innovation Systems Analytical Concept and Development Tool. J. Ind. Innov. 2007, 14, 95–119. [Google Scholar] [CrossRef]
- Irizar, I.; McLeod, G. Innovación emprendedora en el Grupo Mondragón: El caso de sus centros tecnológicos. Rev. Econ. Públicasoc. Y Coop. 2008, 60, 41–72. [Google Scholar]
- Verheul, I.; Wennekers, S.; Audretsch, D.; Thurik, R. An Eclectic Theory of Entrepreneurship: Policies, Institutions and Culture; Tinbergen Institute, Tinbergen Institute Discussion Papers: Amsterdam, The Netherlands, 2001; Volume 27. [Google Scholar] [CrossRef] [Green Version]
- Michelacci, C. Low Returns in R & D Due to the Lack of Entrepreneurial Skills. Econ. J. 2003, 113, 207–225. [Google Scholar]
- Karafillis, C.; Papanagiotou, E. Innovation and total factor productivity in organic farming. Appl. Econ. 2011, 43, 3075–3087. [Google Scholar] [CrossRef]
- Ariza, C.; Rugeles, L.; Saavedra, D.; Guaitero, B. Measuring innovation in agricultural firms: A methodological approach. Electron. J. Knowl. Manag. 2013, 11, 185–198. [Google Scholar]
- Sauer, J.; Zilberman, D. Sequential technology implementation, network externalities, and risk: The case of automatic milking systems. Agric. Econ. 2012, 43, 233–252. [Google Scholar] [CrossRef]
- Marsh, S.; Pannell, D.; Lindner, R. The impact of agricultural extension on adoption and diffusion of lupins as a new crop in Western Australia. Aust. J. Exp. Agric. 2000, 40, 571–583. [Google Scholar] [CrossRef]
- Pannell, D.; Marshall, G.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- D’Emden, F.H.; Llewellyn, R.S.; Burton, M.P. Factors influencing adoption of conservation tillage in Australian cropping regions. Aust. J. Exp. Agric. 2008, 52, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Nossal, K.; Lim, K. Innovation and Productivity in the Australian Grains Industry, 1st ed.; Australian Bureau of Agricultural and Resource Economics: Canberra, Australia, 2011; p. 8.
- García, J.M.; López, T.; Sánchez, M. Territory and innovation behaviour in agri-food firms: Does rurality matter? N. Medit. 2013, 3, 2–10. [Google Scholar]
- UNED. Available online: http://portal.uned.es/portal/page?_pageid=93,23280929&_dad=portal&_schema=PORTAL (accessed on 13 May 2020).
- Rugeles, L.; Guaitero, B.; Saavedra, D.; Ariza, C.; Noreña, H.E.; Betancur, I.; Castillo, O.; Martínez-Humanez, N.; Arosa, C.H.; Barrera, L.M.; et al. Medición de la Innovación Agropecuaria en Colombia, 1st ed.; Universidad de Medellín: Medellín, Colombia, 2013; pp. 99–120. [Google Scholar]
- Avermaetea, T.; Viaene, J.; Morgan, E.J.; Pitts, E.; Crawford, N.; Mahon, D. Determinants of product and process innovation in small food manufacturing. Trends Food Sci. Technol. 2004, 15, 474–483. [Google Scholar] [CrossRef]
- Mamaqui, X.; González, M.; Albisu, L. La relación entre ventajas competitivas y resultados empresariales en la industria agroalimentaria aragonesa. Econ. Agrar. Y Recur. Nat. 2009, 09, 79–104. [Google Scholar] [CrossRef] [Green Version]
- Capitanio, F.; Coppola, A.; Pascucci, S. Product and process innovation in the Italian food industry. Agribusiness 2010, 26, 503–518. [Google Scholar] [CrossRef]
- García-Martínez, M. Co-creation of value with consumers as an innovation strategy in the food and beverage industry: The case of Molson Coors’ ’talking can’. Open Innov. Food Beverage Ind. 2013, 253, 139–153. [Google Scholar] [CrossRef]
- Alarcón, S.; Sánchez, M. Cómo innovan y qué resultado de innovación consiguen las empresas agrarias y alimentarias españolas. Cuad. Estud. Agroaliment. 2014, 6, 63–82. [Google Scholar]
- Laínez. Available online: https://www.upa.es/upa/noticias-upa/2020/2527/ (accessed on 15 January 2021).
