Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological Examination and Chlorophyll Content of Leaves
2.2. Yield, Bioactive Compounds and Colour of Fruit
2.3. Physical Properties of Substrates
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soleimani, A.; Ahmadikhah, A.; Soleimani, S. Performance of different greenhouse cucumber cultivars (Cucumis sativus L.) in southern Iran. Afr. J. Biotechnol. 2009, 8, 4077–4083. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Gajc-Wolska, J.; Bujalski, D.; Mirgos, M.; Niedzińska, M.; Mazur, K.; Niedzińska, P.; Szatkowski, D.; Cichoń, M.; Łęczycka, N. The effect of supplemental assimilation lighting with HPS and LED lamps on the cucumber yielding and fruit quality in autumn crop. Acta Sci. Pol. Hortorum Cultus 2018, 17, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Zoratti, L.; Karppinen, K.; Luengo Escobar, A.; Haggman, H.; Jaakola, L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Bussell, W.T.; Mckennie, S. Rockwool in horticulture, and its importance and sustainable use in New Zealand. N. Z. J. Crop Hortic. Sci. 2004, 32, 29–37. [Google Scholar] [CrossRef]
- Dannehl, D.; Suhl, J.; Ulrichs, C.; Schmidt, U. Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar] [CrossRef]
- Kraska, T.; Kleinschmidt, B.; Weinand, J.; Pude, R. Cascading use of Miscanthus as growing substrate in soilless cultivation of vegetables (tomatoes, cucumbers) and subsequent direct combustion. Sci. Hortic. 2018, 235, 205–213. [Google Scholar] [CrossRef]
- Kennard, N.; Stirling, R.; Prashar, A.; Lopez-Capel, E. Evaluation of recycled materials as hydroponic growing media. Agronomy 2020, 10, 1092. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, F.; Rivière, L.; Stievenard, S.; Marfa, O.; Gschwander, S.; Giuffrida, F. Consequences of organic matter biodegradability on the physical, chemical parameters of substrates. Acta Hortic. 1998, 469, 129–138. [Google Scholar] [CrossRef]
- Xiong, J.; Tian, Y.; Wang, J.; Liu, W.; Chen, Q. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: Nutrient balance, plant growth and fruit quality. Front. Plant Sci. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 42, 1386–1401. [Google Scholar] [CrossRef]
- Gruda, N. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, Z.M.; Shafi, M.I.; Beamont, E.; Anawar, H.M. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture 2020, 10, 480. [Google Scholar] [CrossRef]
- Vochozka, M.; Maroušková, A.; Váchal, J.; Straková, J. Biochar pricing hampers biochar farming. Clean Technol. Environ. Policy 2016, 18, 1225–1231. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurzyński, J. Yield and quality of greenhouse tomato fruit grown in rape straw substrates. Acta Sci. Pol. Cultus 2013, 12, 3–11. [Google Scholar]
- Bonaguro, J.E.; Coletto, L.; Zanin, G. Environmental and agronomic performance of fresh rice hulls used as growing medium component for Cyclamen persicum L. pot plants. J. Clean. Prod. 2017, 142, 2125–2132. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Martínez, G.A.; Salas, M.D.C. Almond shell waste: Possible local rockwool substitute in soilless crop culture. Sci. Hortic. 2005, 103, 453–460. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Mazuela, P.C.; Martínez, G.A. Effect of substrate reutilization on yield and properties of melon and tomato crops. J. Plant Nutr. 2008, 31, 2031–2043. [Google Scholar] [CrossRef]
