The Effect of the Foliar Application of Biostimulants and Fertilisers on the Growth and Physiological Parameters of Maiden Apple Trees Cultivated with Limited Mineral Fertilisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Biostimulants and Fertiliser Experiment
2.3. Plant Measurements and Experimental Design
2.4. Data Analysis
3. Results
3.1. Biometric Parameters
Control | Amino–Plant | Biamino Plant | Bispeed | Fylloton | Basfoliar 6–12–6 | Basfoliar 12–4–6+S | Mean for Cultivar | ||
---|---|---|---|---|---|---|---|---|---|
Height (cm) | Gala Schniga | 136.0 hi | 152.6 lm | 146.6 j–m | 149.5 k–m | 149.4 k–m | 147.9 k–m | 144.4 i–l | 146.6 c |
Ligol | 106.3 a | 118.6 c–f | 122.9 e–g | 125.8 fg | 130.8 gh | 116.3 b–e | 123.2 e–g | 120.6 b | |
R. Boskoop | 138.6 h–j | 149.0 k–m | 147.5 k–m | 143.1 i–k | 138.4 h–j | 150.7 k–m | 154.8 m | 146.0 c | |
Topaz | 107.9 ab | 121.7 c–f | 124.8 fg | 122.5 d–f | 117.5 c–f | 113.7 a–c | 114.4 a–d | 117.5 a | |
Mean for treatment | 122.2 a | 135.5 c | 135.5 bc | 135.3 bc | 134.0 bc | 132.1 b | 134.2 bc | ||
Diameter (mm) | Gala Schniga | 11.4 a–c | 12.6 f–l | 12.4 d–k | 12.9 j–l | 12.2 c–k | 12.4 d–l | 12.1 b–j | 12.3 b |
Ligol | 10.7 a | 11.1 ab | 11.8 b–h | 11.2 a–c | 12.6 f–l | 11.5 a–d | 11.7 b–f | 11.5 a | |
R. Boskoop | 11.9 b–i | 12.8 i–l | 12.8 h–l | 12.7 g–l | 12.2 c–k | 13.3 l | 12.8 i–l | 12.6 c | |
Topaz | 11.6 a–e | 12.5 e–l | 12.5 e–l | 13.1 k–l | 12.5 e–l | 12.6 e–l | 11.8 b–g | 12.4 b | |
Mean for treatments | 11.4 a | 12.3 bc | 12.4 bc | 12.5 c | 12.4 bc | 12.5 bc | 12.1 b | ||
Sum of long shoots | Gala Schniga | 75.6 f–i | 156.3 n | 133.5 mn | 159.4 n | 124.5 lm | 114.9 k–m | 108.9 j–m | 124.7 c |
Ligol | 36.7 a–d | 51.4 b–f | 82.7 g–j | 57.5 c–g | 97.3 i–l | 39.9 a–d | 90.8 h–k | 65.2 b | |
R. Boskoop | 33.4 a–d | 30.0 a–c | 27.4 ab | 42.3 a–e | 40.9 a–d | 39.8 a–d | 53.0 b–g | 38.1 a | |
Topaz | 19.7 a | 40.7 a–d | 72.1 e–i | 62.1 d–h | 45.8 a–f | 38.7 a–d | 41.7 a–d | 45.9 a | |
Mean for treatment | 41.4 a | 69.6 bc | 78.9 c | 80.3 c | 77.1 c | 58.2 b | 73.6 c | ||
Number of lateral shoots | Gala Schniga | 3.6 i–k | 5.7 m | 4.9 lm | 5.2 lm | 5.1 lm | 4.3 kl | 3.8 jk | 4.7 c |
Ligol | 1.2 ab | 2.3 c–f | 3.3 g–j | 2.4 d–g | 3.4 h–k | 1.6 a–e | 2.6 e–h | 2.4 b | |
R. Boskoop | 1.1 ab | 0.7 a | 0.9 a | 1.2 ab | 1.4 a–d | 1.3 a–c | 1.4 a–d | 1.2 a | |
Topaz | 1.2 ab | 2.7 f–i | 2.6 e–h | 2.5 e–h | 2.5 e–h | 2.1 b–f | 2.3 d–g | 2.3 b | |
Mean for treatment | 1.8 a | 2.7 cd | 2.9 cd | 2.8 cd | 3.1 d | 2.3 b | 2.5 bc | ||
Fresh weight of plants (g) | Gala Schniga | 401.1 b–e | 550.0 mn | 517.2 k–n | 505.6 i–n | 476.1 f–k | 476.7 g–k | 472.2 f–k | 485.6 b |
Ligol | 388.9 b–d | 451.1 e–j | 538.9 l–n | 524.4 k–n | 494.4 h–m | 486.7 g–l | 504.4 h–m | 484.1 b | |
R. Boskoop | 321.7 a | 448.9 d–i | 402.2 b–e | 426.7 c–g | 353.9 ab | 429.4 c–g | 416.1 c–f | 399.8 a | |
Topaz | 375.0 a–c | 510.0 j–n | 542.8 l–n | 565.6 n | 482.8 g–l | 473.9 f–k | 444.4 d–h | 484.9 b | |
Mean for treatment | 371.7 a | 490.0 cd | 500.3 d | 505.6 d | 451.8 b | 466.7 bc | 459.3 b |
3.2. Physiological Parameters
Control | Amino–Plant | Biamino Plant | Bispeed | Fylloton | Basf. 6–12–6 | Basf. 12–4–6+S | Mean for Cultivar | ||
---|---|---|---|---|---|---|---|---|---|