- INE. Available online: https://www.ine.es/ (accessed on 23 September 2018).
- Yaremko, R.; Harari, H.; Harrison, R.C.; Lynn, E. Reference Handbook of Research and Statistical Methods in Psychology: For. Students and Professionals; Harper & Row: Manhattan, NY, USA, 1982. [Google Scholar]
- Keppel, G. Design and Analysis: A Researcher’s Handbook; Prentice Hall: Hoboken, NJ, USA, USA, 2004; pp. 159–180. [Google Scholar]
- Vincent, W.J. Statistics in Kinesiology, 4th ed.; Human Kinetics: Champaign, IL, USA, 1994; p. 257. [Google Scholar]
- Linkedin. Available online: https://www.linkedin.com/pulse/esfuerzo-innovador-y-dimensi%C3%B3n-de-las-empresas-la-carlos-romero (accessed on 13 July 2020).
- Dalla, V.F.; Dabdab, P.; Stiegert, K. Wheat Industry: Which Factors Influence Innovation? J. Technol. Manag. Innov. 2015, 10, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Astudillo, S. La innovación en las mipymes manufactureras: Estudio comparativo entre el Ecuador y la Argentina. Escr. Contab. Y Adm. 2018, 9, 13–58. [Google Scholar]
- Fontalvo, T.; Quejada, R.; Puello, J. La gestión del conocimiento y los procesos de mejoramiento. Dimens. Empres 2011, 9, 80–87. [Google Scholar]
- Gupta, A.; Govindarajan, V. Knowledge flows and the structure of control within multinational corporations. Acad. Manag. Rev. 1991, 16, 768–792. [Google Scholar] [CrossRef]
- Real Academia Europea de Doctores. Available online: https://raed.academy/wp-content/uploads/2015/04/Discurso-Dr.-Mallo.pdf (accessed on 13 July 2020).
Variables | Typology | Description |
---|---|---|
Dependent variable | ||
Innovation Index (II) | continuous | Source for FOCAL and INNOVA: Official Gazette of Castilla-La Mancha Source for patents and utility models: Spanish Patent and Trademark Office |
Independent variables | ||
Performance (ROA) | discrete | Mean profitability from 2008 to 2017. It takes the value of 1 for firms located in the first quartile, 2 for those in the second quartile, and 3 for those in the third quartile. Source: Own calculation based on SABI |
Size (SIZE) | discrete | Size of the company. It takes the value of 1 if it is a micro-enterprise, 2 if it is small, 3 if it is medium and 4 if it is large. We take the EU’s EC recommendation as our reference, classifying firms according to the number of employees: micro (<10 workers); small (<49 workers), medium (from 50 to 250 workers) and large (more than 250 workers). Source for number of employees: SABI |
R&D staff (EIDI) | discrete | Takes the value of 1 if the firm reports having R&D specialists. Takes the value of 0 otherwise. Source: SABI |
Legal personality (PJ) | discrete | Legal personality of the firm: 1 if it is a cooperative, 0 otherwise. Source: SABI |
Age (AGE) | continuous | The number of years the company has been active, calculated as the difference between the date of creation and the current date: 2017. Source: SABI |
Index of economic activity (ECO) | discrete | Rate of growth of economic activity from 2008 to 2017 in the municipality where the firm is located. This is a dummy variable taking the value of 1 if growth is positive and 0 otherwise. Source: Based on data from the Institute of Statistics of Castilla-La Mancha |
