Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Chemicals and Products
2.3. Extraction and Determination of Sugars and Organic Acids
2.4. Extraction of Phenolic Compounds and Determination of Individual Compound Using HPLC-DAD-MSn
2.5. Color, Firmness and Soluble Solids Analysis
2.6. Aroma Compound Analysis
- -
- At a level of >10 μg/kg and ≤100 μg/kg within the range 70–120%, and associated repeatability RSD ≤ 20%.
- -
- At a level of >100 μg/kg and ≤1000 μg/kg within the range 70–110%, and associated repeatability RSD ≤ 15%.
- -
- At a level of >1000 μg/kg within the range 70–110%, and associated repeatability RSD ≤ 10%.
2.7. Statistical Analysis
3. Results
3.1. Yield and Fruit Quality
3.2. TSS, Sugar and Organic Acid Content
3.3. Content of Selected Phenolic Compounds
3.4. Content of Selected Aroma Volatile Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Civille, G.V.; Oftendal, K.N. Sensory evaluation techniques—Make “good for you” taste “good”. Physiol. Behav. 2021, 107, 598–605. [Google Scholar] [CrossRef]
- Weber, N.; Zupanc, V.; Jakopic, J.; Veberic, R.; Mikulic-Petkovsek, M.; Stampar, F. Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality. J. Sci. Food. Agric. 2016, 97, 1–9. [Google Scholar]
- Ojeda-Real, L.A.; Lobit, P.; Cárdenas-Navarro, R.; Grageda-Cabrera, O.; Farías-Rodríguez, R.; Valencia-Cantero, E.; Macías-Rodríguez, L. Effect of nitrogen fertilization on quality markers of strawberry (Fragaria × ananassa Duch. cv. Aromas). J. Sci. Food. Agric. 2009, 98, 935–939. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and Soil Quality of Organic and Conventional Strawberry Agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Ponti, T.; Rijk, B.; van Ittersum, K.M. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Bhat, R.; Geppert, J.; Funken, E.; Stamminger, R. Consumers Perceptions and Preference for Strawberries—A Case Study from Germany. Int. J. Fruit. Sci. 2015, 15, 405–424. [Google Scholar] [CrossRef]
- Maffei, M.E. Sites of synthesis, biochemistry and functional role of plant volatiles. S. Afr. J. Bot. 2010, 76, 612–631. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, T.; Gordon, R.J.; Asiedu, S.; Hu, K. Strawberry plant fruiting ability and its correlation with solar irradiance, temperature and reflectance water index variation. Environ. Exp. Bot. 2010, 68, 165–174. [Google Scholar] [CrossRef]
- Ministry of Agriculture and the Environment. Tehnoloska Navodila za Integrirano Pridelavo Sadja: Leto 2017; Ministry of Agriculture and the Environment: Ljubljana, Slovenia, 2017; p. 42. [Google Scholar]
- Mihelič, R.; Čop, J.; Jakše, M.; Štampar, F.; Majer, D.; Tojnko, S.; Vršič, S. Smernice za strokovno utemeljeno gnojenje; Republika Slovenija: Ljubljana, Slovenia, 2010; pp. 39–40. [Google Scholar]
- Taghavi, T.; Folta, K. A comparison of wild and cultivated strawberries for nitrogen uptake and reduction. Hortic. Environ. Biotechnol. 2014, 55, 196–206. [Google Scholar] [CrossRef]
- Guinto, D.F. Nitrogen fertilisation effects on the quality of selected crops: A review. Agron. N. Z. 2016, 46, 121–132. [Google Scholar]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; Laghari, A.H.; Bhabhan, G.M.; Talpur, K.H. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 9. [Google Scholar]
