Disaggregating the Value of Conservation Agriculture to Inform Smallholder Transition to Sustainable Farming: A Mexican Case Study
Abstract
:1. Introduction
- How do various combinations of no-tillage, soil cover, and crop diversification affect the profitability and the downside risk of the whole farm over time, given farmer risk aversion?
- What is the net value impact of adopting alternative options of CA?
- What are the relative benefits of introducing a new maize variety and alternative legume crops to an existing CA field setup?
2. Materials and Methods
2.1. Case-Study Context
2.2. The Value-Ag Framework
2.2.1. Profit
2.2.2. Risk
2.2.3. Adoption
2.2.4. Impact
2.2.5. Research Workshops
2.3. Scenario Analysis
2.3.1. Baseline Scenario
- Every two to three years subsoil working;
- Annual land preparation: ploughing, two harrowing passes, optional ridging;
- Annual minimal planting, sometimes planting pass and fertilisation pass;
- Minimum five machine passes at an average of 800 MXN/ha per activity totalling 4000 MXN/ha/year, including operator and fuel costs for each activity.
2.3.2. Innovation Scenarios
- Baseline: the current system
- CA: Conservation Agriculture (no-tillage, soil cover, crop diversification)
- NT: No-Tillage
- SC: Soil Cover
- CD: Crop Diversification
- NT + SC: No-Tillage and Soil Cover
- NT + CD: No-Tillage and Crop Diversification
- SC + CD: Soil Cover and Crop Diversification
- CA + NewVar: Conservation Agriculture with a new maize variety
- CA + NewLeg: Conservation Agriculture with a new legume crop
- A maximum of two or three machinery passes (depending on the CA practices applied) at an average cost of 2400 or 3600 MXN/ha/year. An increase from 800 MXN to 1200 MXN per pass relative to the conventional system accounts for likely higher hire costs under CA and more difficult passage with soil cover;
- Initial land preparation works for full CA conversion (subsoil work, ploughing, two harrowing, one bed-making pass) at an average cost of 4000 MXN/ha (year zero, lasting 15–20 years);
- In NT conditions, farmers conduct subsoil works approximately every eight years at a cost of 1000 MXN/ha.
3. Results and Discussion
3.1. Whole-Farm Profitability
3.2. Downside Risk and Farmer Risk Aversion
3.3. Peak Adoption and Time to Peak Adoption
3.4. Impact Assessment
3.5. Implications of Assessing the Value of CA Technologies
3.6. Future Research Opportunities
- Explore changes in intervention levels and “what-if” scenarios via further scenario and sensitivity analysis at both farm and regional scales. An analysis of the changes in key farm parameters could include grain yields, stubble fate, herd numbers, labour supply, produce prices, and input costs. These, for example, could be a part of new scenario analyses focusing on irrigation, climate change, machine innovation and availability, livestock trade, price shock, or government subsidies. Likewise, changes in key adoption parameters as a result of farm simulation outputs, such as linking risk attitudes to farmer risk aversion metrics, could influence adoption outcomes [49].
- Characterise wrongfully or partially implemented CA practices and innovations via sensitivity analysis of key parameters (e.g., stubble fate, degree of tillage/subsoil work).
- Evaluate the performance of the new maize variety (generic hybrid) and legume crop (grass pea) across all scenarios and transient farming systems, not just CA. Specific new maize varieties promoted by CIMMYT and other legume crops in the context of CA and disaggregated scenarios should also be evaluated.
- Apply a similar approach to the other five farm typologies (T1–T5) identified for Guanajuato [53], as well as to other smallholder contexts across Mexico and beyond. This can help explore how geography, farm size, resources, attitudes to risk, time horizons, irrigation, and market access may impact different conservation practices.
- Improve the scaling process by exploring potential synergies with other relevant tools, such as CIMMYT’s Scaling Scan that determines the potential to scale [100].
- Assess the strengths and weaknesses of the Value-Ag approach relative to comparable modelling tools (e.g., TradeOff Analysis-MultiDimensional, TOA-MD) [101] in terms of their performance in quantifying whole-farm profit, risk, adoption, and impact in context-specific conditions.
- Expand the approach to include additional components for modelled scenarios that reflect the ecosystem services and sustainability factors of the farming systems (e.g., soil carbon accounting, GHG accounting, biodiversity index, land condition index). It could also reflect other factors relating to employment or fee-for-service provisions around farm, including machinery and postharvest services.
