Exploring the Relationship between Information-Seeking Behavior and Adoption of Biofertilizers among Onion Farmers
Abstract
:1. Introduction
2. Methodology
2.1. Survey Design
2.2. Sampling Procedure
2.3. Survey Data Collection
2.4. Data Analysis
3. Results
3.1. Socioeconomic Characteristics of Farmers
3.2. Farmers’ ISB
3.2.1. Types of Information Accessed
3.2.2. Information Sources
3.2.3. Clusters of Information-Seeking Behavior
3.3. Differences among BehaviorClusters According to Socioeconomic Characteristics
3.4. Factors Influencing the Adoption of Biofertilizers
4. Discussion
4.1. Farmers’ Information Seeking Behavior
4.2. Farmers’ Adoption Level of Biofertilizers
4.3. Factors Influencing Adoption of Biofertilizers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esposti, R. Knowledge, Technology and Innovations for a Bio-based Economy: Lessons from the Past, Challenges for the Future. Bio-Based Appl. Econ. 2012, 1, 235–268. [Google Scholar] [CrossRef]
- Radad, I.; Behzadi, H.; Zadehrahim, S. Information seeking behaviour of ordinary and elite saffron farmers in Iran. Electron. Libr. 2017, 35, 233–245. [Google Scholar] [CrossRef]
- Brhane, G.; Mammo, Y.; Negusse, G. Sources of information and information seeking behavior of smallholder farmers of tanqaabergelle wereda, central zone of tigray, Ethiopia. J. Agric. Ext. Rural Dev. 2017, 9, 47–52. [Google Scholar]
- Nwafor, C.U.; Ogundeji, A.A.; Van Der Westhuizen, C. Marketing Information Needs and Seeking Behaviour of Smallholder Livestock Farmers in the Eastern Cape Province, South Africa. J. Agric. Ext. 2020, 24, 98–114. [Google Scholar] [CrossRef]
- Naveed, M.A.; Hassan, A. Sustaining agriculture with information: An assessment of rural citrus farmers’ in-formation behaviour. Inform.Dev. 2020. [CrossRef]
- Brhane, G.; Mammo, Y.; Negusse, G. Determinants of information seeking behavior of smallholder farmers of tanqaabergelle woreda, Central Zone of Tigray, Ethiopia. J. Dev. Agric. Econ. 2017, 9, 121–128. [Google Scholar]
- Benard, R.; Frankwell, D.; Ngalapa, H. Assessment of Information Needs of Rice Farmers in Tanzania: A Case Study of Kilombero District, Morogoro; Library Philosophy and Practice, University of Nebraska: Lincoln, NE, USA, 2014. [Google Scholar]
- Msoffe, G.; Ngulube, P. Farmers’ access to poultry management information in selected rural areas of Tanzania. Libr. Inf. Sci. Res. 2016, 38, 265–271. [Google Scholar] [CrossRef]
- Savolainen, R. Modeling the interplay of information seeking and information sharing. Aslib J. Inf. Manag. 2019, 71, 518–534. [Google Scholar] [CrossRef]
- Kim, J. Scenarios in information seeking and information retrieval research: A methodological application and discussion. Libr. Inf. Sci. Res. 2012, 34, 300–307. [Google Scholar] [CrossRef]
- Al-Suqri, M.N.; Al-Aufi, A.S. Information Seeking Behavior and Technology Adoption: Theories and Trends; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Järvelin, K.; Wilson, T.D. On conceptual models for information seeking and retrieval research. Inform. Res. 2003, 9, 163. [Google Scholar]
- Kwanya, T. Information Resources Management Association Information Seeking Behaviour in Digital Library Contexts. In Library Science and Administration; IGI Global: Hershey, PA, USA, 2018; pp. 1384–1408. [Google Scholar]
- Kadir, M.R.A.; Johari, N.I.S.; Hussin, N. Information Needs and Information Seeking Behaviour: A Case Study on Students in Private University Library. Int. J. Acad. Res. Prog. Educ. Dev. 2018, 7, 226–235. [Google Scholar] [CrossRef]