Pn | Gala S. | 24.6 e–j * | 22.4 ab | 22.9 b–d | 23.8 c–g | 25.0 h–j | 25.7 j | 24.2 e–i | 24.1 b |
Ligol | 25.5 j | 25.4 ij | 24.7 f–j | 22.8 bc | 22.2 ab | 25.6 j | 24.1 e–h | 24.3 b | |
R. Boskoop | 21.5 a | 23.9 c–g | 23.9 d–h | 23.9 d–g | 23.7 c–f | 24.4 e–i | 23.6 c–e | 23.6 a | |
Topaz | 24.8 f–j | 24.8 g–j | 23.8 c–f | 24.1 e–h | 22.3 ab | 25.0 h–j | 24.6 e–j | 24.2 b | |
Mean for treatment | 24.1 c | 24.1 c | 23.8 bc | 23.6 b | 23.3 a | 25.2 d | 24.1 c | ||
E | Gala S. | 1.7 b * | 1.4 a | 1.8 bc | 2.1 f–h | 2.3 hi | 2.4 i | 2.3 g–i | 2.0 a |
Ligol | 1.8 bc | 2.1 fg | 2.0 d–f | 1.9 cd | 1.9 c–e | 2.0 d–f | 1.8 bc | 2.0 a | |
R. Boskoop | 1.8 bc | 1.8 bc | 1.8 bc | 2.1 e–g | 2.0 d–f | 2.2 f–h | 2.2 f–h | 2.0 a | |
Topaz | 2.9 j | 3.2 k | 3.3 kl | 3.5 lm | 3.4 lm | 3.4 lm | 3.5 m | 3.3 b | |
Mean for treatment | 2.1 a | 2.2 b | 2.3 c | 2.4 d | 2.4 de | 2.6 f | 2.5 ef | ||
C | Gala S. | 125.9 b–f * | 102.5 ab | 123.7 b–e | 139.5 c–j | 147.1 d–j | 133.5 c–h | 142.5 c–j | 130.7 a |
Ligol | 144.2 c–j | 140.3 c–j | 124.9 b–e | 125.7 b–e | 131.2 c–g | 135.2 c–h | 119.7 a–c | 131.6 a | |
R. Boskoop | 132.5 c–h | 133.8 c–h | 132.3 c–h | 97.5 a | 138.7 c–i | 163.0 j | 122.1 b–d | 131.4 a | |
Topaz | 147.4 e–j | 154.8 h–j | 148.9 f–j | 132.9 c–h | 161.1 ij | 150.8 g–j | 153.7 h–j | 149.9 b | |
Mean for treatment | 137.5 bc | 132.8 b | 132.4 b | 123.9 a | 144.5 c | 145.6 c | 134.5 b | ||
I | Gala S. | 211.0 b–d * | 181.7 a | 225.7 d–f | 258.1 j–m | 251.2 h–k | 222.7 d–f | 250.5 g–k | 228.7 b |
Ligol | 228.5 d–f | 235.6 e–h | 224.7 d–f | 238.8 f–i | 258.0 j–l | 230.0 d–g | 226.5 d–f | 234.6 c | |
R. Boskoop | 187.0 a | 196.7 ab | 193.5 ab | 228.2 d–f | 217.8 c–e | 242.9 f–j | 199.2 a–c | 209.3 a | |
Topaz | 256.4 i–l | 271.7 l–n | 281.8 n | 270.1 k–n | 277.5 mn | 251.9 h–k | 271.5 l–n | 268.7 d | |
Mean for treatment | 220.7 a | 221.4 a | 231.4 b | 248.8 c | 251.1 c | 236.9 b | 236.9 b |
4. Discussion
4.1. Growth
4.2. Physiological Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, S.; Neilsen, D.; Neilsen, G.H.; Fuchigami, L.H. Foliar N application reduces soil NO3−-N leaching loss in apple orchards. Plant Soil 2005, 268, 357–366. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Pokluda, R.; Abdelwahab, M. Influence of compost, microorganisms and NPK fertilizer upon growth, chem-ical composition and essential oil production of Rosmarinus officinalis L. Not. Bot. Hort. Agrobot. 2007, 35, 86–90. [Google Scholar] [CrossRef]
- Totten, F.W.; Liu, H.; Mccarty, L.B.; Baldwin, C.M.; Bielenberg, D.G.; Toler, J.E. Efficiency of Foliar Versus Granular Fertilization: A Field Study of Creeping Bentgrass Performance. J. Plant Nutr. 2008, 31, 972–982. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T. Uptake of Hydrophilic Solutes through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, P. Uptake of mineral nutrients from foliar fertilization. J. Fruit Ornam. Plant Res. 2004, 12, 201–218. [Google Scholar]
- Pfeiffer, B.; Eis, B.; Zimmer, J.; Fieger-Metag, N. Optimizing crop loading of apples and pears—Results (foliar fertilizers, thinning). In Proceedings of the Ecofruit. 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 18–20 February 2008; pp. 324–329. [Google Scholar]