- Mareike Jezek, M.; Zörb, O.C.; Merkt, N.; Geilfus, C.M. Anthocyanin Management in Fruits by fertilization. J. Agric. Food Chem. 2018, 66, 753–764. [Google Scholar] [CrossRef]
- Reddy, V.S.; Reddy, A.S.N. Proteomics of calcium-signaling components in plants. Phytochemistry 2004, 65, 1745–1776. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, P.; Masoodi, F.A.; Chauhan, G.S.; Shah, T.A. Role of calcium in post-harvest life of temperate fruits: A review. J. Food Sci. Technol. 2005, 42, 1–8. [Google Scholar]
- Singh, S.; Singh, N.P.; Sharda, R.; Sangwan, A.K. Response of irrigation, fertigation and mulching on plant growth and fruit yield of strawberry. Indian J. Hortic. 2019, 76, 233–240. [Google Scholar] [CrossRef]
- Naderi, M.R.; Shahkari, A.D. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crops Sci. 2013, 19, 2229–2232. [Google Scholar]
- Emara, M.A.A.; Hamoda, S.A.F.; Hamad, M.M.A. Effect of Nano-Fertilizer and N-Fertilization Levels on Productivity of Egyptian Cotton under Different Sowing Dates. Egypt. J. Agron. 2018, 40, 125–137. [Google Scholar]
- Farock, R.L.; Hu, J.; Meyers, R.M.; Ho, Y.J.; Kii, E.; Alt, F.W. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015, 33, 179–186. [Google Scholar] [CrossRef]
- Jetti, R.R.; Kurnianta, A.; Yang, E.; Finn, C. Quantification of Selected Aroma-Active Compounds in Strawberries by Headspace Solid-Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis. J. Food Sci. 2007, 72, 487–496. [Google Scholar] [CrossRef]
- Goff, S.S.; Klee, H.J. Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science 2006, 311, 815–819. [Google Scholar] [CrossRef]
- Ménager, I.; Jost, M.; Aubert, C. Changes in Physicochemical Characteristics and Volatile Constituents of Strawberry (Cv. Cigaline) during Maturation. J. Agric. Food Chem. 2004, 52, 1248–1254. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Anttonen, M.J.; Hoppula, K.I.; Nestby, R.; Verheul, J.M.; Karjalainen, R.O. Influence of Fertilization, Mulch Color, Early Forcing, Fruit Order, Planting Date, Shading, Growing Environment, and Genotype on the Contents of Selected Phenolics in (Strawberry (Fragaria × ananassa Duch.) Fruits. J. Agric. Food Chem. 2006, 54, 2614–2620. [Google Scholar] [CrossRef] [PubMed]
- Meier, U.; Graf, M.; Hess, M.; Kennel, B.; Klose, R.; Mappes, D.; Seipp, D.; Strauss, R.; Streif, J.; van den Boom, T. Phanologische Entwicklungsstadien de Kernobstes Malus domestic Borkh. UND Pyrus communis L., des Steinobstes Prunus-Arten, der Johannisbeere currant-Arten UND der delivery Fragaria × ananassa duch with. Nachrichtenbl. Deut. Pflanzenschutzd. 1994, 46, 141–153. [Google Scholar]
- Tomić, J.; Štampar, F.; Glišić, I.; Jakopič, J. Phytochemical assessment of plum (Prunus domestica L.) cultivars selected in Serbia. Food Chem. 2019, 299, 125113. [Google Scholar] [CrossRef] [PubMed]
- Alder, L.; Hill, A.; Holland, P.T.; Lantos, J.; Lee, S.M.; MacNeil, J.D.; O’Rangers, J.; van Zoonen, P.; Ambrus, A. Guidelines for single-laboratory validation of analytical methods for trace-level concentrations of organic chemicals. In Principles and Practices of Method Validation; Fajgelj, A., Ambrus, A., Eds.; RSC Publishing: Cambridge, UK, 2000; pp. 179–252. [Google Scholar]
- ISO 5725: Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2. Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method; ISO: Geneva, Switzerland, 1994; pp. 1–42.