- Mahindarathne, M.; Min, Q. Developing a model to explore the information seeking behaviour of farmers. J. Doc. 2018, 74, 781–803. [Google Scholar] [CrossRef]
- Kabir, K.H.; Roy, D.; Kuri, S.K. Information seeking behavior of the farmers to ensure sustainable agriculture. Eur. Acad. Res. 2014, 2, 3723–3734. [Google Scholar]
- Acheampong, L.D.; Frimpong, B.N.; Adu-Appiah, A.; Asante, B.O.; Asante, M.D. Assessing the information seeking behaviour and utilization of rice farmers in the Ejisu-Juaben municipality of Ashanti Region of Ghana. Agric. Food Secur. 2017, 6, 675. [Google Scholar] [CrossRef]
- Kassem, H.S.; Alotaibi, B.A.; Ghoneim, Y.A.; Diab, A.M. Mobile-based advisory services for sustainable agricul-ture: Assessing farmers’ information behavior. Inform. Dev. 2020. [CrossRef]
- Li, H.; Huang, D.; Ma, Q.; Qi, W.; Li, H. Factors Influencing the Technology Adoption Behaviours of Litchi Farmers in China. Sustainability 2019, 12, 271. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Yaseen, M.; Xu, S.; Yu, W.; Hassan, S. Farmers’ access to agricultural information sources: Evidences from rural Pakistan. J. Agric. Chem. Environ. 2016, 5, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Dhehibi, B.; Salah, M.B.; Frija, A.; Aw-Hassan, A.; Raisi, Y.M.A.; Bousaidi, I.A.; Amri, S.A.; Sobahi, S.A.; Shoaili, K.A. Predicting farmers’ willingness to adopt liquid pollination and polycarbonate drying house technologies: A case study from the date palm growers in the sultanate of Oman. Sustain. Agric. Res. 2018, 7, 18–30. [Google Scholar] [CrossRef]
- Folitse, B.Y.; Sam, J.; Dzandu, L.P.; Osei, S.K. Poultry Farmers’ Information Needs and Sources in Selected Rural Communities in the Greater Accra Region, Ghana. Int. Inf. Libr. Rev. 2017, 50, 1–12. [Google Scholar] [CrossRef]
- Mwalongo, S.; Akpo, E.; Lukurugu, G.A.; Muricho, G.; Vernooy, R.; Minja, A.; Ojiewo, C.; Njuguna, E.; Otieno, G.; Varshney, R. Factors Influencing Preferences and Adoption of Improved Groundnut Varieties among Farmers in Tanzania. Agronomy 2020, 10, 1271. [Google Scholar] [CrossRef]
- Mesfin, H.M.; Ahmed, M.H.; Abady, S. Determinants of Multiple Groundnut Technology Adoption in Eastern Ethiopia. Rev. Agric. Appl. Econ. 2016, 19, 51–60. [Google Scholar] [CrossRef]
- Liu, T.; Bruins, R.J.; Heberling, M.T. Factors influencing farmers’ adoption of best management practices: A review and synthesis. Sustainability 2018, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Sapbamrer, R.; Thammachai, A. A systematic review of factors influencing farmers’ adoption of organic farming. Sustainability 2021, 13, 3842. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 2020, 162, 31–87. [Google Scholar] [CrossRef]
- Suhag, M. Potential of biofertilizers to replace chemical fertilizers. Int. Adv. Res. J. Sci. Eng. Technol. 2016, 3, 163–167. [Google Scholar]
- Raimi, A.; Adeleke, R.; Roopnarain, A. Soil fertility challenges and biofertiliser as a viable alternative for in-creasing smallholder farmer crop productivity in sub-saharan Africa. Cogent Food Agric. 2017, 3, 1400933. [Google Scholar] [CrossRef]
- Walkiewicz, A.; Brzezińska, M.; Bieganowski, A.; Sas-Paszt, L.; Frąc, M. Early response of soil microbial biomass and activity to biofertilizer application in degraded brunicarenosol and abruptic luvisol of contrasting textures. Agronomy 2020, 10, 1347. [Google Scholar] [CrossRef]