- Amiri, M.E.; Fallahi, E.; Golchin, A. Influence of Foliar and Ground Fertilization on Yield, Fruit Quality, and Soil, Leaf, and Fruit Mineral Nutrients in Apple. J. Plant Nutr. 2008, 31, 515–525. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z. Effect of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield. Agric. Sci. Technol. 2015, 16, 947–950. [Google Scholar]
- Bi, G.; Scagel, C. Nitrogen foliar feeding has advantages. Nurs. Manage. Prod. 2007, 23, 43–46. [Google Scholar]
- Ertani, A.; Schiavon, M.; Altissimo, A.; Franceschi, C.; Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 2011, 174, 496–503. [Google Scholar] [CrossRef]
- Ghannam, A.; Abbas, A.; Alek, H.; Al-Waari, Z.; Al-Ktaifani, M. Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol. Mol. Plant Pathol. 2013, 84, 19–27. [Google Scholar] [CrossRef]
- Vijayanand, N.; Ramya, S.S.; Rathinavel, S. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pac. J. Reprod. 2014, 3, 150–155. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A Systematic Approach to Discover and Characterize Natural Plant Biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakhin, O.I.; Lubyanov, A.; Yakhin, I.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Wally, O.S.D.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.S.; Baigorri, R.; Cruz, F.; et al. Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Matsubayashi, Y.; Sakagami, Y. Peptide hormones in plants. Annu. Rev. Plant Biol. 2006, 57, 649–674. [Google Scholar] [CrossRef]
- Maini, P. The experience of the first biostimulant, based on amino acids and peptides: A short retrospective review on the laboratory researches and the practical results. Fertil. Agrorum 2006, 1, 29–43. [Google Scholar]
- Grabowska, A.; Kunicki, E.; Sękara, A.; Kalisz, A.; Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 2012, 77, 37–48. [Google Scholar] [CrossRef]
- Kunicki, E.; Grabowska, A.; Sękara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Gajc-Wolska, J.; Kowalczyk, K.; Nowecka, M.; Mazur, K.; Metera, A. Effect of organic-mineral fertilizers on the yield and quality of endive (Cichorium endivia L.). Acta Sci. Pol. Hortorum Cultus 2012, 11, 189–200. [Google Scholar]
- Mladenova, Y.I.; Maini, P.; Mallegni, C.; Goltsev, V.; Vladova, R.; Vinarova, K.; Rotcheva, S. Siapton—An amino-acid-based biostimulant reducing osmostress metabolic changes in maize. Agro. Food Ind. Hi-Tech. 1998, 9, 18–22. [Google Scholar]
- Djanaguiraman, M.; Sheeba, J.A.; Devi, D.D.; Bangarusamy, U. Effect of Atonik Seed Treatment on Seedling Physiology of Cotton and Tomato. J. Biol. Sci. 2005, 5, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Sheeba, J.A.; Devi, D.D.; Bangarusamy, U. Response of Cotton to Atonik and TIBA for Growth, Enzymes and Yield. J. Biol. Sci. 2005, 5, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Basak, A. Effect of Preharvest Treatment with Seaweed Products, Kelpak® and Goëmar BM 86®, on Fruit Quality in Apple. Int. J. Fruit Sci. 2008, 8, 1–14. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 2006, 20, 156–161. [Google Scholar]
- Colavita, G.; Spera, N.; Blackhall, V.; Sepulveda, G. EFFECT OF SEAWEED EXTRACT ON PEAR FRUIT QUALITY AND YIELD. Acta Hortic. 2011, 909, 601–607. [Google Scholar] [CrossRef]