- Iatrou, M.; Papadopoulos, A. Influence of nitrogen nutrition on yield and growth of an everbearing strawberry cultivar (cv. Evie II). J. Plant Nutr. 2016, 39, 1499–1505. [Google Scholar] [CrossRef]
- Medeiros, R.F.; Pereira, W.E.; Rodrigues, R.M.; Nascimento, R.; Suassuna, J.F.; Dantas, T.A.G. Growth and yield of strawberry plants fertilized with nitrogen and phosphorus. Rev. Bras. Eng. Agríc. Ambient. 2015, 9, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Kachwaya, D.S.; Chandel, J.S.; Ghumare, V.; Khachi, B. Effect of drip and furrow irrigation on yield and physiological performance of strawberry (Fragaria × ananassa Duch.) cv. Chandler. Indian J. Plant Physiol. 2016, 21, 341–344. [Google Scholar] [CrossRef]
- Martinsson, M.; Kwast, A.; Cieslinski, G.; Treder, W. Impact of production systems and fertilizer application on yield and quality of strawberries. Acta Hortic. 2006, 708, 59–64. [Google Scholar] [CrossRef]
- Wojcik, P.; Lewandowski, A. Effect of Calcium and Boron Sprays on Yield and Quality of “Elsanta” Strawberry. J. Plant. Nutr. 2003, 26, 671–682. [Google Scholar] [CrossRef]
- Habibdzeh, F.; Hazrati, D.; Gholamhoseini, M.; Khodaei, D.; Habashi, D. Evaluation of quantitative and qualitative characteristics of strawberry in response to bio- and chemical fertilizers. Gesunde Pflanz. 2019, 71, 103–111. [Google Scholar]
- Kuchay, M.A.; Mallikarjuna, K.; Ali, M.T. Effect of foliar sprays of nitrogen and calcium on fruit quality attributes, yield and leaf nutrient content of apple. Int. J. Pure Appl. Biosci. 2018, 6, 970–977. [Google Scholar] [CrossRef]
- Agulheiro-Santos, A.C. Quality of strawberry ‘camarosa’ with different levels of nitrogen fertilization. Acta Hortic. 2009, 842, 207–210. [Google Scholar] [CrossRef]
- Abdel, N.H.M.A.; Dawa, K.K.; El-Gamily, E.I.; Imryed, Y.F.E. Effect of magnetic water, foliar application with nano material and nitrogen levels on productivity and quality of head lettuce. Int. J. Adv. Res. Biol. Sci. 2017, 4, 171–181. [Google Scholar]
- Moisă, R.; Berar, V. Study of the effect of several natural fertilizers on the seedlings leaf area for some tomato cultivars. J. Hortic. For. Biotechnol. 2015, 19, 77–81. [Google Scholar]
- Abd-El-Aal, M.M. Improvement of Tomato Productivity by Using Certain Natural Materials. Ph.D. Thesis, Faculty of Agriculture, Benha University, Governorate, Egypt, 2009. [Google Scholar]
- Lambert, Y.; Demazeau, G.; Largeteau, A.; Bouvier, J.M. Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem. 1999, 67, 7–16. [Google Scholar] [CrossRef]
- Cheng, X.H.; Feng, X.X.; Zhang, Z.P.; Shen, M.; Wang, L. Effects of “Al strong” amino-acid fertilizer on photosynthetic efficiency and yield of strawberry in plastic tunnels. Int. J. Fruit Sci. 2012, 29, 883–889. [Google Scholar]