Rate of population growth (POB) | discrete | Rate of population growth from 2008 to 2017 in the municipality where the firm is located. It is a dummy variable taking the value of 1 if growth is positive and 0 otherwise. Source: Based on data from the Institute of Statistics of Castilla-La Mancha |
Research Centers (CIDI) | continuous | Number of research centers per province in Castilla La Mancha. Source: Spanish national program for agri-food and forestry research and investigation |
Level of education (EDUC) | continuous | Education index of population in Castilla-La Mancha. Source: La CAIXA |
Area (Z) | discrete | 1: municipality in a regeneration area; 2 municipality in an intermediate rural area; 3 municipality in a peri-urban area. Source: Program for Sustainable Development of Rural Areas |
Continuous Variables | |||||
---|---|---|---|---|---|
Minimum | Maximum | Mean | SD | Obs | |
Innovation Index (II) | 0.0555556 | 1.555556 | 0.2873304 | 0.2309537 | 771 |
Age | 1 | 93 | 26.24675 | 17.34598 | 771 |
Research cents (CIDI) | 1 | 9 | 5.155642 | 2.604522 | 771 |
Level of education (EDUC) | 0.69 | 3.11 | 2.457964 | 0.3994069 | 771 |
Discrete Variables | |||||
Frequency 0 | Frequency 1 | Frequency 2 | Frequency 3 | Frequency 4 | |
Performance (ROA) | 178 | 179 | 348 | ||
Size | 430 | 264 | 70 | 6 | |
R&D staff (EDI) | 21 | 750 | |||
Legal form (PJ) | 587 | 184 | |||
Index of economic activity (ECO) | 4 | 767 | |||
Rate of population growth (POB) | 587 | 184 | |||
Area (Z) | 132 | 353 | 229 |
LR Statistic Test h0 | Restricted Log-Likelihood | LR Statistic chi2 | p-Value Prob > chi2 | |
---|---|---|---|---|
Primary Agricultural Products | ||||
model(lhsonly) left-hand-side Box–Cox model | theta = −1 | 81.449844 | 3.93 | 0.047 |
theta = 0 | 78.452246 | 9.93 | 0.002 | |
theta = 1 | 37.113568 | 92.61 | 0.000 | |
model(rhsonly) right-hand-side Box–Cox model | lambda = −1 | 37.843773 | 1.64 | 0.200 |
lambda = 0 | 37.400503 | 2.53 | 0.112 | |
lambda = 1 | 37.113568 | 3.10 | 0.078 | |
model(lambda) both sides Box–Cox model with same parameter | lambda = −1 | 82.889397 | 3.26 | 0.041 |
lambda = 0 | 78.995324 | 11.05 | 0.001 | |
lambda = 1 | 37.113568 | 94.81 | 0.000 | |
model(theta) both sides Box–Cox model with different parameters | theta = lambda = −1 | 82.889397 | 5.18 | 0.023 |
theta = lambda = 0 | 78.995324 | 12.97 | 0.000 | |
theta = lambda = 1 | 37.113568 | 96.73 | 0.000 | |
Food Processing | ||||
model(lhsonly) left-hand-side Box–Cox model; | theta = −1 | 107.73331 | 49.56 | 0.000 |
theta = 0 | 128.43636 | 8.15 | 0.004 | |
theta = 1 | 26.309 | 212.41 | 0.000 | |
model(rhsonly) right-hand-side Box–Cox model | lambda = −1 | 25.757771 | 2.65 | 0.104 |
lambda = 0 | 26.107326 | 1.95 | 0.163 | |
lambda = 1 | 26.309 | 1.54 | 0.214 | |
model(lambda) both sides Box–Cox model with same parameter | lambda = −1 | 109.29841 | 48.18 | 0.000 |
lambda = 0 | 129.02715 | 8.73 | 0.003 | |
lambda = 1 | 26.309 | 214.16 | 0.000 | |
model(theta) both sides Box–Cox model with different parameters | theta = lambda = −1 | 109.29841 | 49.15 | 0.000 |
theta = lambda = 0 | 129.02715 | 9.69 | 0.002 | |
theta = lambda = 1 | 26.309 | 215.13 | 0.000 | |
Beverage Processing | ||||
model(lhsonly) left-hand-side Box–Cox model; | theta = −1 | 43.667467 | 61.32 | 0.000 |
theta = 0 | 74.063942 | 0.53 | 0.468 | |
theta = 1 | 23.687199 | 101.28 | 0.000 | |
model(rhsonly) right-hand-side Box–Cox model | lambda = −1 | 23.668667 | 0.16 | 0.688 |