- Alam, M.Z.; Braun, G.; Norrie, J.; Hodges, D.M. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci. 2013, 93, 23–36. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Ervin, E.H. Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance. Crop. Sci. 2010, 50, 316–320. [Google Scholar] [CrossRef]
- Kocira, S.; Sujak, A.; Kocira, A.; Wójtowicz, A.; Oniszczuk, A. Effect of Fylloton Application on Photosynthetic Activity of Moldavian Dragonhead (Dracocephalum moldavica L.). Agric. Agric. Sci. Procedia 2015, 7, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Sivasankari, S.; Venkatesalu, V.; Anantharaj, M.; Chandrasekaran, M. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresour. Technol. 2006, 97, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Gordon-Weeks, R.; Shen, Q.; Miller, A.J. Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. J. Exp. Bot. 2006, 57, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, S.A.; Wang, L.; Farooq, M.; Xue, L.; Ali, S. Fulvic Acid Application Improves the Maize Performance under Well-watered and Drought Conditions. J. Agron. Crop. Sci. 2011, 197, 409–417. [Google Scholar] [CrossRef]
- Ferrini, F.; Nicese, F. Response of English Oak (Quercus robur L.) Trees to biostimulants application in the urban environ-ment. J. Arboric. 2002, 28, 70–75. [Google Scholar]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2013, 1009, 29–35. [Google Scholar] [CrossRef]
- Cristiano, G.; Pallozzi, E.; Conversa, G.; Tufarelli, V.; De Lucia, B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.). Front. Plant Sci. 2018, 9, 861. [Google Scholar] [CrossRef]
- Molassiotis, A.; Job, D.; Ziogas, V.; Tanou, G. Citrus Plants: A Model System for Unlocking the Secrets of NO and ROS-Inspired Priming Against Salinity and Drought. Front. Plant Sci. 2016, 7, 229. [Google Scholar] [CrossRef] [Green Version]
- Rios, J.J.; Carrasco-Gil, S.; Abadía, A.; Abadía, J. Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers. Front. Plant Sci. 2016, 7, 893. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, P.; Gubbuk, H.; Akgül, H.; Gunes, E.; Ucgun, K.; Koçal, H.; Küçükyumuk, C. Response of ‘granny smith’ apple trees to foliar titanium sprays under conditions of low soil availability of iron, manganese, and zinc. J. Plant Nutr. 2010, 33, 1914–1925. [Google Scholar] [CrossRef]
- Świerczyński, S.; Stachowiak, A. The influence of three fertilizers and preparation Gibrescol used as the foliage spraying on the growth and nutritional status of maiden apple trees in a nursery. Ann. Univ. Mariae Curie-Skłodowska. Sect. E Agric. 2009, 64, 78–85. [Google Scholar]
- Świerczyński, S.; Stachowiak, A.; Golcz, M. Effect of promalin and foliar fertilizers on the growth of maiden trees of two apple cultivars in a nursery. Rocz. Ar. Pozn. 2005, 39, 97–102. [Google Scholar]
- Mondragón-Valero, A.; Malheiro, R.; Salazar Hernández, D.M.; Pereira, J.A.; López-Cortés, I. Changes produced by the ap-plication of biostimulants on almond rootstocks properties during the nursery process. Adv. Agric. Bot. 2019, 11, 56–71. [Google Scholar]