- Dong, J.; Zhang, Y.; Tang, X.; Jin, W. Differences in volatile ester composition between Fragaria × ananassa and F. vesca and implications for strawberry aroma patterns. Sci. Hortic. 2013, 150, 47–53. [Google Scholar] [CrossRef]
- Rohloff, J. Impact of Agricultural and Environmental Factors on Strawberry (Fragaria × ananassa Duch.) Aroma—A Review. Eur. J. Plant Sci. Biotechnol. 2011, 5, 17–34. [Google Scholar]
- Forney, C.F.; Jordan, M.A.; Kalt, W. The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage. Hortscience 2000, 35, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Cesare, D.L.F.; Migliori, C.; Viscardi, D.; Parisi, M. Quality of tomato fertilized with nitrogen and phosphorous. Ital. J. Food Sci. 2010, 22, 186–191. [Google Scholar]
- Márczy, J.S.; Németh, A.S.; Samu, Z.; Hager-Veress, A.; Szajani, B. Production of hexanal from hydrolyzed sunflower oil by lipoxygenase and hydroperoxid lyase enzymes. Biotechnol. Lett. 2002, 24, 1673–1675. [Google Scholar] [CrossRef]
- Zabetakis, I.; Holden, M.A. Strawberry Flavour: Analysis and Biosynthesis. J. Sci. Food Agric. 1997, 74, 421–434. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Yang, Z. Characterization of Terpene Synthase from Tea Green Leafhopper Being Involved in Formation of Geraniol in Tea (Camellia sinensis) Leaves and Potential Effect of Geraniol on Insect-Derived Endobacteria. Biomolecules 2019, 9, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Lyu, S.; Sun, D.; Corey, J.; Bradshaw, A.; Zhou, S. Species decline under nitrogen fertilization increases community-level competence of fungal diseases. Proc. Biol. Sci. 2017, 248, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, A.Y.; Rodriguez, A.A.M.; Vega, D.S.M.; Sussmann, R.A.C.; Kimura, E.A.; Katzin, A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents 2016, 48, 641–646. [Google Scholar] [CrossRef]
- Montesano, D.; Rocchetti, G.; Putnik, P.; Lucini, L. Bioactive profile of pumpkin: An overview on terpenoids and their health-promoting properties. Curr. Opin. Food Sci. 2018, 22, 81–87. [Google Scholar] [CrossRef]
Active Compound | Ions Scanned (m/z) | Linearity Range | R2 | LOD | LOQ | Standard Addition (µg/kg) | Recovery | RSD | Ur | Ur | UR | UR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T, Q1, Q2, Q3 | (µg/kg) | (µg/kg) | (µg/kg) | (%) | (%) | (µg/kg) | (%) | (µg/kg) | (%) | |||
1-Penten-3-ol | 57, 58, 55, 85 | 1.5–74.0 | 0.997 | 0.445 | 1.5 | 797 | 86.1 | 3.8 | 95 | 11.9 | 182 | 22.8 |
2-Heptanone | 58, 59, 114 | 0.414–219.6 | 0.975 | 0.124 | 0.414 | 89 | 89.9 | 3.5 | 8 | 9.0 | 12 | 13.5 |
α-terpineol | 59, 121, 136 | 0.377–187.0 | 0.999 | 0.113 | 0.377 | 403 | 104.8 | 2.3 | 24 | 6.0 | 29 | 7.2 |
cis-2-Hexen-1-ol | 57, 82, 67 | 4.2–1041.9 | 0.968 | 1.25 | 4.2 | 423 | 92.2 | 5.2 | 46 | 10.9 | 65 | 15.4 |