lambda = 0 | 23.746052 | 0.01 | 0.938 | |
lambda = 1 | 23.687199 | 0.12 | 0.725 | |
model(lambda) both sides Box–Cox model with same parameter | lambda = −1 | 45.225122 | 59.52 | 0.000 |
lambda = 0 | 74.638303 | 0.70 | 0.404 | |
lambda = 1 | 23.687199 | 102.60 | 0.000 | |
model(theta) both sides Box–Cox model with different parameters | theta = lambda = −1 | 45.225122 | 60.05 | 0.000 |
theta = lambda = 0 | 74.638303 | 1.22 | 0.269 | |
theta = lambda = 1 | 23.687199 | 103.13 | 0.000 |
Power | Std. Coef. | Error | z | p > z | |
---|---|---|---|---|---|
Primary Agricultural Products | |||||
model(lhsonly) left-hand-side Box–Cox model | theta | −0.5839263 | 0.1996476 | −2.92 | 0.003 |
model(rhsonly) right-hand-side Box–Cox model | lambda | −6.708896 | 9.03138 | −0.74 | 0.458 |
model(lambda) both sides Box–Cox model with same parameter | lambda | −0.6210483 | 0.2012707 | −3.09 | 0.002 |
model(theta) both sides Box–Cox model with different parameters | lambda | −3.999474 | 3.773758 | −1.06 | 0.289 |
theta | −0.5858607 | 0.1988411 | −2.95 | 0.003 | |
Food Processing | |||||
model(lhsonly) left-hand-side Box–Cox model | theta | −0.2669326 | 0.0960978 | −2.78 | 0.005 |
model(rhsonly) right-hand-side Box–Cox model | lambda | 9.821598 | 9.442533 | 1.04 | 0.298 |
model(lambda) both sides Box–Cox model with same parameter | lambda | −0.2767478 | 0.0963459 | −2.87 | 0.004 |
model(theta) both sides Box–Cox model with different parameters | lambda | −4.615544 | 4.378688 | −1.05 | 0.292 |
theta | −0.272811 | 0.0961281 | −2.84 | 0.005 | |
Beverage Processing | |||||
model(lhsonly) left-hand-side Box–Cox model | theta | −0.0806673 | 0.1116199 | −0.72 | 0.470 |
model(rhsonly) right-hand-side Box–Cox model | lambda | 0.2047836 | 2.546802 | 0.08 | 0.936 |
model(lambda) both sides Box–Cox model with same parameter | lambda | −0.0931118 | 0.1121316 | −0.83 | 0.406 |
model(theta) both sides Box–Cox model with different parameters | lambda | −1.401793 | 1.781908 | −0.79 | 0.431 |
theta | −0.0937083 | 0.1117786 | −0.84 | 0.402 |
Test H0: | Ramsey RESET Test Ho: Model Has No Omitted Variables | Adj R-Squared | Root MSE | |
---|---|---|---|---|
Primary Agricultural Products | ||||
model(lhsonly) left-hand-side Box–Cox model | theta = −0.5839263 | F(3, 84) = 0.78 Prob > F = 0.5070 | 0.1577 | 0.15637 |
model(rhsonly) right-hand-side Box–Cox model | lambda = −1 | F(3, 84) = 4.50 Prob > F = 0.0057 | not applicable | not applicable |
lambda = 0 | F(3, 84) = 4.79 Prob > F = 0.0040 | not applicable | not applicable | |
lambda = 1 | F(3, 84) = 4.32 Prob > F = 0.0071 | not applicable | not applicable | |
model(lambda) both sides Box–Cox model with same parameter | lambda = −0.6210483 | F(3, 84) = 0.43 Prob > F = 0.7330 | 0.1761 | 0.87249 |
Food Processing | ||||
model(lhsonly) left-hand-side Box–Cox model | theta = −0.2669326 | F(3, 257) = 0.53 Prob > F = 0.6639 | 0.1558 | 0.12395 |
model(rhsonly) right-hand-side Box–Cox model | lambda = −1 | F(3, 257) = 2.03 Prob > F = 0.1099 | not applicable | not applicable |
lambda = 0 | F(3, 257) = 2.09 Prob > F = 0.1017 | not applicable | not applicable | |
lambda = 1 | F(3, 257) = 2.62 Prob > F = 0.0515 | not applicable | not applicable | |
model(lambda) both sides Box–Cox model with same parameter | lambda = −0.2767478 | F(3, 257) = 2.11 Prob > F = 0.0991 | not applicable | not applicable |