- Ellafi, A.; Gadalla, A.; Galal, Y. Biofertilizers in action: Contributions of bnf in sustainable agricultural ecosystems. E-Int. Sci. Res. J. 2011, 3, 108–116. [Google Scholar]
- Cisse, A.; Arshad, A.; Wang, X.; Yattara, F.; Hu, Y. Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain. Agronomy 2019, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.; Reddy, M.; El Enshasy, H. Plant growth promoting rhizo-bacteria (pgpr) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; Rajvir, S.; Mishra, U.; Kumar, S.S. Role of bio-fertilizer in organic agriculture: A review. Res. J. Recent Sci. 2013, 2277, 2502. [Google Scholar]
- García-Fraile, P.; Menendez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Environ. Sci. 2015, 2, 183–205. [Google Scholar] [CrossRef]
- Rudrappa, T.; Czymmek, K.; Paré, P.W.; Bais, H.P. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria. Plant Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazid, M.; Khan, T.; Mohammad, F. Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 2011, 3, 232–249. [Google Scholar]
- Megali, L.; Schlau, B.; Rasmann, S. Soil microbial inoculation increases corn yield and insect attack. Agron. Sustain. Dev. 2015, 35, 1511–1519. [Google Scholar] [CrossRef]
- Thamer, S.; Schädler, M.; Bonte, D.; Ballhorn, D.J. Dual benefit from a belowground symbiosis: Nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 2010, 341, 209–219. [Google Scholar] [CrossRef]
- Romeh, A.; Hendawi, M. Bioremediation of certain organophosphorus pesticides by two biofertilizers, paeni-bacillus (bacillus) polymyxa (prazmowski) and azospirillumlipoferum (beijerinck). J. Agric. Sci. Technol. 2014, 16, 265–276. [Google Scholar]
- Khan, M. Microbiological solution to environmental problems—A review on bioremediation. Int. J. Pure Appl. BioSci. 2014, 2, 295–303. [Google Scholar]
- Babajide, P.; Akanbi, W.; Alamu, L.; Ewetola, E.; Olatunji, O. Growth, nodulation and biomass yield of soybean (glycine max l.) as influenced by bio-fertilizers under simulated eroded soil condition. Res. Crops 2009, 10, 29–34. [Google Scholar]
- Mukhopadhyay, S.; Maiti, S. Biofertilizer: Vam fungi–a future prospect for biological reclamation of mine degraded lands. Indian J. Environ. Protect. 2009, 29, 801–808. [Google Scholar]
- Zabbey, N.; Sam, K.; Onyebuchi, A.T. Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Sci. Total Environ. 2017, 586, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Anli, M.; Baslam, M.; Tahiri, A.-I.; Raklami, A.; Symanczik, S.; Boutasknit, A.; Ait-El-Mokhtar, M.; Ben-Laouane, R.; Toubali, S.; Rahou, Y.A.; et al. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. Front. Plant Sci. 2020, 11, 516818. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agricul-ture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Factories 2014, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hassen, A.I.; Bopape, F.; Sanger, L. Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 23–36. [Google Scholar]
- Falkenmark, M.; Rockström, J. Building Resilience to Drought in Desertification-Prone Savannas in Sub-Saharan Africa: The Water Perspective, Natural Resources Forum; Wiley Online Library: Hoboken, NJ, USA, 2008; pp. 93–102. [Google Scholar]
- FAOSTAT. Statistical Year Book: Saudi Arabia Country Profile; FAO: Rome, Italy, 2020. [Google Scholar]
- GAS. Detailed Results of Agricultural Census; General Authority for Statistics: Riyadh, Saudi Arabia, 2019. [Google Scholar]
- MEWA. Agronomic Practices of Onion; Ministry of Environment, Water, and Agriculture: Riyadh, Saudi Arabia, 2018.