Ethyl-2-methylbutyrate | 102, 74, 87 | 0.039–15.6 | 0.995 | 0.012 | 0.039 | 42 | 84.3 | 5.2 | 2 | 4.8 | 4 | 9.5 |
Ethyl-isovalerate | 88, 85, 60 | 0.039–16.7 | 0.993 | 0.012 | 0.039 | 45 | 82.8 | 5.2 | 3 | 6.7 | 5 | 11.1 |
Geraniol | 69, 68, 93, 123 | 0.759–194.0 | 0.979 | 0.228 | 0.759 | 79 | 81.0 | 20.8 | 9 | 11.4 | 11 | 13.9 |
Hexanal | 56, 72, 82 | 39.7–1988.2 | 0.959 | 11.9 | 39.7 | 807 | 81.8 | 5.3 | 92 | 11.4 | 117 | 14.5 |
Methyl hexanoate | 74, 87, 101 | 1.4–567.5 | 0.990 | 0.425 | 1.4 | 1528 | 87.1 | 5.9 | 77 | 5.0 | 125 | 8.2 |
Methyl octanoate | 74, 87, 127 | 0.416–208.5 | 0.994 | 0.125 | 0.416 | 449 | 88.3 | 9.9 | 42 | 9.4 | 45 | 10.0 |
Methyl-2-methylbutyrate | 88, 57, 101 | 0.078–15.5 | 0.991 | 0.023 | 0.078 | 84 | 80.0 | 4.6 | 8 | 9.5 | 11 | 13.1 |
Nerolidol | 69, 93, 107 | 1.5–764.0 | 0.934 | 0.46 | 1.5 | 1646 | 87.6 | 32.9 | 642 | 39.0 | 684 | 41.6 |
Octyl acetate | 70, 84, 112 | 2.0–995.6 | 0.993 | 0.6 | 2.0 | 404 | 89.3 | 8.5 | 47 | 11.6 | 49 | 12.1 |
trans-2-Hexen-1-al | 55, 69, 83 | 28.8–14407.2 | 0.999 | 8.7 | 28.8 | 418 | 87.1 | 6.9 | 87 | 20.8 | 95 | 22.7 |
trans-2-Hexen-1-ol | 57, 82, 67 | 19.7–986.2 | 0.960 | 5.9 | 19.7 | 400 | 80.3 | 3.6 | 34 | 8.5 | 63 | 15.8 |
Phenolic Compound | CON | 33% RDN | 66% RDN | 100% RDN | CA-CH | LITH | p | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bis-HHDP-glucose | 92.43 | ± | 8.17 | ab | 88.38 | ± | 5.31 | ab | 84.45 | ± | 8.71 | ab | 101.16 | ± | 11.01 | bc | 80.75 | ± | 3.66 | a | 112.71 | ± | 12.48 | c | * |
ellagic acid deoxyhexoside | 11.66 | ± | 0.56 | b | 10.46 | ± | 0.81 | ab | 9.14 | ± | 1.01 | a | 11.71 | ± | 1.03 | b | 11.75 | ± | 1.21 | b | 11.86 | ± | 1.14 | b | * |
ellagic acid hexoside 1 | 7.61 | ± | 0.73 | 8.11 | ± | 0.88 | 7.59 | ± | 1.07 | 8.14 | ± | 0.88 | 7.34 | ± | 1.13 | 8.28 | ± | 1.11 | ns | ||||||
ellagic acid hexoside 2 | 27.39 | ± | 2.46 | b | 22.99 | ± | 2.31 | a | 19.77 | ± | 2.36 | a | 26.49 | ± | 1.69 | b | 29.52 | ± | 2.14 | b | 29.01 | ± | 1.78 | b | *** |
ellagic acid pentoside | 1.41 | ± | 0.19 | ab | 1.09 | ± | 0.21 | a | 1.37 | ± | 0.20 | a | 1.87 | ± | 0.49 | bc | 1.53 | ± | 0.17 | abc | 2.00 | ± | 0.45 | c | ** |
galloyl bisHHDP glucose | 0.62 | ± | 0.01 | bc | 0.45 | ± | 0.03 | a | 0.53 | ± | 0.04 | ab | 0.67 | ± | 0.01 | bc | 0.57 | ± | 0.06 | ab | 0.75 | ± | 0.01 | c | ** |
galloyl-diHHDP-glucose | 2.79 | ± | 0.26 | b | 1.80 | ± | 0.08 | a | 2.59 | ± | 0.23 | ab | 3.12 | ± | 0.27 | b | 2.78 | ± | 0.26 | b | 3.46 | ± | 0.54 | b | * |
HHDP galloyl hexoside | 62.92 | ± | 2.43 | ab | 65.78 | ± | 5.27 | bc | 58.21 | ± | 8.54 | a | 68.94 | ± | 6.45 | bc | 67.93 | ± | 2.52 | bc | 73.32 | ± | 5.21 | c | ** |