- Dede, O.H.; Ozdemir, S. Development of nutrient-rich growing media with hazelnut husk and municipal sewage sludge. Environ. Technol. 2018, 39, 2223–2230. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, G.Y.; Tokashiki, Y.; Kitou, M.; Kinjo, K. Oil palm waste and synthetic zeolite: An alternative soil-less growth substrate for lettuce production as a waste management practice. Waste Manag. Res. 2008, 26, 559–565. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physicals too! Horttechnology 2005, 15, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Dyśko, J.; Kaniszewski, S.; Kowalczyk, W.; Dziedziczak, K.; Kowalski, B.; Moraczewski, A.; Podsiedlik, W.; Wojtysiak, J. Ecological fibrous soilless substrates for greenhouse cultivation. Probl. Eksploat. Maint. Probl. 2012, 2, 37–56. [Google Scholar]
- Widera, M.; Kasztelewicz, Z.; Ptak, M. Lignite mining and electricity generation in Poland: The current state and future prospects. Energy Policy 2016, 92, 151–157. [Google Scholar] [CrossRef]
- Kołodziej, B.; Bryk, M.; Otremba, K. Effect of rockwool and lignite dust on physical state of rehabilitated post-mining soil. Soil Tillage Res. 2020, 199, 104603. [Google Scholar] [CrossRef]
- Anemana, T.; Óvári, M.; Szegedi, Á.; Uzinger, N.; Rékási, M.; Tatár, E.; Yao, J.; Streli, C.; Záray, G.; Mihucz, V.G. Optimization of lignite particle size for stabilization of trivalent chromium in soils. Soil Sediment Contam. Int. J. 2020, 29, 272–291. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowska, J. Ocena możliwości wykorzystania węgla brunatnego jako efektywnego źródła materii organicznej w gruntach przekształconych antropogenicznie. Inżynieria Ochr. Środowiska 2007, 10, 71–85. [Google Scholar]
- Dyśko, J.; Dyśko, J.; Kaniszewski, S.; Kowalczyk, W. Lignite as a new medium in soilless cultivation of tomato. J. Elem. 2015, 20, 559–569. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef]
- Robles, I.; Bustos, E.; Lakatos, J. Adsorption study of mercury on lignite in the presence of different anions. Sustain. Environ. Res. 2016, 26, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Polish Standard. EN 13041—Soil Improvers and Growing Media. Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space; Polish Standard; PKN: Warszawa, Poland, 2002; p. 20. [Google Scholar]
- Polish Standards. EN 13039—Soil Improvers and Growing Media. Determination of Organic Matter Content and Ash; Polish Standards; PKN: Warszawa, Poland, 2002; p. 9. [Google Scholar]
- Nowak, J.S. Changes of physical properties in rockwool and glasswool slabs during hydroponic cultivation of roses. J. Fruit Ornam. Plant Res. 2010, 18, 349–360. [Google Scholar]
- Wever, G. Aangepast beperkt fisisch onderzoek vaste substraten. Anal. PBG Naaldwijk. 2000. [Google Scholar]
- Wever, G. Determination of dry matter content (KIWA). Anal. PBG Naaldwijk 2000. [Google Scholar]
- Surrage, V.A.; Lafrenière, C.; Dixon, M.; Zheng, Y. Benefits of vermicompost as a constituent of growing substrates used in the production of organic greenhouse tomatoes. HortScience 2010, 45, 1510–1515. [Google Scholar] [CrossRef] [Green Version]
- Ghehsareh, A.; Hematian, M.; Kalbasi, M. Comparison of date-palm wastes and perlite as culture substrates on growing indices in greenhouse cucumber. Int. J. Recycl. Org. Waste Agric. 2012, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Alifar, N.; Mohammadi Ghehsareh, A.; Honarjoo, N. The effect of growth media on cucumber yield and its uptake of some nutrient elements in soilless culture. J. Sci. Technol. Greenh. Cult. 2010, 1, 19–24. [Google Scholar]
- Nerlich, A.; Dannehl, D. Soilless cultivation: Dynamically changing chemical properties and physical conditions of organic substrates influence the plant phenotype of lettuce. Front. Plant Sci. 2021, 11. [Google Scholar] [CrossRef]
- Böhme, M.; Hoang, L.T.; Vorwerk, R. Effect of different substrates and mineral as well as organic nutrition on the growth of cucumber in closed substrate systems. Acta Hortic. 2001, 548, 165–172. [Google Scholar] [CrossRef]