- Expand the approach by using individual household data and aggregating at the end, instead of using average parameters of the farm typology. This Monte Carlo approach will provide not only the expected outcomes but also information on the bandwidth of outcomes.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Unit | T1 | T2 | T3 | T4 | T5 | T6 | |
---|---|---|---|---|---|---|---|---|
Structural | Altitude | Meters | 1835 | 2007 | 1824 | 1728 | 1788 | 1764 |
Distance to town (>10 k hab.) | Km | 5.8 | 11.5 | 8.5 | 7.1 | 8.2 | 5.6 | |
Average daily wage | MXN | 166 | 170 | 146 | 156 | 162 | 147 | |
Women participation in local agriculture | % | 0.8 | 0.8 | 0.3 | 0.1 | 0.5 | 0.2 | |
Youth participation in local agriculture | % | 1.0 | 0.8 | 0.8 | 0.9 | 0.9 | 0.6 | |
Average farm area | Hectare | 3.6 | 3.5 | 9.0 | 6.5 | 5.0 | 3.7 | |
Irrigation use (0-nil, 4-high) | Index | 0.9 | 0.3 | 1.8 | 1.3 | 1.6 | 1.0 | |
Household size | People | 2.7 | 3.1 | 2.1 | 3.3 | 4.1 | 2.4 | |
Ownership of large livestock (0-nil, 4-high) | Index | 0.5 | 3.3 | 2.1 | 2.1 | 0.8 | 0.2 | |
Ownership of small livestock (0-nil, 4-high) | Index | 0.1 | 0.9 | 0.3 | 0.3 | 0.2 | 0.1 | |
Machinery ownership (0-nil, 6-high) | Index | 3.2 | 2.6 | 5.1 | 5.0 | 4.3 | 2.9 | |
Manual tools | Number | 5.8 | 7.5 | 7.6 | 8.3 | 5.5 | 6.8 | |
Animal-powered tools | Number | 0.0 | 0.7 | 0.9 | 0.3 | 0.0 | 0.1 | |
Mechanical tools | Number | 1.7 | 1.2 | 4.8 | 5.5 | 2.5 | 0.8 | |
Economic | Household income | MXN | 74,597 | 46,539 | 191,209 | 128,979 | 151,175 | 85,557 |
Agriculture income | % | 93.3 | 37.9 | 83.7 | 84.7 | 65.2 | 85.5 | |
Livestock income | % | 2.3 | 27.4 | 5.9 | 8.3 | 2.5 | 2.0 | |
Remittances income | % | 0.9 | 7.9 | 5.6 | 1.4 | 4.6 | 5.2 | |
Other income | % | 1.3 | 8.0 | 1.3 | 2.8 | 25.8 | 3.2 | |
Off-farm labour (>6 h) | % | 17.2 | 24.0 | 26.4 | 30.1 | 26.2 | 33.9 | |
Labour hire | % | 16.4 | 22.6 | 24.0 | 33.8 | 46.4 | 58.0 | |
Agriculture production self-consumption | % | 1.5 | 21.3 | 3.2 | 3.5 | 2.4 | 1.6 | |
Access to financial services (0-nil, 1-high) | Index | 0.0 | 0.0 | 0.1 | 0.2 | 0.0 | 0.1 | |
Social | Family economic dependence | % | 46.1 | 50.0 | 77.0 | 23.6 | 28.9 | 62.7 |
Family average age | Age | 53.2 | 52.7 | 66.0 | 41.8 | 40.4 | 60.9 | |
Women in farm | % | 41.0 | 48.4 | 40.8 | 51.5 | 52.4 | 44.8 | |
Women in agriculture | % | 69.3 | 61.4 | 30.5 | 17.8 | 36.5 | 8.2 | |
Meat consumption | Times/week | 1.9 | 1.4 | 2.6 | 2.5 | 2.7 | 2.1 | |
Constant annual income | Months | 2.4 | 6.8 | 4.9 | 5.9 | 8.5 | 5.4 | |
Household savings | % | 3.1 | 2.8 | 12.4 | 6.5 | 11.3 | 11.7 | |
Farm population below poverty level | % | 50.9 | 63.5 | 46.3 | 43.4 | 47.7 | 56.4 | |
Risk aversion (0-nil, 1-high) | Index | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 |
Appendix B
References
- FAO. Available online: http://www.fao.org/3/ca7126en/CA7126EN.pdf (accessed on 20 December 2020).
- FAO. Available online: http://www.fao.org/publications/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/ (accessed on 23 March 2021).
