Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Spraying Machine
2.2. The Deep Learning-Based Variable Rate Spraying System
2.3. Data Acquisition and Image Processing
2.4. DCNN Models Training and Testing
2.5. Electronic Mechanism
2.6. Research Plan
2.6.1. Lab Experiment
2.6.2. Field Experiment
3. Results
3.1. Validation Dataset Results of DCNNs Models
3.2. Laboratory Experiments
3.2.1. CNNs Models Performance Results for Weeds Classification
3.2.2. Performance Evaluation of Spraying System
3.3. Field Experiments
3.3.1. Deep Learning Models Results in The Field Experiment
3.3.2. Performance Evaluation of Spraying System in Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, S.I.; Ki, N.H. Autonomous speed sprayer using machine vision and fuzzylogic. Trans. Am. Soc. Agric. Eng. 1999, 42, 1137–1143. [Google Scholar] [CrossRef]
- Dessalegn, A.; Habtamu, A.; Ibrahim, H. Effect of Weeding Frequency on Weed Density, Intensity, Relative Yield Loss and Yield of Food Barley (Hordeom vulgare L.) Variety at Amuru District, Western Oromia. Am. J. Plant Biol. 2021. [Google Scholar] [CrossRef]
- Swanson, N.L.; Leu, A.; Abrahamson, J.; Wallet, B. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. J. Org. Syst. 2014, 9, 6–37. [Google Scholar]
- López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.; Mesas-Carrascosa, F.; Peña, J.M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric. 2016, 17, 183–199. [Google Scholar] [CrossRef]
- Jurado-Expósito, M.; López-Granados, F.; Gonzalez-Andujar, J.L.; Torres, L.G. Characterizing Population Growth Rate of in Wheat-Sunflower No-Tillage Systems Modelling the effects of climate change on weed population dynamics View project. Crop Sci. 2005, 45, 2106–2112. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Creech, C.F.; Henry, R.S.; Werle, R.; Sandell, L.D.; Hewitt, A.J.; Kruger, G.R. Performance of Postemergence Herbicides Applied at Different Carrier Volume Rates. Weed Technol. 2015, 29, 611–624. [Google Scholar] [CrossRef]
- Jorgensen, L.N.; Hovmøller, M.S.; Hansen, J.G.; Lassen, P.; Clark, B.; Bayles, R.; Berg, G. IPM Strategies and Their Dilemmas Including an Introduction to www.eurowheat.org. J. Integr. Agric. 2014, 13, 265–281. [Google Scholar] [CrossRef]
- Hillocks, R.J. Farming with fewer pesticides: Eu pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Weis, M.; Gutjahr, C.; Ayala, V.R.; Gerhards, R.; Ritter, C.; Scholderle, F. Precision farming for weed management: Techniques. Gesunde Pflanz. 2008, 60, 171–181. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Roger, J.M.; Rabatel, G.; Molto, E. Robotic weed control using machine vision. Biosyst. Eng. 2002, 83, 149–157. [Google Scholar] [CrossRef]
- Tian, L. Development of a sensor-based precision herbicide application system. Comput. Electron. Agric. 2002, 36, 133–149. [Google Scholar] [CrossRef]
- Tellaeche, A.; Burgos-Artizzub, X.P.; Pajaresa, G.; Ribeirob, A. A vision-based method for weeds identification through the bayesian decision theory. Pattern Recognit. Soc. 2008, 41, 521–530. [Google Scholar] [CrossRef]
- Sabancı, K.; Aydın, C. Smart robotic weed control system for sugar beet. J. Agric. Sci. Technol. 2017, 19, 73–83. [Google Scholar]
- Fennimore, S.A.; Slaughter, D.C.; Siemens, M.C.; Leon, R.G.; Saber, M.N. Technology for automation of weed control in specialty crops. Weed Technol. 2016, 30, 823–837. [Google Scholar] [CrossRef]
- Bechar, A.; Vigneault, C. Agricultural robots for field operations. Part 2: Operations and systems. Biosyst. Eng. 2017, 153, 110–128. [Google Scholar] [CrossRef]
- Yuan, H.; He, X. Herbicides deposit distribution with knapsacks prayer spraying. Plant Prot. 1998, 24, 41–42. [Google Scholar]
- Abdulridha, J.; Ehsani, R.; Abd-Elrahman, A.; Ampatzidis, Y. A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric. 2019, 156, 549–557. [Google Scholar] [CrossRef]
- Zou, J.; Zeng, A.; He, X. Research and development of infrared detection system for automatic target sprayer used in orchard. Trans. Chin. Soc. Agric. Eng. 2007, 23, 129–132. [Google Scholar]
- Bargen, K.V.; Meyer, G.E.; Mortensen, D.A. Red/near-infrared reflectance sensor system for detecting plants. Optics in Agriculture and Forestry. Int. Soc. Opt. Photonics 1993, 1836, 231–239. [Google Scholar] [CrossRef]