- Marcelis, L.F.M. The dynamics of growth and dry matter distribution in cucumber. Ann. Bot. 1992, 69, 487–492. [Google Scholar] [CrossRef]
- Heuvelink, E.; Marcelis, L.F.M. Dry matter distribution in tomato and cucumber. Acta Hortic. 1989, 149–180. [Google Scholar] [CrossRef] [Green Version]
- Peet, M.M.; Harlow, C.D.; Larrea, E.S. Fruit quality and yield in five small-fruited greenhouse tomato cultivars under high fertilization regime. In Proceedings of the Acta Horticulturae: VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition, Kissimmee, FL, USA, 25 November 2004; Volume 659, pp. 811–818. [Google Scholar]
- Mallik, J.; Priyanka, D.; Sourav, D. Pharmacological activity of Cucumis sativus L.—A complete review. Asian J. Pharm. Res. Dev. 2013, 1, 1–6. [Google Scholar]
- Kowalczyk, K.; Gajc-Wolska, J.; Radzanowska, J.; Marcinkowska, M. Assesment of chemical composition and sensory quality of tomato fruit depending on cultivar and growing conditions. Acta Sci. Pol. Hortorum Cultus 2011, 10, 133–140. [Google Scholar]
- Tzortzakis, N.G.; Economakis, C.D. Impacts of the substrate medium on tomato yield and fruit quality in soilless cultivation. Hortic. Sci. 2008, 35, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.C.; Singh, J.P.; Pandey, S.K.; Mahay, D.; Shrivastva, V. Factors affecting the performance of greenhouse cucumber cultivation—A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2304–2323. [Google Scholar] [CrossRef]
- Parks, S.; Newman, S.; Golding, J. Substrate effects on greenhouse cucumber growth and fruit quality in Australia. Acta Hortic. 2004, 648, 129–133. [Google Scholar] [CrossRef]
- Schouten, R.E.; Tijskens, L.M.; van Kooten, O. Predicting keeping quality of batches of cucumber fruit based on a physiological mechanism. Postharvest Biol. Technol. 2002, 26, 209–220. [Google Scholar] [CrossRef]
- Gómez-López, M.D.; Fernández-Trujillo, J.P.; Baille, A. Cucumber fruit quality at harvest affected by soilless system, crop age and preharvest climatic conditions during two consecutive seasons. Sci. Hortic. 2006, 110, 68–78. [Google Scholar] [CrossRef]
- Stokman, H.M.G.; Gevers, T.; Koenderink, J.J. Color measurement by imaging spectrometry. Comput. Vis. Image Underst. 2000, 79, 236–249. [Google Scholar] [CrossRef]
- Schouten, R.E.; Otma, E.C.; van Kooten, O.; Tijskens, L.M.M. Keeping quality of cucumber fruits predicted by biological age. Postharvest Biol. Technol. 1997, 12, 175–181. [Google Scholar] [CrossRef]
- Słowińska-Jurkiewicz, A.; Jaroszuk-Sierocińska, M. Horticulture substrates, structure and physical properties. In Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; Volume 4, pp. 364–367. [Google Scholar]
- Gajc-Wolska, J.; Bujalski, D.; Chrzanowska, A. Effect of a substrate on yielding and quality of greenhouse cucumber fruits. J. Elem. 2008, 13, 205–210. [Google Scholar]
- Babik, J. The influence of the substrate and training system on the yield of greenhouse cucumber. ZNIO 2013, 21, 5–13. [Google Scholar]
- Kipp, J.A.; Wever, G.; De Kreij, C. International Substrate Manual. Analysis, Characteristics, Recommendations; Elsevier: Amsterdam, The Netherlands, 2000; p. 94. [Google Scholar]
- Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A.; Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A. Substrates and their Analysis. Hydroponic Prod. Veg. Ornam. 2002, 25–101. Available online: https://www.researchgate.net/profile/Michael_Raviv/publication/313419715_Substrates_and_their_analysis/links/5a61c0d2a6fdccb61c503f00/Substrates-and-their-analysis.pdf (accessed on 15 May 2021).