HHDP galloyl glucose 1 | 2.01 | ± | 0.13 | ab | 1.81 | ± | 0.13 | a | 1.89 | ± | 0.15 | a | 2.33 | ± | 0.29 | bc | 2.01 | ± | 0.21 | ab | 2.48 | ± | 0.22 | c | * |
HHDP galloyl glucose 2 | 1.15 | ± | 0.14 | abc | 1.04 | ± | 0.12 | a | 1.12 | ± | 0.11 | ab | 1.36 | ± | 0.10 | bc | 1.21 | ± | 0.06 | abc | 1.39 | ± | 0.14 | c | * |
Sum hydroxybenzoic acids | 207.01 | ± | 11.91 | ab | 190.08 | ± | 12.70 | a | 187.28 | ± | 17.15 | a | 227.20 | ± | 18.76 | bc | 197.91 | ± | 31.07 | ab | 247.27 | ± | 21.41 | c | ** |
caffeic acid hexoside | 5.49 | ± | 0.58 | ab | 5.13 | ± | 0.53 | a | 5.74 | ± | 0.47 | ab | 6.31 | ± | 0.39 | ab | 5.78 | ± | 0.32 | ab | 6.45 | ± | 0.52 | b | * |
cinnamic acid 3-O-hexoside | 226.84 | ± | 50.98 | 241.07 | ± | 47.81 | 226.09 | ± | 56.51 | 265.67 | ± | 32.71 | 216.22 | ± | 35.12 | 294.86 | ± | 40.69 | ns | ||||||
ferulic acid derivative | 0.20 | ± | 0.05 | bc | 0.18 | ± | 0.05 | a | 0.20 | ± | 0.04 | ab | 0.18 | ± | 0.02 | c | 0.18 | ± | 0.06 | bc | 0.23 | ± | 0.06 | c | ** |
ferulic acid hexoside derivative | 4.06 | ± | 0.46 | 2.72 | ± | 0.27 | 3.39 | ± | 0.54 | 4.76 | ± | 0.37 | 3.92 | ± | 0.07 | 4.82 | ± | 0.27 | ns | ||||||
p-coumaroyl hexose | 25.80 | ± | 1.00 | a | 26.13 | ± | 2.81 | a | 23.87 | ± | 2.50 | a | 27.87 | ± | 2.13 | ab | 26.22 | ± | 2.41 | a | 30.88 | ± | 3.41 | b | * |
p-coumaroyl hexoside | 1.27 | ± | 0.28 | b | 0.82 | ± | 0.04 | a | 1.18 | ± | 0.14 | ab | 1.42 | ± | 0.18 | b | 1.26 | ± | 0.32 | b | 1.57 | ± | 0.14 | b | * |
Sum hydroxycinnamic acids | 324.03 | ± | 30.58 | a | 356.44 | ± | 31.45 | ab | 339.41 | ± | 41.57 | a | 371.86 | ± | 32.31 | ab | 335.63 | ± | 25.65 | a | 405.79 | ± | 41.23 | b | * |
catechin | 50.27 | ± | 1.94 | ab | 49.36 | ± | 4.81 | ab | 46.51 | ± | 3.82 | a | 55.09 | ± | 5.15 | ab | 51.08 | ± | 5.65 | ab | 60.18 | ± | 6.05 | b | * |
procyanidin dimer | 64.91 | ± | 6.21 | ab | 56.27 | ± | 5.54 | a | 62.17 | ± | 2.04 | a | 72.68 | ± | 7.33 | b | 61.07 | ± | 4.42 | a | 71.63 | ± | 3.42 | b | * |
propelagonidin dimer | 40.38 | ± | 4.00 | ab | 32.73 | ± | 4.04 | a | 38.23 | ± | 3.24 | a | 50.15 | ± | 5.56 | b | 41.06 | ± | 4.25 | ab | 49.32 | ± | 4.00 | b | ** |
Sum flavanols | 155.57 | ± | 11.51 | a | 138.36 | ± | 17.79 | a | 146.92 | ± | 13.42 | a | 177.92 | ± | 20.48 | b | 153.22 | ± | 18.18 | a | 181.14 | ± | 9.89 | b | ** |
quercetine-3-O-hexoside | 2.24 | ± | 0.25 | 2.31 | ± | 0.53 | 2.16 | ± | 0.37 | 2.49 | ± | 0.35 | 2.42 | ± | 0.13 | 2.43 | ± | 0.25 | ns | ||||||
quercetine-3-O-glucuronide | 4.82 | ± | 1.35 | 6.13 | ± | 2.25 | 4.93 | ± | 2.72 | 5.76 | ± | 1.06 | 5.37 | ± | 1.95 | 5.07 | ± | 1.53 | ns | ||||||
kaempferol-3-glucuronide | 1.72 | ± | 0.26 | 2.03 | ± | 0.27 | 1.73 | ± | 0.34 | 1.94 | ± | 0.22 | 1.77 | ± | 0.29 | 1.83 | ± | 0.21 | ns | ||||||
kaempferol-3-O-acetylglucoside | 2.65 | ± | 0.28 | 2.43 | ± | 0.50 | 2.30 | ± | 0.44 | 2.73 | ± | 0.16 | 2.34 | ± | 0.44 | 2.74 | ± | 0.30 | ns | ||||||