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Verhulst, N.; Carrillo-García, A.; Moeller, C.; Trethowan, R.; Sayre, K.D.; Govaerts, B. Conservation agriculture for wheat-based cropping systems under gravity irrigation: Increasing resilience through improved soil quality. Plant Soil. 2011, 340, 467–479. [Google Scholar] [CrossRef]
- Erenstein, O.; Sayre, K.; Wall, P.; Hellin, J.; Dixon, J. Conservation Agriculture in Maize- and Wheat-Based Systems in the (Sub)tropics: Lessons from Adaptation Initiatives in South Asia, Mexico, and Southern Africa. J. Sustain. Agric. 2012, 36, 180–206. [Google Scholar] [CrossRef]
- Corbeels, M.; de Graaff, J.; Ndah, T.H.; Penot, E.; Baudron, F.; Naudin, K.; Andrieu, N.; Chirat, G.; Schuler, J.; Nyagumbo, I.; et al. Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agric. Ecosyst. Environ. 2014, 187, 155–170. [Google Scholar] [CrossRef]
- Rodriguez, D.; de Voil, P.; Rufino, M.C.; Odendoc, M.; Van Wijk, M.T. To mulch or to munch? Big modelling of big data. Agric. Syst. 2017, 153, 32–42. [Google Scholar] [CrossRef]
- Fonteyne, S.; Martinez Gamiño, M.A.; Saldivia Tejeda, A.; Verhulst, N. Conservation Agriculture Improves Long-term Yield and Soil Quality in Irrigated Maize-Oats Rotation. Agronomy 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.; Liang, X.; Linquist, B.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Descheemaeker, K. Limits of conservation agriculture in Africa. Nat. Food. 2020, 1, 402. [Google Scholar] [CrossRef]
- Sun, W.; Canadell, J.G.; Yu, L.; Yu, L.; Zhang, W.; Smith, P.; Fischer, T.; Huang, Y. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 2020, 26, 3325–3335. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. Stable high yields with zero tillage and permanent bed planting? Field Crops Res. 2005, 94, 33–42. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Sayre, K.D.; Sonder, K.; Romero-Perezgrovas, R.; Mezzalama, M.; Dendooven, L. Conservation agriculture as a means to mitigate and adapt to climate change, a case study from Mexico. In Climate Change Mitigation and Agriculture, 1st ed.; Wollenberg, E., Nihart, A., Tapio-Biström, M.L., Grieg-Gran, M., Eds.; Earthscan: London, UK, 2012; p. 287300. [Google Scholar]
- Tittonell, P.; Van Wijk, M.; Herrero, M.; Rufino, M.; de Ridder, N.; Giller, K. Beyond resource constraints—Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya. Agric. Syst. 2009, 101, 1–19. [Google Scholar] [CrossRef]
- Brown, B.; Nuberg, I.; Llewellyn, R. Stepwise frameworks for understanding the utilisation of conservation agriculture in Africa. Agric. Syst. 2017, 153, 11–22. [Google Scholar] [CrossRef]
- Corbeels, M.; Naudin, K.; Whitbread, A.M.; Kühne, R.; Letourmy, P. Limits of conservation agriculture to overcome low crop yields in sub-Saharan Africa. Nat. Food 2020, 1, 447–454. [Google Scholar] [CrossRef]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Carlisle, L. Factors influencing farmer adoption of soil health practices in the United States: A narrative review. Agroecol. Sustain. Food Syst. 2016, 40, 583–613. [Google Scholar] [CrossRef]
- Valdivia, R.O.; Antle, J.M.; Stoorvogel, J.J. Designing and evaluating sustainable development pathways for semi-subsistence crop-livestock systems: Lessons from Kenya. Agric. Econ. 2017, 48, 11–26. [Google Scholar] [CrossRef]
- Mottaleb, K. Perception and adoption of a new agricultural technology: Evidence from a developing country. Technol. Soc. 2018, 55, 126–135. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Canales, E.; Bergtold, J.S.; Williams, J.R. Conservation practice complementarity and timing of on-farm adoption. Agric. Econ. 2020, 51, 777–791. [Google Scholar] [CrossRef]
- Krishna, V.V.; Yigezu, Y.A.; Karimov, A.A.; Erenstein, O. Assessing technological change in agri-food systems of the Global South: A review of adoption-impact studies in wheat. Outlook Agric. 2020, 49, 89–98. [Google Scholar] [CrossRef]
- Van den Broeck, G.; Grovas, R.R.P.; Maertens, M.; Deckers, J.; Verhulst, N.; Govaerts, B. Adoption of Conservation Agriculture in the Mexican Bajío. Outlook Agric. 2013, 42, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, J.; Woltering, L.; Krupnik, T.J.; Baudron, F.; Boa, M.; Govaerts, B. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agric. Syst. 2020, 180, 102792. [Google Scholar] [CrossRef]
- Giller, K.E.; Rowe, E.C.; de Ridder, N.; van Keulen, H. Resource use dynamics and interactions in the tropics: Scaling up in space and time. Agric. Syst. 2006, 88, 8–27. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.; Notenbaert, A.; Msangi, S.; Wood, S.; Kruska, R.; Dixon, J.; Bossio, D.; van de Steeg, J.; Ade Freeman, H.; et al. Drivers of Change in Crop-Livestock Systems and Their Potential Impacts on Agro-Ecosystems Services and Human Well-Being to 2030; CGIAR Systemwide Livestock program ILRI: Nairobi, Kenya, 2009. [Google Scholar]