- Petrovic, B.; Sękara, A.; Pokluda, R. Biofertilizers Enhance Quality of Onion. Agronomy 2020, 10, 1937. [Google Scholar] [CrossRef]
- Shedeed, S.I.; El-Sayed, S.; Bash, D.A. Effectiveness of bio-fertilizers with organic matter on the growth, yield and nutrient content of onion (Allium cepa L.) plants. Eur. Int. J. Sci. Technol. 2014, 3, 115–122. [Google Scholar]
- Kassem, H.S.; Alotaibi, B.A.; Ahmed, A.; Aldosri, F.O. Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms. Sustainability 2020, 12, 9647. [Google Scholar] [CrossRef]
- Adam, A.M. Sample Size Determination in Survey Research. J. Sci. Res. Rep. 2020, 26, 90–97. [Google Scholar] [CrossRef]
- Kassem, H.S. Farmers’ information seek behaviour at some districts in kafrelsheikh and behira governorates. J. Agric. Econ. Soc. Sci. 2015, 6, 537–554. [Google Scholar]
- Rahman, T.; Ara, S.; Khan, N.A. Agro-information Service and Information-seeking Behaviour of Small-scale Farmers in Rural Bangladesh. Asia-Pac. J. Rural. Dev. 2020, 30, 175–194. [Google Scholar] [CrossRef]
- Babu, S.C.; Glendenning, C.J.; Okyere, K.A.; Govindarajan, S.K. Farmers’ Information Needs and Search Behaviors: Case Study in Tamil Nadu, India; IFPRI Discussion Paper 01165; International Food Policy Research Institute: Washington, DC, USA, 2012. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, UK, 2010. [Google Scholar]
- Gujarati, D. Econometrics by Example; Macmillan: New York, NY, USA, 2012. [Google Scholar]
- Kassem, H.S.; Shabana, R.M.; Ghoneim, Y.A.; Alotaibi, B.M. Farmers’ perception of the quality of mobile-based extension services in egypt: A comparison between public and private provision. Inf. Dev. 2019, 36, 161–180. [Google Scholar] [CrossRef]
- Baconguis, R.; Peñalba, L.; Paunlagui, M. Mapping the innovation system of biofertilizers: Constraints and prospects to enhance diffusion. Am.-Eur. J. Agric. Environ. Sci. 2012, 12, 1185–1195. [Google Scholar]
- Bodake, H.; Gaikwad, S.; Shirke, V. Study of constraints faced by the farmers in adoption of biofertilizers. Int. J. Agric. Sci. 2009, 5, 292–294. [Google Scholar]
- Pathak, A.K.; Christopher, K. Study of socio-economic condition and constraints faced by the farmers in adoption of biofertilizer in Bhadohi district (Uttar Pradesh). J. Pharmacogn. Phytochem. 2019, 8, 1916–1917. [Google Scholar]
- Joshi, N.; Parmar, V.; Prajapati, P.; Kachhadiya, N.; Hadiya, N. Constraints faced by farmers in adoption of bio fertilizer. J. Pharmacogn. Phytochem. 2019, 8, 943–945. [Google Scholar]
- Khan, M.; Taunk, S.; Porte, S. Constraints faced by the farmers in adoption of bio-fertilizers and manure in rice crop. J. Plant Dev. Sci. 2016, 8, 451–455. [Google Scholar]
- Katole, R.; Chinchmalatpure, U.R.; More, G. Constraints faced by the farmers in adoption of biofertilizers. Agric. Update 2017, 12, 628–633. [Google Scholar] [CrossRef]
- Purohit, S.G.; Dodiya, J.M. Problems & issues in adoption of biofertilizers in agriculture by farmers. Int. Multidiscip. Res. 2014, 1, 1–3. [Google Scholar]
- Patel, D.; Mistry, J.; Patel, V. Farmers’perception on use of bio fertilizers. Guj. J. Ext. Educ. 2017, 28, 357–360. [Google Scholar]
- Atieno, M.; Herrmann, L.; Nguyen, H.T.; Phan, H.T.; Nguyen, N.K.; Srean, P.; Than, M.M.; Zhiyong, R.; Tittabutr, P.; Shutsrirung, A.; et al. Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. J. Environ. Manag. 2020, 275, 111300. [Google Scholar] [CrossRef]