kaempferol-3-O-hexoside | 1.22 | ± | 0.12 | 1.22 | ± | 0.26 | 1.18 | ± | 0.21 | 1.30 | ± | 0.04 | 1.19 | ± | 0.19 | 1.39 | ± | 0.17 | ns | ||||||
Sum flavonols | 12.45 | ± | 2.07 | 14.13 | ± | 3.19 | 12.31 | ± | 3.74 | 14.23 | ± | 0.94 | 13.08 | ± | 2.76 | 13.47 | ± | 1.48 | ns | ||||||
pelargonidin-malonyl-glucoside | 48.41 | ± | 14.33 | 46.32 | ± | 8.01 | 42.98 | ± | 10.48 | 49.57 | ± | 7.82 | 48.68 | ± | 9.15 | 46.93 | ± | 5.79 | ns | ||||||
pelargodnidin-3-O-rutinoside | 11.11 | ± | 3.78 | 10.47 | ± | 2.05 | 9.81 | ± | 1.74 | 10.37 | ± | 1.58 | 10.60 | ± | 2.28 | 8.10 | ± | 0.71 | ns | ||||||
pelargonidin-3-O-glucoside | 127.80 | ± | 29.07 | 127.58 | ± | 28.76 | 120.13 | ± | 27.06 | 128.01 | ± | 11.32 | 130.39 | ± | 29.07 | 135.39 | ± | 10.89 | ns | ||||||
cyanidin-3-O-glucoside | 9.48 | ± | 0.23 | c | 3.91 | ± | 0.37 | a | 5.82 | ± | 0.56 | ab | 7.17 | ± | 0.48 | bc | 8.28 | ± | 0.88 | c | 4.94 | ± | 0.46 | ab | *** |
Sum anthocyanins | 198.57 | ± | 46.20 | 189.49 | ± | 35.91 | 178.67 | ± | 36.27 | 194.53 | ± | 16.82 | 198.57 | ± | 40.44 | 195.77 | ± | 16.19 | ns |
Volatile Compound | CON | 33% RDN | 66% RDN | 100% RDN | CA-CH | LITH | p | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALDEHYDES | 1187.35 | ± | 89.36 | a | 1801.76 | ± | 107.7 | a | 4252.77 | ± | 277.31 | c | 2825.73 | ± | 109.76 | b | 3064.31 | ± | 214.78 | b | 2871.51 | ± | 41.78 | b | *** | |
hexanal | 220.62 a | ± | 28.06 | a | 344.84 | ± | 64.46 | a | 827.07 | ± | 112.43 | c | 551.52 | ± | 60.62 | b | 588.58 | ± | 96.85 | b | 557.20 | ± | 60.66 | b | *** | |
(E)-2-hexen-1-al | 966.03 | ± | 87.73 | a | 1457.89 | ± | 319.88 | a | 3425.61 | ± | 316.53 | c | 2274.55 | ± | 225.63 | b | 2476.02 | ± | 278.36 | b | 2314.69 | ± | 212.95 | b | *** | |
KETONE | 76.07 | ± | 3.31 | d | 45.43 | ± | 1.32 | b | 36.26 | ± | 3.72 | a | 53.91 | ± | 6.24 | b | 50.53 | ± | 1.38 | b | 64.15 | ± | 8.61 | c | *** | |
2-heptanone | 76.07 | ± | 3.31 | d | 45.43 | ± | 1.32 | b | 36.26 | ± | 3.72 | a | 53.91 | ± | 6.24 | b | 50.53 | ± | 1.38 | b | 64.15 | ± | 8.61 | c | *** | |
ALCOHOLS | 137.42 | ± | 12.47 | bc | 139.74 | ± | 12.61 | bc | 143.32 | ± | 14.43 | bc | 110.74 | ± | 10.21 | b | 112.36 | ± | 9.74 | b | 99.74 | ± | 8.74 | a | * | |
(E)-2-hexen-1-ol | 102.35 | ± | 5.49 | bc | 94.92 b | ± | 8.34 | b | 111.79 | ± | 6.14 | c | 79.26 | ± | 1.87 | a | 94.59 | ± | 2.43 | b | 73.26 | ± | 4.92 | a | *** | |
(Z)-2-hexen-1-ol | 20.20 | ± | 3.91 | 26.82 | ± | 2.01 | 19.47 | ± | 2.86 | 19.54 | ± | 7.75 | 16.13 | ± | 4.78 | 18.81 | ± | 4.28 | ns | |||||||
1-penten-3-ol | 15.23 | ± | 0.86 | bc | 17.53 | ± | 0.63 | c | 11.12 | ± | 0.32 | b | 12.10 | ± | 1.40 | b | 11.37 | ± | 4.66 | b | 7.49 | ± | 0.38 | a | ** | |