- Saa, S.; Rio, A.O.-D.; Castro, S.; Brown, P.H. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Front. Plant Sci. 2015, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Paunović, S.M.; Miletić, R.; Janković, D.; Janković, S.; Mitrović, M. Effect of Humisol on survival and growth of nursery grafted walnut (Juglans regia L.) plants. Hortic. Sci. 2013, 40, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Popenoe, J.; Wilber, L.; Chen, J.J. Biostimulants have minimal effect on the growth of some woody nursery plants. In Proceedings of the Florida State Horticultural Society, Tampa, FL, USA, 4–6 June 2017; Volume 130, pp. 240–244. [Google Scholar]
- Grzyb, Z.S.; Piotrowski, W.; Bielicki, P.; Paszt, L.S.; Malusà, E. Effect of different fertilizers and amendments on the growth of apple and sour cherry rootstocks in an organic nursery. J. Fruit Ornam. Plant Res. 2012, 20, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Grzyb, Z.S.; Piotrowski, W.; Sas Paszt, L. Treatments comparison of mineral and bio fertilizers in the apple and sour cherry organic nursery. J. Life Sci. 2014, 8, 889–898. [Google Scholar] [CrossRef]
- Thalheimer, M.; Paoli, N. Effectiveness of various leaf-applied biostimulants on productivity and fruit quality of apple. Acta Hortic. 2002, 594, 335–339. [Google Scholar] [CrossRef]
- Masny, A.; Basak, A.; Żurawicz, E. Effect of foliar application of Kelpak and Goemar BM 86 preparations on yield and fruit quality in two strawberry cultivars. J. Fruit Ornam. Plant Res. 2004, 12, 23–27. [Google Scholar]
- Świerczyński, S.; Borowiak, K.; Bosiacki, M.; Urbaniak, M.; Malinowska, A. Estimation of the growth of ‘vanda’ maiden sweet cherry trees on three rootstocks and after aplication of foliar fertilization in a nursery. Acta Sci. Pol. Hortorum Cultus 2019, 18, 109–118. [Google Scholar] [CrossRef]
- Rozpara, E.; Pąśko, M.; Bielicki, P.; Sas Paszt, L. Influence of various bio-fertilizers on the growth and fruiting of ‘Ariwa’ apple trees growing in an organic orchard. J. Res. Appl. Agric. Eng. 2014, 59, 65–68. [Google Scholar]
- Mosa, W.-G.; Paszt, L.; Frąc, M.; Przybył, M.; Treder, W.; Klamkowski, K.; Trzciński, P. The influence of biofertilization on the growth, yield and fruit quality of cv. Topaz apple trees. Hortic. Sci. 2016, 43, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Żurawicz, E.; Masny, A.; Basak, A. Productivity stimulation in strawberry by application of plant bioregulators. Acta Hortic. 2004, 653, 155–160. [Google Scholar] [CrossRef]
- Botta, A.; Marin, C.; Piñol, R.; Ruz, L.; Badosa, E.; Montesinos, E. Study of the mode of action of inicium®, A product developed specifically to overcome transplant stress in strawberry plants. Acta Hortic. 2009, 842, 721–724. [Google Scholar] [CrossRef]
- Lisiecka, J.; Knaflewski, M.; Spiżewski, T.; Frąszczak, B.; Kałużewicz, A.; Krzesiński, W. The effect of animal protein hy-drolysate on quantity and quality of strawberry daughter plants cv. ‘Elsanta’. Acta Sci. Pol. Hortorum Cultus 2011, 10, 31–40. [Google Scholar]
- Klimek, K.; Kapłan, M.; Najda, A. Effect of growth regulators on quality of apple tree maidens. Acta Agrophysica 2018, 25, 277–288. [Google Scholar] [CrossRef]
- Wysocki, K.; Banaszkiewicz, T.; Kopytowski, J. The effect of Asahi SL and Polyversum WP preparations on the chemical composition of strawberry fruits. Pol. J. Nat. Sci. 2017, 32, 439–450. [Google Scholar]