- Whitbread, A.M.; Robertson, M.J.; Carberry, P.S.; Dimes, J.P. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. Eur. J. Agron. 2010, 32, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.; Kropff, M.; Crossa, J.; Koo, J.; Kruseman, G.; Molero Milan, A.; Rutkoski, J.; Schulthess, U.; Balwinder, S.; Sonder, K.; et al. Role of Modelling in International Crop Research: Overview and Some Case Studies. Agronomy 2018, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Woltering, L.; Fehlenberg, K.; Gerard, B.; Ubels, J.; Cooley, L. Scaling—From reaching many to sustainable system change: Implications for design of scalable pilots in pro-poor development. Agric. Syst. 2019, 176, 102652. [Google Scholar] [CrossRef]
- Hermans, T.D.G.; Whitfield, S.; Dougill, A.J.; Thierfelder, C. Bridging the disciplinary gap in conservation agriculture research in Malawi. A review. Agron. Sustain. Dev. 2020, 40, 3. [Google Scholar] [CrossRef] [Green Version]
- Sadras, V.; Alston, J.; Aphalo, P.; Connor, D.; Denison, R.F.; Fischer, T.; Gray, R.; Hayman, P.; Kirkegaard, J.; Kirchmann, H.; et al. Making science more effective for agriculture. Adv. Agron. 2020, 163, 153–177. [Google Scholar] [CrossRef]
- Monjardino, M.; Hochman, Z.; Horan, H. Yield potential determines Australian wheat growers’ capacity to close yield gaps while mitigating economic risk. Agron. Sustain. Dev. 2019, 39, 49. [Google Scholar] [CrossRef]
- Fischer, R.A.; Santiveri, F.; Vidal, I.R. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: II. Maize and system performance. Field Crops Res. 2002, 79, 123–137. [Google Scholar] [CrossRef]
- Hellin, J.; Erenstein, O.; Beuchelt, T.; Camacho, C.; Flores, D. Maize stover use and sustainable crop production in mixed crop–livestock systems in Mexico. Field Crops Res. 2013, 153, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Romero-Perezgrovas, R.; Verhulst, N.; De La Rosa, D.; Hernández, V.; Maertens, M.; Deckers, J.; Govaerts, B. Effects of Tillage and Crop Residue Management on Maize Yields and Net Returns in the Central Mexican Highlands Under Drought Conditions. Pedoshpere 2014, 4, 476–486. [Google Scholar] [CrossRef]
- Fonteyne, S.; Burgueño, J.; Contreras, B.A.A.; Enriquez, E.A.; Villaseñor, L.C.; Velázquez, F.E.; Cruz, H.E.; Balbuena, J.E.; Solorio, A.E.; Meza, P.G.; et al. Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico. Land Degrad. Dev. 2021, 32, 2242–2256. [Google Scholar] [CrossRef]
- SIAP. Available online: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp (accessed on 3 March 2020).
- FAO. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 March 2021).
- Ureta, C.; González, E.J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A.; Álvarez-Buylla, E.R. Maize yield in Mexico under climate change. Agric. Syst. 2020, 177, 102697. [Google Scholar] [CrossRef]
- ASERCA. Available online: https://www.gob.mx/aserca/articulos/maiz-grano-cultivo-representativo-demexico?idiom=es (accessed on 10 February 2021).
- Fernández Suárez, R.; Morales Chávez, L.A.; Gálvez Mariscal, A. Importancia de los maíces nativos de México en la dieta nacional: Una revisión indispensable. Rev. Fitotec. Mex. 2013, 36, 275–283. [Google Scholar]
- FIRA. Available online: https://www.gob.mx/fira/documentos/panoramaagroalimentario (accessed on 10 March 2021).
- CIMMYT. MasAgro. Available online: http://masagro.mx/es/2012-06-21-17-47-58/documentos (accessed on 21 January 2020).
- CIMMYT. Strategic Plan 2017–2022: Improving Livelihoods through Maize and Wheat Science; Centro Internacional de Mejoramiento de Maiz y Trigo: Texcoco, Mexico, 2016. [Google Scholar]
- Liedtka, J.; Salzman, R.; Azer, D. Design Thinking for the Greater Good: Innovation in the Social Sector; Columbia University Press: New York, NY, USA, 2017; p. 352. [Google Scholar]
- Govaerts, B.; Chávez, X.; Fernández, A.; Vega, D.; Vázquez, O.; Pérez, M.; Carvajal, A.; Ortega, P.; López, P.; Rodríguez, R.; et al. Maíz para México—Plan Estratégico 2030. CIMMYT. 2019. Available online: https://repository.cimmyt.org/handle/10883/20219 (accessed on 10 January 2021).
- Gardeazabal, A.; Lunt, T.; Jahn, M.M.; Verhulst, N.; Hellin, J.; Govaerts, B. Knowledge management for innovation in agri-food systems: A conceptual framework. Knowl. Magn. Res. Pract. 2021. [Google Scholar] [CrossRef]
- Monjardino, M.; Kuehne, G.; Cummins, J. Value-Ag: An integrated model for rapid ex-ante impact evaluation of agricultural innovations in smallholder systems. Exp. Agric. 2020, 56, 633–649. [Google Scholar] [CrossRef]
- Segura Nieto, M.; Aguirre Gómez, A.; Pons Hernández, J.L. Resumen Parcial de la Base de Datos de las Principals Razas de los Maíces Criollos de “El Bajío” de Guanajuato. Información Agronómica, Nutricional, Proteomica y Molecular. 2006. INIFAP. Available online: http://www.ira.cinvestav.mx/maicescriollos/folleto.pdf (accessed on 10 March 2021).