ESTERS | 255.41 | ± | 27.46 | a | 259.18 | ± | 17.46 | a | 442.41 | ± | 14.43 | b | 423.42 | ± | 23.64 | b | 577.31 | ± | 41.67 | c | 561.29 | ± | 47.41 | c | ** | |
octyl acetate | 43.23 | ± | 3.83 | b | 32.61 | ± | 1.84 | a | 68.32 | ± | 8.15 | d | 55.70 | ± | 2.27 | c | 55.39 | ± | 6.23 | c | 54.25 | ± | 6.44 | c | *** | |
methyl-2-methyl butyrate | 4.41 | ± | 0.98 | a | 3.92 | ± | 0.31 | a | 20.20 | ± | 2.03 | c | 8.48 | ± | 3.03 | b | 11.02 | ± | 2.18 | b | 11.80 | ± | 0.41 | b | *** | |
methyl hexanoate | 196.01 | ± | 33.20 | a | 209.25 | ± | 3.71 | a | 333.99 | ± | 18.49 | b | 340.72 | ± | 73.22 | b | 469.19 | ± | 6.48 | c | 466.62 | ± | 58.20 | c | *** | |
ethyl-2-methyl butyrate | 0.53 | ± | 0.13 | a | 0.27 | ± | 0.01 | a | 1.22 | ± | 0.34 | b | 0.55 | ± | 0.17 | a | 0.48 | ± | 0.05 | a | 0.97 | ± | 0.09 | b | *** | |
ethyl isovalerate | 1.05 | ± | 0.24 | ab | 0.55 | ± | 0.03 | a | 1.86 | ± | 0.73 | c | 1.19 | ± | 0.42 | abc | 1.24 | ± | 0.20 | abc | 1.56 | ± | 0.26 | bc | * | |
methyl octanoate | 10.62 | ± | 1.10 | a | 11.48 | ± | 0.89 | a | 17.67 | ± | 1.79 | b | 18.21 | ± | 1.17 | b | 30.26 | ± | 3.85 | c | 27.34 | ± | 0.28 | c | *** | |
TERPENOIDS | 393.31 | ± | 17.98 | c | 266.74 | ± | 21.87 | b | 228.42 | ± | 24.47 | a | 262.41 | ± | 13.47 | b | 216.74 | ± | 12.97 | a | 270.74 | ± | 24.96 | b | ** | |
nerolidol | 239.84 | ± | 15.05 | d | 133.00 | ± | 18.46 | ab | 141.17 | ± | 14.69 | ab | 176.41 | ± | 29.04 | c | 105.65 | ± | 4.29 | a | 151.91 | ± | 8.55 | bc | *** | |
geraniol | 21.72 | ± | 1.55 | ab | 23.84 | ± | 2.72 | b | 17.87 | ± | 1.72 | a | 20.85 | ± | 1.94 | ab | 28.91 | ± | 1.96 | c | 26.74 | ± | 3.86 | bc | ** | |
α-Terpineol | 132.29 | ± | 8.02 | d | 110.15 | ± | 23.30 | c | 68.47 | ± | 4.41 | a | 65.42 | ± | 1.45 | a | 83.03 | ± | 17.51 | ab | 93.43 | ± | 2.48 | b | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvelbar Weber, N.; Koron, D.; Jakopič, J.; Veberič, R.; Hudina, M.; Baša Česnik, H. Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality. Agronomy 2021, 11, 997. https://doi.org/10.3390/agronomy11050997
Cvelbar Weber N, Koron D, Jakopič J, Veberič R, Hudina M, Baša Česnik H. Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality. Agronomy. 2021; 11(5):997. https://doi.org/10.3390/agronomy11050997
Chicago/Turabian StyleCvelbar Weber, Nika, Darinka Koron, Jerneja Jakopič, Robert Veberič, Metka Hudina, and Helena Baša Česnik. 2021. "Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality" Agronomy 11, no. 5: 997. https://doi.org/10.3390/agronomy11050997
APA StyleCvelbar Weber, N., Koron, D., Jakopič, J., Veberič, R., Hudina, M., & Baša Česnik, H. (2021). Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality. Agronomy, 11(5), 997. https://doi.org/10.3390/agronomy11050997