- Grzyb, Z.S.; Piotrowski, W.; Bielicki, P.; Paszt, L.S. Quality of Apple Maidens as Influenced by the Frequency of Application of Different Fertilizers in the Organic Nursery—Preliminary Results. J. Fruit Ornam. Plant Res. 2012, 20, 41–49. [Google Scholar] [CrossRef]
- Norrie, J.; Branson, T.; Keathley, P. Marine plant extracts impact on grape yield and quality. Acta Hortic. 2002, 594, 315–319. [Google Scholar] [CrossRef]
- Grzyb, Z.S.; Piotrowski, W.; Sas Paszt, L.; Bielicki, P. The quality of sour cherry maidens fertilized with various bioprepara-tions in an organic nursery. J. Life Sci. 2013, 7, 400–409. [Google Scholar]
- Grzyb, Z.S.; Piotrowski, W.; Sas Paszt, L. The residual effects of various bioproducts and soil conditioners applied in the organic nursery on apple tree performance in the period of two years after transplanting. J. Res. Appl. Agric. Eng. 2015, 60, 109–113. [Google Scholar]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef]
- Berbara, R.L.L.; García, A.C. Humic substances and plant defense metabolism. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Ahmad, P., Wani, M.R., Eds.; Springer: New York, NY, USA, 2014; Volume 1, pp. 297–319. [Google Scholar]
- Khan, I.A.; Khatri, A.; Nizamani, G.S.; Siddiqui, M.A.; Raza, S.; Dahar, N. Effect of NPK fertilizers on the growth of sugarcane clone AEC86-347 developed at NIA, Tando Jam, Pakistan. Pak. J. Bot. 2005, 37, 355360. [Google Scholar]
- Conesa, M.; Espinosa, P.; Pallarés, D.; Pérez-Pastor, A. Influence of Plant Biostimulant as Technique to Harden Citrus Nursery Plants before Transplanting to the Field. Sustainability 2020, 12, 6190. [Google Scholar] [CrossRef]
- Correia, S.; Queirós, F.; Ferreira, H.; Morais, M.C.; Afonso, S.; Silva, A.P.; Gonçalves, B. Foliar Application of Calcium and Growth Regulators Modulate Sweet Cherry (Prunus avium L.) Tree Performance. Plants 2020, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Shehata, S.M.; Abdel-Azem, H.S.; Abou El-Yazeed, A.; El-Gizawy, A.N. Effect of foliar spraying with amino acids and sea-weed extract on growth chemical constitutes, yield and its quality of celeriac plant. Eur. J. Sci. Res. 2011, 58, 257–265. [Google Scholar]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Famiani, F. Effect of different leaf-to-fruit ratios on photosynthesis and fruit growth in olive (Olea europaea L.). Photosynthetica 2006, 44, 275–285. [Google Scholar] [CrossRef]
- Famiani, F.; Proietti, P.; Palliotti, A.; Ferranti, F.; Antognozzi, E. Effects of leaf to fruit ratios on fruit growth in chestnut. Sci. Hortic. 2000, 85, 145–152. [Google Scholar] [CrossRef]
- Rosati, A.; Paoletti, A.; Al Hariri, R.; Morelli, A.; Famiani, F. Resource investments in reproductive growth proportionately limit investments in whole-tree vegetative growth in young olive trees with varying crop loads. Tree Physiol. 2018, 38, 1267–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almadi, L.; Paoletti, A.; Cinosi, N.; Daher, E.; Rosati, A.; Di Vaio, C.; Famiani, F. A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees. Agriculture 2020, 10, 618. [Google Scholar] [CrossRef]
- Zhao, D.; Oosterhuis, D.M.; Bednarz, C.W. Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants. Photosynthetica 2001, 39, 103–109. [Google Scholar] [CrossRef]