- Preciado Ortiz, R.E.; Terrón Ibarra, A.D.; Aguirre Gómez, A.; Noriega González, L.A.; Cruz Morales, A.S. Conocimiento de la Diversidad y Distribuición Actual del Maíz Nativo y sus Parientes Silvestres en México. Segunda Etapa 2008–2009. Informe Final. Guanajuato, Querétaro, Michoacán. INIFAP, Conabio, INE. Available online: https://www.biodiversidad.gob.mx/media/1/genes/files/Inf_Fin_Gto-Qro_FZ016-050411.pdf (accessed on 10 March 2021).
- Zepeda, E.A.; Camacho, C. Tipología de Unidades de Producción Rural—Guanajuato; CIMMYT Report: Texcoco, Mexico, 2019. [Google Scholar]
- Zepeda Villarreal, E.A.; Camacho Villa, T.C.; Barba Escoto, L.; López Ridaura, S. Maize productivity gaps: An explanation based on the heterogeneity of Mexico Central and South farm households. Trop. Subtrop. Agroecosyst. 2020, 23, 40. [Google Scholar]
- Monjardino, M.; Philp, J.; Kuehne, G.; Phimphachanhvongsod, V.; Sihathep, V.; Denton, M. Quantifying the value of adopting a post-rice legume crop to intensify mixed smallholder farms in Southeast Asia. Agric. Syst. 2020, 177, 102690. [Google Scholar] [CrossRef]
- Kruseman, G.; Bairagi, S.; Komarek, A.M.; Molero, M.A.; Nedumaran, S.; Petsakos, A.; Prager, S.; Yigezu, Y.A. CGIAR modeling approaches for resource-constrained scenarios: II. Models for analyzing socioeconomic factors to improve policy recommendations. Crop Sci. 2020, 60, 568–581. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.K.; MacLeod, N.; Lisson, S.; Corfield, J. The Integrated Analysis Tool (IAT)—A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems. Agric. Syst. 2019, 176, 176–189. [Google Scholar] [CrossRef]
- Brown, P.R.; Nidumolu, U.B.; Kuehne, G.; Llewellyn, R.S.; Mungai, O.; Brown, B.; Ouzman, J. Development of the Public Release Version of Smallholder Adopt for Developing Countries. ACIAR Impact Assessment Series Report No. 91; Australian Centre for International Agricultural Research: Canberra, Australia, 2016. Available online: https://aciar.gov.au/publication/technical-publications/ias91-development-public-release-version-smallholder-adopt-developing-countries (accessed on 10 January 2020).
- Kuehne, G.; Llewellyn, R.; Pannell, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Modell. Software 2014, 62, 327. [Google Scholar] [CrossRef]
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosys. Environ. 2014, 187, 52–64. [Google Scholar] [CrossRef]
- Hardaker, J.B.; Lien, G.; Anderson, J.R.; Huirne, R.B.M. Coping with Risk in Agriculture: Applied Decision Analysis, 3rd ed.; CABI Pub.: Wallingford, Oxfordshire, UK, 2015; pp. 1–332. [Google Scholar]
- Palisade Corporation. Best Fit, Distribution Fitting for Windows v 4.5; Palisade Pub: New York, NY, USA, 2002. [Google Scholar]
- Llewellyn, R.S.; Brown, B. Predicting Adoption of Innovations by Farmers: What is Different in Smallholder Agriculture? Appl. Econ. Persp. Policy 2020, 42, 100–112. [Google Scholar] [CrossRef]
- Zepeda, E.A.; Barba, L.; Camacho, C. Tipología de Unidades de Producción en el Estado de Guanajuato Identificadas como parte de Proagro; CIMMYT Report: Texcoco, Mexico, 2017. [Google Scholar]
- CIMMYT. Bitacora Electronica MasAgro (BEM). Internal information from CIMMYT. 2016. Available online: http://bem.cimmyt.org (accessed on 10 December 2020).
- SIAP. Available online: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenProducto.do (accessed on 10 December 2020).
- Fernández Rivera, M. Evaluación de Variedades de Grass Pea (Lathyrus sativus L.) en Michoacán. 2018; Unpublished Data. [Google Scholar]
- Semillas Berentsen. Paquete Basico para Dietas y Concentrado—Grass pea. Servicios GAQ. 2015, 2016, 2017; Unpublished Data. [Google Scholar]
- Semillas Berentsen. Resumen de Ensayo con Grass Pea en Campeche. 2018; Unpublished Data. [Google Scholar]
- Indexmudi 2021. Available online: https://www.indexmundi.com/commodities/?commodity=corn&months=120¤cy=mxn (accessed on 15 February 2021).
- SAGARPA. Available online: https://www.gob.mx/cms/uploads/attachment/file/256428/B_sico-Frijol.pdf (accessed on 15 March 2021).