- Raimi, A.; Roopnarain, A.; Adeleke, R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. Sci. Afr. 2021, 11, e00694. [Google Scholar]
- Srinivas, A.; Bhalekar, D. Extent of adoption of biofertilizers by the farmers in major crops in wardha district. J. Soils Crops 2013, 23, 365–368. [Google Scholar]
- Shalaby, A.H. Adoption of some biofertilizers among farmers in kafrel-sheikh governorate. J. Agric. Econ. Soc. Sci. 2011, 2, 103–116. [Google Scholar]
- Abd Elwaheed, M.A.; Ibrahim, H.M. Diffusion and adoption of biofertilizers among farmers in new lands in sohag governorate. J. Agric. Econ. Soc. Sci. 2011, 2, 1629–1642. [Google Scholar]
- Pathak, R.; Virang, N.; Choudhary, S.; Swarnakar, V.K. Study on know farmers using biofertilizers in pradesh was formulated with the with the following specific objective. Int. J. Agric. Innov. Res. 2016, 5, 49–53. [Google Scholar]
- Diptesh, C.; Chauhan, N. Extent of knowledge and adoption of biofertilizer use by biofertilizer users of Navsari district in gujarat state. Int. J. Manag. Soc. Sci. 2016, 4, 151–155. [Google Scholar]
- Kumar, R.; Bose, D.K. A Study on the Extent of Adoption of Biofertilizer by the Farmers in Etawah District of Uttar Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2853–2857. [Google Scholar] [CrossRef]
- Diptesh, C.; Chauhan, N. Knowledge and adoption of biofertilizer users. Guj. J. Ext. Educ. 2016, 27, 177–179. [Google Scholar]
- Grabowski, P.P.; Kerr, J.M.; Haggblade, S.; Kabwe, S. Determinants of adoption and disadoption of minimum tillage by cotton farmers in eastern Zambia. Agric. Ecosyst. Environ. 2016, 231, 54–67. [Google Scholar] [CrossRef]
- Komarek, A.M.; De Pinto, A.; Smith, V.H. A review of types of risks in agriculture: What we know and what we need to know. Agric. Syst. 2020, 178, 102738. [Google Scholar] [CrossRef]
- Elisabeth, D.A.A.; Mutmaidah, S.; Harsono, A. Adoption Determinants of Biofertilizer Technology for Soybean in Rainfed Area. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 347, p. 012114. [Google Scholar]
- AlSaleh, D.; Thakur, R. Impact of cognition, affect, and social factors on technology adoption. Int. J. Technol. Mark. 2019, 13, 178–200. [Google Scholar] [CrossRef]
- Au, A.K.; Enderwick, P. A cognitive model on attitude towards technology adoption. J. Manag. Psychol. 2000, 15, 266–282. [Google Scholar] [CrossRef]
- Lai, P. The Literature Review of Technology Adoption Models and Theories for the Novelty Technology. J. Inf. Syst. Technol. Manag. 2017, 14, 21–38. [Google Scholar] [CrossRef] [Green Version]
- LavaeiAdaryani, R.; Gholami, H.; Gholifar, E.; Ghasemi, J. Investigating the effects of innovation perceived characteristics on bio-fertilizers consumption among farmers (case study: Yengijeh village, Zanjan county). Iran. J. Agric. Econ. Dev. Res. 2019, 50, 333–345. [Google Scholar]
- Ezezika, O.C.; Lennox, R.; Daar, A.S. Strategies for building trust with farmers: The case of bt maize in South Africa. Agric. Food Secur. 2012, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
Variable (Symbol) | Definition and Assignment | Sign |
---|---|---|
Age (AGE) | Years of age | − |