Beverage Processing | ||||
model(lhsonly) left-hand-side Box–Cox model | theta = 0 | F(3, 159) = 0.46 Prob > F = 0.7104 | 0.2987 | 0.626 |
model(rhsonly) right-hand-side Box–Cox model | lambda = −1 | F(3, 159) = 1.27 Prob > F = 0.2857 | 0.2895 | 0.21808 |
lambda = 0 | F(3, 159) = 1.23 Prob > F = 0.2990 | 0.2901 | 0.21798 | |
lambda = 1 | F(3, 159) = 1.16 Prob > F = 0.3272 | 0.2896 | 0.21805 | |
model(lambda) both sides Box–Cox model with same parameter | lambda = 0 | F(3, 159) = 0.63 Prob > F = 0.5954 | 0.3033 | 0.62393 |
Primary Agricultural Products | Food Processing | Beverage Processing | |
---|---|---|---|
ROA | 0.0024179 (0.12) | 0.0149154 * (1.46) | 0.0251645 (0.40) |
SIZE | 0.0833527 *** (3.40) | 0.0699325 *** (6.01) | 0.3907323 *** (4.64) |
EIDI | 0.1637163 ** (1.88) | 0.0057047 (0.15) | 0.5721744 ** (1.79) |
PJ | 0.0813413 * (1.38) | 0.0440443 * (1.65) | 0.3146792 ** (1.85) |
AGE | 0.0002473 (0.16) | 0.001354 ** (2.20) | 0.0069631 ** (1.96) |
ECO | −0.0207900 (−0.5807) | 0.0850771 (0.94) | −0.323209 (−0.45) |
POB | −0.0037742 (−0.23) | −0.00896325 (−0.4818) | 0.0523881 (0.38) |
CIDI | 0.0025304 (0.36) | 0.00478769 * (1.99) | −0.0201095 (−0.89) |
EDUC | 0.0305965 (0.75) | 0.0256364 (1.10) | 0.3897629 *** (3.22) |
Z | 0.0117457 (0.60) | 0.0116547 * (1.37) | 0.1229039 * (1.54) |
Cons | 0.152915 (0.93) | 0.3997562 (3.42) *** | 3.252276 (4.87) *** |
F-Snedecor (p-value) | 3.26 (0.0018) | 7.13 (0) | 8.32 (0) |
Residual sum of squares | 0.15637 | 0.12395 | 0.626 |
Breusch–Pagan/Cook–Weisberg chi2(9) = 14.72; p-value | 14.72; 0.0990 | 22.85; 0.073 | 18.58; 0.0560 |
Multicollinearity, Mean VIF | 1.18 | 1.17 | 1.60 |
Residuals (Primary Agricultural Products) | Residuals (Food Processing) | Residuals (Beverage Processing) | |
---|---|---|---|
ROA | 0.000 | 0.000 | 0.000 |
SIZE | 0.000 | 0.000 | 0.000 |
EIDI | 0.000 | 0.000 | 0.000 |
PJ | 0.000 | 0.000 | 0.000 |
AGE | 0.000 | 0.000 | 0.000 |
ECO | −0.0824 | 0.0505 | −0.0454 |
POB | 0.000 | 0.000 | 0.000 |
CIDI | 0.000 | 0.000 | 0.000 |
EDUC | 0.000 | 0.000 | 0.000 |
Z | 0.000 | 0.000 | 0.000 |
Size Effect Eta-Squared | Primary Agricultural Products | Food Processing | Beverage Processing |
---|---|---|---|
ROA | 0.0001682 | 0.0081044 | 0.000974 |
SIZE | 0.1173378 | 0.1218658 | 0.1171195 |
EIDI | 0.0390329 | 0.000086 | 0.0193254 |
PJ | 0.0214696 | 0.0103549 | 0.0207579 |
AGE | 0.0002916 | 0.018195 | 0.023062 |
ECO | 0.003587 | 0.0033906 | 0.0012737 |
POB | 0.0001149 | 0.001846 | 0.0008706 |
CIDI | 0.0014914 | 0.0150218 | 0.0048737 |
EDUC | 0.0063991 | 0.0046068 | 0.0600394 |
Z | 0.0040626 | 0.0071695 | 0.014371 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Valero, J.S.; García-Cortijo, M.C. Factors That Determine Innovation in Agrifood Firms. Agronomy 2021, 11, 989. https://doi.org/10.3390/agronomy11050989
Castillo-Valero JS, García-Cortijo MC. Factors That Determine Innovation in Agrifood Firms. Agronomy. 2021; 11(5):989. https://doi.org/10.3390/agronomy11050989
Chicago/Turabian StyleCastillo-Valero, Juan Sebastián, and María Carmen García-Cortijo. 2021. "Factors That Determine Innovation in Agrifood Firms" Agronomy 11, no. 5: 989. https://doi.org/10.3390/agronomy11050989
APA StyleCastillo-Valero, J. S., & García-Cortijo, M. C. (2021). Factors That Determine Innovation in Agrifood Firms. Agronomy, 11(5), 989. https://doi.org/10.3390/agronomy11050989