- Hay, R.K.M.; Gilbert, R.A. Variation in the harvest index of tropical maize: Evaluation of recent evidence from Mexico and Malawi. Ann. App. Biol. 2001, 138, 103–109. [Google Scholar] [CrossRef]
- Martínez, G.; CIMMYT, El Batán, Mexico. Personal communication, 2020.
- Van Loon, J.; CIMMYT, El Batán, Mexico. Personal communication, 2020.
- Ortíz Hernandez, E.; CIMMYT, Guanajuato, Mexico. Personal communication, 2021.
- Maharjan, K.L. The Effects of Altitude on Crop Farming and Cash Crop Use in Ilam District: Some Implications for Agricultural Policy. The Free Library. Research Centre for Nepal and Asian Studies. 2003. Available online: https://www.thefreelibrary.com/The+effects+of+altitude+on+crop+farming+and+cash+crop+use+in+Ilam...-a0113937397 (accessed on 5 April 2021).
- Bellon, M.R.; Adato, M.; Becerril, J.; Mindek, D. Poor farmers’ perceived benefits from different types of maize germplasm: The case of creolization in lowland tropical Mexico. World Dev. 2006, 34, 113–129. [Google Scholar] [CrossRef]
- Devkota, K.P.; McDonald, A.J.; Khadka, L.; Khadka, A.; Paudel, G.; Devkota, M. Fertilizers, hybrids, and the sustainable intensification of maize systems in the rainfed mid-hills of Nepal. Eur. J. Agron. 2016, 80, 154–167. [Google Scholar] [CrossRef]
- Campbell, C.G. Grass Pea. Lathyrus sativus L. Promoting the Conservation and Use of Underutilized and Neglected Crops. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy. 1997. Available online: https://www.bioversityinternational.org/fileadmin/_migrated/uploads/tx_news/Grass_pea__Lathyrus_sativus_L._430.pdf (accessed on 30 March 2021).
- Hanbury, C.D.; Siddique, K.H.M.; Galwey, N.W.; Cocks, P.S. Genotype environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 1999, 110, 45–60. [Google Scholar] [CrossRef]
- Almeida, N.; Rubiales, D.; Vaz Patto, M. Grass Pea. In Grain Legumes. Handbook of Plant Breeding; De Ron, A., Ed.; Springer: New York, NY, USA, 2015; Volume 10, Chapter VI; pp. 251–265. [Google Scholar]
- Dixit, G.P.; Parihar, A.K.; Bohra, A.; Singh, N.P. Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J. 2016, 4, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lessire, M.; Lebas, F. Grass Pea (Lathyrus sativus). Feedipedia, a Programme by Inrae, Cirad, AFZ and FAO. 2016. Available online: https://www.feedipedia.org/node/285 (accessed on 30 March 2021).
- Hanbury, C.D.; White, C.L.; Mullan, B.P.; Siddique, K.H.M. A review of the use and potential of Lathyrus sativus L. and L. cicera L. grain for animal feed. Anim. Feed Sci Tech. 2000, 87, 1–27. [Google Scholar] [CrossRef]
- Patto, M.C.V.; Skiba, B.; Pang, E.C.K.; Ochatt, S.J.; Lambein, F.; Rubiales, D. Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica 2006, 147, 133. [Google Scholar] [CrossRef]
- Abd El-Moneim, A.M.; van Dorrestein, B.; Baum, M.; Ryan, J.; Bejiga, G. Role of ICARDA in Improving the Nutritional Quality and Yield Potential of Grasspea (Lathyrus sativus L.), for Subsistence Farmers in Dry Areas. Lathyrus Lathyrism Newsl. 2001, 2, 55–58. [Google Scholar]
- Hillocks, R.J.; Maruthi, M.N. Grass pea (Lathyrus sativus): Is there a case for further crop improvement? Euphytica 2012, 186, 647–654. [Google Scholar] [CrossRef]
- Bohra, A.; Jha, U.C.; Kavi Kishor, P.B.; Pandey, S.; Singh, N.P. Genomics and molecular breeding in lesser explored pulse crops: Current trends and future opportunities. Biotechnol. Adv. 2014, 32, 1410–1428. [Google Scholar] [CrossRef]
- Sarker, A.; Fikre, A.; Abd El-Moneim, A.M.; Nakkoul, H.; Singh, M. Reducing anti-nutritional factor and enhancing yield with advancing time of planting and zinc application in grasspea in Ethiopia. J. Sci. Food Agric. 2017, 98, 27–32. [Google Scholar] [CrossRef]
- Crinó, P.; Polignano, G.B.; Tavoletti, S. Grass pea, a potentially important crop in Mediterranean agriculture. Grain Legumes 2004, 40, 6–7. [Google Scholar]
- Indian Council of Agricultural Research ICAR. Project Coordinator’s Report of all India Coordinated Research Project on Mungbean, Urdbean, Lentil, Lathyrus, Rajmash and Pea, New Delhi. 2009. Available online: https://icar.org.in/files/aicrp-report-2002-07/AICRPsCropScience.pdf (accessed on 30 March 2021).
- Gopal Sigh, R.; CIMMYT, El Batán, Mexico. Personal communication, 2021.