- Nowak, J.S.; Strojny, Z. Changes in physical properties of peat-based substrates during cultivation period of gerbera. Acta Hortic. 2004, 644, 319–323. [Google Scholar] [CrossRef]
- Nowak, J.S.; Strojny, Z. Effect of different container media on the growth of gerbera. Acta Hortic. 2003, 608, 59–63. [Google Scholar] [CrossRef]
- Morard, P.; Lacoste, L.; Silvestre, J. Effect of oxygen deficiency on uptake of water and mineral nutrients by tomato plants in soilless culture. J. Plant Nutr. 2000, 23, 1063–1078. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Díaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 476–494. [Google Scholar] [CrossRef] [Green Version]
- de Boodt, M.; Verdonck, O. The physical properties of the substrates in horticulture. Acta Hortic. 1972, 37–44. [Google Scholar] [CrossRef]
- Verdonck, O.; Penninck, R.; De Boodt, M. The physical properties of different horticultural substrates. Acta Hortic. 1984, 155–160. [Google Scholar] [CrossRef]
- Argo, W.R.; Biernbaum, J.A. Irrigation requirements, root-medium pH, and nutrient concentrations of easter lilies grown in five peat-based media with and without an evaporation barrier. J. Am. Soc. Hortic. Sci. 1994, 119, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Argo, W.R.; Biernbaum, J.A. The effect of irrigation method, water-soluble fertilization, preplant nutrient charge, and surface evaporation on early vegetative and root growth of poinsettia. J. Am. Soc. Hortic. Sci. 1995, 120, 163–169. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Cultivation Cycle 1 New Substrate | Cultivation Cycle 2 Second-Hand Substrate | ||
---|---|---|---|---|---|
Mineral Wool | Lignite | Mineral Wool | Lignite | ||
Weekly increment shoot to length | (cm) | 51.8 ± 1.58 a * | 51.4 ± 1.60 a | 52.6 ± 1.22 a | 52.9 ± 1.10 a |
Shoot length | (cm) | 213.6 ± 3.22 a | 212.1± 3.07 a | 423.1 ± 2.22 a | 451.1 ± 3.00 b |
Shoot diameter | (mm) | 5.8 ± 0.07 a | 5.8 ± 0.02 a | 6.6 ± 0.97 a | 6.5 ± 1.10 a |
Number of leaves per week | (pcs·plant−1) | 4.0 ± 0.70 a | 4.2 ± 0.37 a | 3.5 ± 0.53 a | 4.0 ± 0.69 a |
Leaf length | (cm) | 22.2 ± 1.68 a | 22.8 ± 1.90 a | 18.7 ± 1.95 a | 18.2 ± 1.41 a |
Leaf width | (cm) | 25.5 ± 1.71 a | 26.0 ± 1.31 a | 24.3 ± 1.47 a | 22.6 ± 1.57 a |
Leaf area | (cm2) | 600.0 ± 13.5 a | 629.0 ± 12.1 a | 455.2 ± 10.03 a | 438.3 ±11.18 a |
Petiole length | (cm) | 11.4 ± 1.56 a | 10.7 ± 1.39 a | 12.5 ± 1.78 a | 12.9 ± 1.34 a |
SPAD leaf 4. | SPAD | 37.1 ± 1.24 a | 37.7 ± 1.12 a | 40.1 ± 1.10 a | 40.6 ± 1.06 a |
Parameter | Unit | Cultivation Cycle 1 New Substrate | Cultivation Cycle 2 Second-Hand Substrate | ||
---|---|---|---|---|---|
Mineral wool | Lignite | Mineral wool | Lignite | ||
Number of fruits of the total crop | (pcs·plant−1) | 14.8 ± 0.84 b * | 13.8 ± 0.91 a | 15.2 ± 1.10 a | 15.6 ± 1.17 a |
Total weight of yield | (g·plant−1) | 2923.0 ± 24.20 b | 2617.9 ± 14.40 a | 3599.8 ± 15.00 a | 3783.0± 15.10 b |
Average weight of fruit | (g·fruit−1) | 197.5 ± 20.51 a | 189.7 ± 18.00 a | 236.8 ± 11.4 a | 242.5 ± 10.00 a |
Parameter | Unit | Cultivation Cycle 1 New Substrate | Cultivation Cycle 2 Second-Hand Substrate | ||
---|---|---|---|---|---|
Mineral Wool | Lignite | Mineral Wool | Lignite | ||