) | Education status of farmer;dummy variable (1 if farmer had formal education, 0 otherwise) | + |
Main occupation (OCCU) | Main occupation status of farmer; dummy variable (1 if agriculture, 0 otherwise) | + |
Experience of onion planting (EXP) | Years of experience cultivating onions | + |
Onion farm size (FSIZE) | Cultivated area owned, in hectares | + |
Percentage of family income from onion (FINCO) | Percentage of total family income from onions in 2019 | + |
Membership in agricultural cooperatives (MCOOP) | Dichotomous variable (No = 0, Yes = 1) | + |
Biofertilizer training experience (BTRAIN) | Dichotomous variable (No = 0, Yes = 1) | + |
Attitude toward biofertilizers (BATTIT) | Categorical variable (apply immediately = 3, apply when good results appear = 2, apply when most others apply = 1) | − |
Number of sources (NSOUR) | Number of information sources farmer was exposed to; continuous variable | + |
Accessibility (ACCESS) | Frequency of access to information sources; continuous variable | + |
Credibility (CRED) | Trustworthiness of information obtained from sources; continuous variable | + |
Usefulness (USEFUL) | Quality of information obtained from sources; continuous variable | + |
Dependent variable | ||
Adoption of biofertilizers | Dichotomous variable (No = 0, Yes = 1) |
Farmers’ Characteristics | Number of Farmers = 228 | |
---|---|---|
Frequency | % | |
Age (min. = 21, max. = 80, mean = 52.72, SD = 10.59) | ||
Younger than 41 years | 30 | 13.1 |
41–60 years | 147 | 64.5 |
Older than 60 years | 51 | 22.4 |
Education level | ||
Primary school or below | 64 | 28.1 |
Intermediate | 83 | 36.4 |
Secondary | 64 | 28.1 |
University | 17 | 7.5 |
Main occupation | ||
Agriculture | 69 | 30.3 |
Non-agriculture | 36 | 15.8 |
Agriculture and business | 57 | 25.0 |
Agriculture and employment | 66 | 28.9 |
Experience with onion planting (min. = 2, max. = 28, mean = 10.95, SD = 5.50) | ||
Less than 11 years | 121 | 53.1 |
11–20 years | 93 | 40.8 |
More than 20 years | 14 | 6.1 |
Onion farm size (min. = 0.1, max. = 7, mean = 1.93, SD = 1.42) | ||
Less than 1 hectare | 103 | 45.1 |
1–2 hectares | 43 | 18.9 |
More than 2 hectares | 82 | 36.0 |
Percentage of family income from onion (min. = 10, max. = 85, mean = 35.93, SD = 19.71) | ||
Less than 25% | 116 | 50.9 |
25–50% | 58 | 25.4 |
51–75% | 34 | 14.9 |
More than 75% | 20 | 8.8 |
Membership in agricultural cooperative | ||
Yes | 115 | 50.4 |
No | 113 | 49.6 |
Biofertilizer training experience | ||
Yes | 73 | 32 |
No | 155 | 68 |
Attitude toward biofertilizers | ||
Apply immediately | 43 | 18.9 |
Apply when good results appear | 112 | 49.1 |
Apply when all others applied | 73 | 32 |
Adoption of biofertilizers | ||
Adopters | 81 | 35.5 |
Non-adopters | 147 | 64.5 |
Variable | Min. | Max. | Mean | Standard Deviation |
---|---|---|---|---|
Number of sources | 3 | 13 | 7.44 | 2.00 |
Accessibility | 1 | 4 | 2.59 | 0.42 |
Credibility | 1 | 4 | 2.18 | 0.57 |
Usefulness | 1 | 4 | 2.48 | 0.64 |
Clusters | Number of Farmers (%) | Number of Sources | Accessibility | Credibility | Usefulness | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Cluster I | 56 (24.56%) | 10.37 | 1.25 | 2.75 | 0.38 | 2.17 | 0.51 | 2.25 | 0.74 |
Cluster II | 115 (50.44%) | 7.11 | 0.39 | 2.61 | 0.37 | 2.26 | 0.61 | 2.52 | 0.58 |
Cluster III | 57 (25.0%) | 5.22 | 0.80 | 2.39 | 0.49 | 1.96 | 0.52 | 2.26 | 0.61 |