- Bown, H.E.; Watt, M.S.; Mason, E.G.; Clinton, P.W.; Whitehead, D. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. Tree Physiol. 2009, 29, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
Doses of Fertilisation | Container of Biostimulants and Fertilisers | |
---|---|---|
Control | N 120 kg·ha−1, P2O5 40 kg·ha−1, K2O 140 kg·ha−1 | |
Aminoplant 0.4% | N 60 kg·ha−1, P2O5 20 kg·ha−1, K2O 70 kg·ha−1 | 18 L-amino acids and bioactive peptides (N 8.5%; organic substance 54%: bioactive peptides 82.7%, amino acids 17.3%) |
Biamino Plant 0.2% | N 60 kg·ha−1, P2O5 20 kg·ha−1, K2O 70 kg·ha−1 | L-amino acids of plant origin (organic nitrogen 7.6%, organic carbon 21.0%, amino acids 42.6%, Fe 1.2%, Mn 0.6%, Zn 0.7%) |
BiSpeed 0.2% | N 60 kg·ha−1, P2O5 20 kg·ha−1, K2O 70 kg·ha−1 | potassium 4-nitrophenolate 0.25–0.30% m/m, potassium 2-nitrophenolate 0.14–0.20% m/m, potassium 5-nitroguaiacolate 0.07–0.10% m/m |
Fylloton 0.4% | N 60 kg·ha−1, P2O5 20 kg·ha−1, K2O 70 kg·ha−1 | brown algal extract (Ascophyllum nodosum) and plant-derived amino acids (organic nitrogen 6%, organic carbon 20.8%, organic substance 35%) |
Basfoliar 2.0 6–12-6 0.5% | N 60 kg·ha−1, P2O5 20 kg·ha−1, K2O 70 kg·ha−1 | N 6%, P2O5 12%, K2O 6%, B 0.01%, Cu 0.01%, Fe 0.02%, Mn 0.01 %, Mo 0.005%, Zn 0.05% |
Basfoliar 2.0 12–4-6+S 0.5% | N 60 kg·ha−1, P2O5 20 kg·ha−1, K2O 70 kg·ha−1 | N 12%, P2O5 4%, K2O 6%, sulphur and B 0.01%, Cu 0.01%, Fe 0.02%, Mn 0.01 %, Mo 0.005%, Zn 0.05% |
Parameters | Height | Diameter | Slss | Number of Shoots | Weight of Plants |
---|---|---|---|---|---|
Height | 1.00 | ||||
Diameter | 0.44 * | 1.00 | |||
Slss | 0.34 * | 0.42 * | 1.00 | ||
Number of shoots | 0.27 * | 0.33 * | 0.94 * | 1.00 | |
Weight of plants | 0.07 | 0.31 * | 0.48 * | 0.50 * | 1.00 |
Parameters | Pn | E | C | I |
---|---|---|---|---|
Pn | 1.00 | |||
E | −0.17 * | 1.00 | ||
C | 0.05 | 0.65 * | 1.00 | |
I | −0.05 | 0.71 * | 0.67 * | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świerczyński, S.; Antonowicz, A.; Bykowska, J. The Effect of the Foliar Application of Biostimulants and Fertilisers on the Growth and Physiological Parameters of Maiden Apple Trees Cultivated with Limited Mineral Fertilisation. Agronomy 2021, 11, 1216. https://doi.org/10.3390/agronomy11061216
Świerczyński S, Antonowicz A, Bykowska J. The Effect of the Foliar Application of Biostimulants and Fertilisers on the Growth and Physiological Parameters of Maiden Apple Trees Cultivated with Limited Mineral Fertilisation. Agronomy. 2021; 11(6):1216. https://doi.org/10.3390/agronomy11061216
Chicago/Turabian StyleŚwierczyński, Sławomir, Agnieszka Antonowicz, and Joanna Bykowska. 2021. "The Effect of the Foliar Application of Biostimulants and Fertilisers on the Growth and Physiological Parameters of Maiden Apple Trees Cultivated with Limited Mineral Fertilisation" Agronomy 11, no. 6: 1216. https://doi.org/10.3390/agronomy11061216
APA StyleŚwierczyński, S., Antonowicz, A., & Bykowska, J. (2021). The Effect of the Foliar Application of Biostimulants and Fertilisers on the Growth and Physiological Parameters of Maiden Apple Trees Cultivated with Limited Mineral Fertilisation. Agronomy, 11(6), 1216. https://doi.org/10.3390/agronomy11061216