Dry matter | (%) | 3.2 ± 0.01 a * | 3.4 ±0.05 b | 3.7 ± 0.06 a | 3.8 ± 0.09a |
β-carotene | (mg 100 g−1 FW) | 6.3 ± 0.11 b | 6.1 ± 0.13 a | 5.5 ± 0.16 a | 6.2 ± 0.42 b |
Lutein | (mg 100 g−1 FW) | 9.5 ± 0.10 b | 9.2 ± 0.13 a | 10.7 ± 0.25 a | 13.2 ± 1.14 b |
Chlorophyll a | (mg 100 g−1 FW) | 86.2 ± 0.70 a | 82.7 ± 0.66 a | 73.2 ± 1.72 a | 98.6 ± 1.81 b |
Chlorophyll b | (mg 100 g−1 FW) | 35.2 ± 1.90 a | 35.4 ± 0.33 a | 33.1 ± 1.59 a | 49.3 ± 2.84 b |
Total chlorophylla + b | (mg 100 g−1 FW) | 121.4 ± 1.61 b | 118.1 ± 0.99 a | 106.3 ± 1.40 a | 147.9 ± 1.62 b |
TSS | (°Brix) | 3.1 ± 0.05 a | 3.4 ± 0.10 b | 3.6 ± 0.05 a | 3.9 ± 0.10 b |
Parameter | Unit | Cultivation Cycle 1 New Substrate | Cultivation Cycle 2 Second-Hand Substrate | ||
---|---|---|---|---|---|
Mineral Wool | Lignite | Mineral Wool | Lignite | ||
Hardness | (HPE) | 60.9 ± 1.70 a * | 61.1 ± 1.68 a | 56.8 ± 1.51 a | 63.6 ± 1.50 b |
Color (CIE Lab) | a * | −6.6 ± 0.95 a | −6.4 ± 0.51 a | −6.6 ± 1.00 a | −6.8 ± 0.73 a |
b * | 11.7 ± 2.29 a | 10.9 ± 1.33 a | 11.1 ± 1.41 a | 12.2 ± 2.02 a | |
L | 32.8 ± 1.54 a | 31.6 ± 1.55 a | 29.8 ± 1.50 a | 30.1 ± 1.51 a |
Parameter | Units | Mineral Wool | Lignite | ||
---|---|---|---|---|---|
New Substrate | Substrate after 2nd Cultivation Cycle | New Substrate | Substrate after 2nd Cultivation Cycle | ||
Organic matter content | (% of dry matter) | 2.2 ± 0.10 a * | 7.0 ± 0.69 b | 85.0 ± 0.52 a | 84.6 ± 0.98 a |
Bulk density | (kg m−3) | 58.5 ± 0.64 a | 65.4 ± 2.00 b | 394.3 ± 8.90 a | 429.1 ± 11.50 b |
Total porosity | (% vol) | 97.8 ± 0.02 b | 97.5 ± 0.17 a | 76.1 ± 0.55 b | 74.0 ± 0.76 a |
Shrinkage | (% vol) | - | - | 13.0 ± 1.25 a | 10.1 ± 2.36 a |
Water content after drainage of gravity water | (% vol) | 94.0 ± 0.51 a | 94.7 ± 1.49 a | 56.9 ± 1.66 a | 51.4 ± 2.87 a |
Water content pressure at −10 cm H2O | (% vol) | 77.9 ± 0.51 a | 87.7 ± 0.82 b | 46.6 ± 1.35 a | 41.9 ± 1.80 a |
Air content after drainage of gravity water | (% vol) | 3.8 ± 0.54 a | 2.7 ± 0.61 a | 19.1 ± 2.16 a | 21.9 ± 4.49 a |
Air content at −10 cm H2O | (% vol) | 19.9 ± 0.53 b | 9.7 ± 1.02 a | 41.9 ± 4.80 b | 31.9 ± 4.70 a |
Easily available water | (% vol) | 51.4 ± 0.88 a | 69.8 ± 0.97 b | 8.1 ± 0.19 a | 6.9± 0.11 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łaźny, R.; Mirgos, M.; Przybył, J.L.; Nowak, J.S.; Kunka, M.; Gajc-Wolska, J.; Kowalczyk, K. Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation. Agronomy 2021, 11, 998. https://doi.org/10.3390/agronomy11050998
Łaźny R, Mirgos M, Przybył JL, Nowak JS, Kunka M, Gajc-Wolska J, Kowalczyk K. Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation. Agronomy. 2021; 11(5):998. https://doi.org/10.3390/agronomy11050998
Chicago/Turabian StyleŁaźny, Radosław, Małgorzata Mirgos, Jarosław L. Przybył, Jacek S. Nowak, Małgorzata Kunka, Janina Gajc-Wolska, and Katarzyna Kowalczyk. 2021. "Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation" Agronomy 11, no. 5: 998. https://doi.org/10.3390/agronomy11050998
APA StyleŁaźny, R., Mirgos, M., Przybył, J. L., Nowak, J. S., Kunka, M., Gajc-Wolska, J., & Kowalczyk, K. (2021). Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation. Agronomy, 11(5), 998. https://doi.org/10.3390/agronomy11050998