F | 363.1 ** | 68.31 ** | 193.78 ** | 277.83 ** |
Variables | Cluster I | Cluster II | Cluster III | Kruskal-Wallis Test | Dunn’s Test | ||||
---|---|---|---|---|---|---|---|---|---|
χ2 | p-Value | Mean Difference | Std. Error | p-Value | |||||
Age | 53.32 | 52.39 | 52.81 | 0.68 | 0.71 | ||||
Education level | 0.41 | 0.36 | 0.28 | 2.17 | 0.33 | ||||
Main occupation | 0.19 | 0.29 | 0.42 | 6.77 * | 0.03 | I–II | −11.31 | 8.55 | 0.18 |
I–III | −25.61 * | 9.87 | 0.03 | ||||||
II–III | −14.29 | 8.50 | 0.09 | ||||||
Experience with onion planting | 11.30 | 10.93 | 10.63 | 0.79 | 0.67 | ||||
Onion farm size | 2.13 | 1.88 | 1.84 | 1.93 | 0.38 | ||||
Percentage of family income from onion | 36.71 | 35.51 | 36.05 | 0.71 | 0.70 | ||||
Membership in agricultural cooperative | 0.55 | 0.51 | 0.44 | 1.55 | 0.46 | ||||
Biofertilizer training experience | 0.39 | 0.33 | 0.23 | 3.62 | 0.16 | ||||
Attitude toward biofertilizers | 1.83 | 1.85 | 1.92 | 0.54 | 0.76 | ||||
Adoption of biofertilizers | 0.27 | 0.36 | 0.44 | 3.58 | 0.17 |
Variable | Coefficients | Odds Ratio | Std. Err. | z | p > z |
---|---|---|---|---|---|
Constant | −5.555 | 0.004 | 1.810 | 9.418 | 0.002 |
Age | 0.019 | 1.020 | 0.019 | 1.018 | 0.313 |
Education level | 0.005 | 1.005 | 0.414 | 0.000 | 0.990 |
Main occupation | −0.197 | 0.821 | 0.281 | 0.491 | 0.484 |
Experience with onion planting | −0.004 | 0.996 | 0.044 | 0.008 | 0.929 |
Onion farm size | 0.582 ** | 1.790 | 0.173 | 11.371 | 0.001 |
Percentage of family income from onion | 0.013 | 1.013 | 0.012 | 1.069 | 0.301 |
Membership in agricultural cooperative | 0.680 | 1.973 | 0.479 | 2.014 | 0.156 |
Biofertilizer training experience | −0.466 | 0.627 | 0.414 | 1.270 | 0.260 |
Attitude toward biofertilizers | |||||
Apply when good results appear | −1.719 ** | 0.123 | 0.478 | 12.949 | 0.00 |
Apply when most others apply | −2.097 ** | 0.179 | 0.528 | 15.748 | 0.00 |
Number of sources | 0.271 ** | 0.762 | 0.101 | 7.253 | 0.007 |
Accessibility | 0.570 | 1.768 | 0.570 | 0.998 | 0.318 |
Credibility | 1.136 ** | 3.113 | 0.461 | 6.072 | 0.014 |
Usefulness | −0.371 | 0.690 | 0.341 | 1.180 | 0.277 |
chi-square (13) = 87.36 ** | |||||
Nagelkerke’s R2 = 0.482 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassem, H.S.; Alotaibi, B.A.; Aldosri, F.O.; Muddassir, M. Exploring the Relationship between Information-Seeking Behavior and Adoption of Biofertilizers among Onion Farmers. Agronomy 2021, 11, 1258. https://doi.org/10.3390/agronomy11061258
Kassem HS, Alotaibi BA, Aldosri FO, Muddassir M. Exploring the Relationship between Information-Seeking Behavior and Adoption of Biofertilizers among Onion Farmers. Agronomy. 2021; 11(6):1258. https://doi.org/10.3390/agronomy11061258
Chicago/Turabian StyleKassem, Hazem S., Bader Alhafi Alotaibi, Fahd O. Aldosri, and Muhammad Muddassir. 2021. "Exploring the Relationship between Information-Seeking Behavior and Adoption of Biofertilizers among Onion Farmers" Agronomy 11, no. 6: 1258. https://doi.org/10.3390/agronomy11061258
APA StyleKassem, H. S., Alotaibi, B. A., Aldosri, F. O., & Muddassir, M. (2021). Exploring the Relationship between Information-Seeking Behavior and Adoption of Biofertilizers among Onion Farmers. Agronomy, 11(6), 1258. https://doi.org/10.3390/agronomy11061258