- Mongabay. 2019. Available online: https://india.mongabay.com/2019/05/toxic-debate-rages-on-over-cultivation-ban-on-khesari-dal/ (accessed on 30 April 2021).
- Baudron, F.; Sims, B.; Justice, S.; Kahan, D.G.; Rose, R.; Mkomwa, S.; Kaumbutho, P.; Sariah, J.; Nazere, R.; Ketsela, G.M.; et al. Re-examining appropriate mechanization in Eastern and Southern Africa: Two-wheel tractors, conservation agriculture, and private sector involvement. Food Secur. 2015, 7, 889–904. [Google Scholar] [CrossRef]
- Ramsey, S.; Bergtold, J.; Canales, E.; Williams, J. Effects of farmers’ yield-risk perceptions on conservation practice adoption in Kansas. J. Agric. Resour. Econ. 2019, 44, 380–403. [Google Scholar] [CrossRef]
- FIRA. 2013. Available online: https://www.youtube.com/watch?v=0U79-Ztg8Uw (accessed on 10 March 2021).
- Byerlee, D.; Depolanco, E.H. Farmers stepwise adoption of technological packages—Evidence from the Mexican Altiplano. Am. J. Agric. Econ. 1986, 68, 519–527. [Google Scholar] [CrossRef]
- Zepeda, A.; CIMMYT, El Batán, Mexico. Personal communication, 2021.
- Simtowe, F.; Amondo, E.; Marenya, P.; Rahut, D.; Sonder, K.; Erenstein, O. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda. Land Use Policy 2019, 88, 104091. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, F.; Ubels, J.; Woltering, L. The Scaling Scan- A practical tool to determine the strengths and weaknesses of your scaling ambition. PPPlab and CIMMYT, Mexico. 2018. Available online: https://ppplab.org/2018/11/3223/ (accessed on 10 March 2021).
- Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O. New parsimonious simulation methods and tools to assess future food and environmental security of farm populations. Philos. T. Roy. Soc. B 2014, 369, 20120280. [Google Scholar] [CrossRef] [Green Version]
Scenario | Crop Rotation-Area (ha) | Crop Yields t/ha + % Change over 10 Years | Stubble Fate | Seeding/Ploughing | No. of Machine Passes | Cost to Hire Machinery MXN/ha/Year | No. of Herbicide Applications per Crop | No. of N-P Fertiliser Applications per Crop | Other Changes Relative to Baseline/CA |
---|---|---|---|---|---|---|---|---|---|
Baseline | Maize—1.8 Sorghum—1.8 | 2.68 2.41 | 69% sold 1% incorp. 30% feed | Conv./Yes | 5 | 4000 | 1 | 2 | |
CA | Maize—1.2 Sorghum—1.2 Beans—1.2 | +30% +15% 1.16 +15% | 30% sold 63% cover 7% feed | Direct/No | 2 | 2400 (+single 4000 on 15 years) | 2 | 1 | 20% lower N in maize/sorghum |
NT | Maize—1.8 Sorghum—1.8 | 0% 0% | 50% sold 50% incorp. | Direct/No | 2 | 2400 (+single 1000 in year 8) | 2 | 2 | |
SC | Maize—1.8 Sorghum—1.8 | +15% +10% | 50% sold 38% cover 12% feed | Direct/Yes | 3 | 3600 | 1 | 2 | |
CD | Maize—1.2 Sorghum—1.2 Beans—1.2 | +15% +10% 1.16 | 80% sold 10% incorp. 10% feed | Conv./Yes | 5 | 4000 | 2 | 1 | 20% lower N in maize/sorghum |
NT + SC | Maize—1.8 Sorghum—1.8 | +15% +10% | 50% sold 50% cover | Direct/No | 2 | 2400 | 2 | 2 | |
NT + CD | Maize—1.2 Sorghum—1.2 Beans—1.2 | +15% +10% +0% | 80% sold 20% incorp. | Direct/No | 2 | 2400 | 2 | 1 | 20% lower N in maize/sorghum |
SC + CD | Maize—1.2 Sorghum—1.2 Beans—1.2 | +30% +20% +15% | 50% sold 50% cover | Direct/Yes | 3 | 3600 | 2 | 1 | 20% lower N in maize/sorghum |
CA + NewVar | Hybrid Maize—1.2 Sorghum—1.2 Beans—1.2 | 5.67 +30% +15% +15% | 30% sold 63% cover 7% feed | Direct/No | 2 | 2400 (+single 4000 on 15 years) | 2 | 1 | 4x hybrid seed cost, 20% lower N in sorghum, |
CA + NewLeg | Maize—1.2 Sorghum—1.2 Grass pea—1.2 | +30% +15% 2.03 + 15% | 30% sold 63% cover 7% feed | Direct/No | 2 | 2400 (+single 4000 on 15 years) | 2 (0 in GP) | 1 | Nov-Apr, lower HI, higher seed cost, 20% lower N in maize/sorghum |