- Giles, D.K.; Delwiche, M.J.; Dodd, R.B. Sprayer control by sensing orchard crop characteristics: Orchard architecture and spray liquid savings. J. Agric. Eng. Res. 1989, 43, 271–289. [Google Scholar] [CrossRef]
- Palacin, J.; Palleja, T.; Tresanch, M.; Sanz, R. Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Trans. Instrum. Meas. 2007, 56, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Tona, E.; Ulbrich, H. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 2016, 146, 203–215. [Google Scholar] [CrossRef]
- Berenstein, R.; Shahar, O.; Shapiro, A.; Edan, Y. Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 2010, 3, 233–243. [Google Scholar] [CrossRef]
- Lee, W.S.; Slaughter, D.; Giles, D. Robotic weed control system for tomatoes. Precis. Agric. 1999, 1, 95–113. [Google Scholar] [CrossRef]
- Pajares, G.; García-Santillán, I.; Campos, Y.; Montalvo, M.; Jose Miguel Guerrero, J.; Emmi, L. Machine-vision systems selection for agricultural vehicles: A guide. J. Imaging 2016, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Lamm, R.D.; Slaughter, D.C.; Giles, D.K. Precision weed control system for cotton. Trans. ASAE 2002, 45, 231. [Google Scholar]
- Sun, H.; Li, M.Z.; Zhang, Q. Detection system of smart sprayer: Status, challenges, and perspectives. Int. J. Agric. Biol. Eng. 2012, 5, 10–23. [Google Scholar]
- Song, Y.; Sun, H.; Li, M.; Zhang, Q. Technology application of smart spray in agriculture: A review. Intell. Automat. Soft Comput. 2015, 21, 319–333. [Google Scholar] [CrossRef]
- Hijazi, B.; Decourselle, T.; Vulgarakis Minov, S.; Nuyttens, D.; Cointault, F.; Pieters, J. The use of high-speed imaging systems for applications in precision agriculture. In New Technologies—Trends, Innovations and Research; Volosencu, C., Ed.; INTECH: Rijeka, Croatia, 2012; pp. 279–296. [Google Scholar]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; Javadikia, H. Machine vision system for the automatic segmentation of plants under different lighting conditions. Biosyst. Eng. 2017, 161, 157–173. [Google Scholar] [CrossRef]
- Burgos-Artizzu, X.P.; Ribeiro, A.; Tellaeche, A.; Pajares, G.; Fernández-Quintanilla, C. Analysis of natural images processing for the extraction of agricultural elements. Image Vis. Comput. 2010, 28, 138–149. [Google Scholar] [CrossRef]
- Abbas, I.; Liu, J.; Faheem, M.; Noor, R.S.; Shaikh, S.A.; Solangi, K.A.; Raza, S.M. Different sensor based intelligent spraying systems in Agriculture. Sens. Actuators A Phys. 2020, 112265. [Google Scholar] [CrossRef]
- Zaman, Q.U.; Esau, T.J.; Schumann, A.W.; Percival, D.C.; Chang, Y.K.; Read, S.M.; Farooque, A.A. Development of prototype automated variable rate sprayer for real-time spot application of agrochemicals in wild blueberry fields. Comput. Electron. Agric. 2011, 76, 175–182. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B. Recent advances in convolutional neural networks. Pattern Recog. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Steward, B.L.; Tian, F.L.; Tang, L. Distance-based control system for machine vision-based selective spraying. Trans. ASAE 2002, 45, 1255. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Dyrmann, M.; Jørgensen, R.N.; Midtiby, H.S. RoboWeedSupport—Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. Adv. Anim. Biosci. 2017, 8, 842–847. [Google Scholar] [CrossRef]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padhy, R.P.; Verma, S.; Ahmad, S.; Choudhury, S.K.; Sa, P.K. Deep Neural Network for Autonomous UAV Navigation in Indoor Corridor Environments. Procedia Comput. Sci. 2018, 133, 643–650. [Google Scholar] [CrossRef]
- Dos Santos Ferreira, A.; Freitas, D.M.; da Silva, G.G.; Pistori, H. Weed detection in soybean crops using ConvNets. Comp. Electron. Agric. 2017, 143, 314–324. [Google Scholar] [CrossRef]
- McCool, C.; Perez, T.; Upcroft, B. Mixtures of lightweight deep convolutional neural networks: Applied to agricultural robotics. IEEE Robot. Autom. Lett. 2017, 2, 1344–1351. [Google Scholar] [CrossRef]