Indicator | Baseline | Innovation Scenario | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average 10-Years Results (per annum, pa) | CA | NT | SC | CD | NT + SC | NT + CD | SC + CD | CA + NewVar | CA + NewLeg | |
Maize gross margin (MXN pa) | 7900 | 4991 | 5470 | 8174 | 4817 | 5744 | 4817 | 4991 | 17,688 | 4935 |
Sorghum gross margin (MXN pa) | 6239 | 3729 | 3809 | 6404 | 3693 | 3974 | 3693 | 3784 | 3729 | 4261 |
Legume gross margin (MXN pa) | 0 | 12,250 | 0 | 0 | 12,067 | 0 | 12,067 | 12,250 | 12,250 | 23,294 |
Horticulture gross margin (MXN pa) | 12,163 | 12,163 | 12,163 | 12,163 | 12,163 | 12,163 | 12,163 | 12,163 | 12,163 | 12,163 |
Cattle gross margin (MXN pa) | 30,438 | 29,782 | 36,861 | 29,405 | 36,484 | 36,321 | 36,688 | 36,688 | 29,070 | 26,696 |
Average male liveweight (kg pa) | 269 | 265 | 272 | 271 | 275 | 270 | 270 | 270 | 278 | 267 |
Calves born (no. pa) | 2.3 | 2.4 | 2.4 | 2.3 | 2.3 | 2.4 | 2.4 | 2.4 | 2.3 | 2.2 |
Purchased fodder (MXN pa) | 38,480 | 33,252 | 29,564 | 38,123 | 45,943 | 26,410 | 26,486 | 26,486 | 35,046 | 33,388 |
Hired labour (MXN pa) | 4488 | 4875 | 4875 | 3861 | 4875 | 4875 | 4875 | 4875 | 5502 | 4875 |
Overhead costs (MXN pa) | 10,000 | 8400 | 8400 | 9600 | 10,000 | 8400 | 8400 | 9600 | 8400 | 8400 |
Average farm net profit (MXN pa) | 3773 | 16,389 | 15,464 | 4563 | 8407 | 18,518 | 29,667 | 28,915 | 25,953 | 24,685 |
SD of net profit | 13,058 | 9422 | 10,308 | 11,988 | 9453 | 10,876 | 11,805 | 11,888 | 12,365 | 5192 |
CV of net profit | 3.46 | 0.54 | 0.66 | 2.11 | 1.08 | 0.59 | 0.37 | 0.38 | 0.48 | 0.21 |
Prob. of break-even p(π ≥ 0) (%) | 61% | 96% | 94% | 64% | 84% | 95% | 99% | 99% | 100% | 100% |
Downside risk (CVaR10) (MXN) | −19,144 | −15 | −3298 | −12,995 | −11,134 | −1599 | 10,505 | 9637 | 25,953 | 24,685 |
NPV of annual net profit (MXN) | 32,278 | 137,493 | 128,106 | 36,986 | 67,175 | 154,905 | 248,715 | 242,297 | 215,606 | 208,726 |
Net value of innovation (MXN) | 105,216 | 95,828 | 4709 | 34,897 | 122,627 | 216,438 | 210,019 | 183,329 | 176,448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monjardino, M.; López-Ridaura, S.; Van Loon, J.; Mottaleb, K.A.; Kruseman, G.; Zepeda, A.; Hernández, E.O.; Burgueño, J.; Singh, R.G.; Govaerts, B.; et al. Disaggregating the Value of Conservation Agriculture to Inform Smallholder Transition to Sustainable Farming: A Mexican Case Study. Agronomy 2021, 11, 1214. https://doi.org/10.3390/agronomy11061214
Monjardino M, López-Ridaura S, Van Loon J, Mottaleb KA, Kruseman G, Zepeda A, Hernández EO, Burgueño J, Singh RG, Govaerts B, et al. Disaggregating the Value of Conservation Agriculture to Inform Smallholder Transition to Sustainable Farming: A Mexican Case Study. Agronomy. 2021; 11(6):1214. https://doi.org/10.3390/agronomy11061214
Chicago/Turabian StyleMonjardino, Marta, Santiago López-Ridaura, Jelle Van Loon, Khondoker Abdul Mottaleb, Gideon Kruseman, Adaír Zepeda, Erick Ortiz Hernández, Juan Burgueño, Ravi Gopal Singh, Bram Govaerts, and et al. 2021. "Disaggregating the Value of Conservation Agriculture to Inform Smallholder Transition to Sustainable Farming: A Mexican Case Study" Agronomy 11, no. 6: 1214. https://doi.org/10.3390/agronomy11061214
APA StyleMonjardino, M., López-Ridaura, S., Van Loon, J., Mottaleb, K. A., Kruseman, G., Zepeda, A., Hernández, E. O., Burgueño, J., Singh, R. G., Govaerts, B., & Erenstein, O. (2021). Disaggregating the Value of Conservation Agriculture to Inform Smallholder Transition to Sustainable Farming: A Mexican Case Study. Agronomy, 11(6), 1214. https://doi.org/10.3390/agronomy11061214