- Sa, I.; Chen, Z.; Popovic, M.; Khanna, R.; Liebisch, F.; Nieto, J.; Siegwart, R. Weed net: Dense semantic weed classification using multispectral images and mav for smart farming. IEEE Robot. Autom. Lett. 2018, 3, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Sun, M. A Survey on Deep Learning in Crop Planting. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 490, p. 062053. [Google Scholar]
- Milioto, A.; Lottes, P.; Stachniss, C. Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Hirz, M.; Walzel, B. Sensor and object recognition technologies for self-driving cars. Comput. Aided. Des. Appl. 2018, 15, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Chan, C.S.; Mayo, S.J.; Remagnino, P. How deep learning extracts and learns leaf features for plant classification. Pattern Recog. 2017, 71, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.G.; Moon, H.; Kwak, J.T.; Hassan, S.I.; Dang, M.; Lee, O.N.; Park, H.Y. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles. J. Appl. Remote Sens. 2017, 11, 042621. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Atila, Ü.; Uçar, M.; Akyol, K.; Uçar, E. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 2019. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Infor. Proc. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Yu, J.; Sharpe, S.M.; Schumann, A.W.; Boyd, N.S. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks. Pest Manag. Sci. 2019, 75, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.-R.; Chung, P.-C.; Wu, H.-Y.; Phan, Q.-H.; Yeh, J.-L.A.; Hou, M.T.-K. Detection of Strawberry Diseases Using a Convolutional Neural Network. Plants 2021, 10, 31. [Google Scholar] [CrossRef] [PubMed]
Context | Description | Context | Description |
---|---|---|---|
A | weeds completely sprayed | CS = % of weeds completely sprayed | State A/total weeds (%) |
B | weeds incompletely sprayed | IS = % of weeds incompletely sprayed | State B/total weeds (%) |
C | weeds not sprayed | NS = % of missed weeds | State C/total weeds (%) |
D | non-weeds are sprayed | MS = % of mistakenly sprayed | State D/total weeds (%) |
Neural Network | Overall Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
VGG-16 | 0.97 | 0.98 | 0.97 | 0.97 |
GoogleNet | 0.96 | 0.96 | 0.97 | 0.96 |
AlexNet | 0.95 | 0.95 | 0.96 | 0.95 |
Neural Network | Sprayer Speed km/h | Overall Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
VGG-16 | 1 | 0.95 | 0.96 | 0.94 | 0.94 |
3 | 0.94 | 0.95 | 0.92 | 0.93 | |
5 | 0.87 | 0.88 | 0.85 | 0.86 | |
GoogleNet | 1 | 0.93 | 0.94 | 0.92 | 0.92 |
3 | 0.93 | 0.93 | 0.91 | 0.91 | |
5 | 0.85 | 0.86 | 0.83 | 0.84 | |
AlexNet | 1 | 0.91 | 0.92 | 0.90 | 0.90 |
3 | 0.90 | 0.91 | 0.88 | 0.89 | |
5 | 0.83 | 0.84 | 0.81 | 0.82 |
Neural Network | Sprayer Speed km/h | State A Average Data | State B Average Data | State C Average Data | State D Average Data | CS% | IS% | NS% | MS% |
---|---|---|---|---|---|---|---|---|---|
VGG-16 | 1 | 28 | 1 | 1 | 0 | 93 | 3 | 3 | 0 |
3 | 28 | 0 | 2 | 0 | 93 | 0 | 7 | 0 | |
5 | 24 | 0 | 6 | 0 | 80 | 0 | 20 | 0 | |
GoogleNet | 1 | 27 | 1 | 2 | 0 | 90 | 3 | 6 | 0 |
2 | 26 | 1 | 3 | 0 | 87 | 3 | 10 | 0 | |
5 | 23 | 1 | 6 | 0 | 76 | 3 | 20 | 0 | |
AlexNet | 1 | 26 | 1 | 3 | 0 | 87 | 3 | 10 | 0 |
2 | 25 | 1 | 4 | 0 | 83 | 3 | 13 | 0 | |
5 | 21 | 1 | 8 | 0 | 70 | 3 | 26 | 0 |
Neural Network | Overall Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
VGG-16 | 0.89 | 0.90 | 0.88 | 0.88 |
GoogleNet | 0.87 | 0.88 | 0.85 | 0.86 |
AlexNet | 0.83 | 0.85 | 0.81 | 0.82 |
Neural Network | State A Average Data | State B Average Data | State C Average Data | State D Average Data | CS% | IS% | NS% | MS% |
---|---|---|---|---|---|---|---|---|
VGG-16 | 26 | 1 | 3 | 0 | 86 | 3 | 10 | 0 |
GoogleNet | 25 | 1 | 3 | 1 | 83 | 3 | 10 | 3 |
AlexNet | 23 | 1 | 5 | 1 | 77 | 3 | 17 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. https://doi.org/10.3390/agronomy11081480
Liu J, Abbas I, Noor RS. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy. 2021; 11(8):1480. https://doi.org/10.3390/agronomy11081480
Chicago/Turabian StyleLiu, Jizhan, Irfan Abbas, and Rana Shahzad Noor. 2021. "Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop" Agronomy 11, no. 8: 1480. https://doi.org/10.3390/agronomy11081480
APA StyleLiu, J., Abbas, I., & Noor, R. S. (2021). Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy, 11(8), 1480. https://doi.org/10.3390/agronomy11081480