Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lettuce Cultivars, Greenhouse Conditions, and Experimental Design
2.2. Nutrient Solution Composition and Iso-Osmotic Salt Application
2.3. Sampling, Growth, Yield, and Leaf Biomass Determination
2.4. CIELAB Leaf Colorimetry and Quality Analysis
2.5. Macronutrients, Sodium and Chloride Determination
2.6. Bioactive Molecules and Antioxidant Activities Quantification
2.7. Statistics
3. Results
3.1. Biometric Traits and Productivity Response
3.2. Leaf Colorimetry and Flavor Compounds
3.3. Leaf Mineral Profile, Na and Cl Accumulation
3.4. Anti-Nutrients, Antioxidant Activities, and Phytochemical Quantification
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MarketQuest.Biz. Global Leafy Greens Seeds Market 2020 by Manufacturers, Regions, Type and Application, Forecast to 2025. Report ID: 35273. Available online: https://www.marketquest.biz/report/35273/global-leafy-greens-seeds-market-2020-by-manufacturers-regions-type-and-application-forecast-to-2025 (accessed on 1 March 2021).
- Pignata, G.; Ertani, A.; Casale, M.; Piano, P.; Nicola, S. Mixing fresh-cut baby green and red leaf lettuce from soilless cultivation preserves phytochemical content and safety. Agric. Food Sci. 2020, 29. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Kyriacou, M.C.; Soteriou, G.A.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Rouphael, Y. Genotype and successive harvests interaction affects phenolic acids and aroma profile of Genovese basil for pesto sauce production. Foods 2021, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Carillo, P.; Morrone, B.; Fusco, G.M.; De Pascale, S.; Rouphael, Y. Challenges for a sustainable food production system on board of the international space station: A technical review. Agronomy 2020, 10, 687. [Google Scholar] [CrossRef]
- Pepe, G.; Sommella, E.; Manfra, M.; De Nisco, M.; Tenore, G.C.; Scopa, A.; Sofo, A.; Marzocco, S.; Adesso, S.; Novellino, T.; et al. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chem. 2015, 167, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Arienzo, A.; Murgia, L.; Fraudentali, I.; Gallo, V.; Angelini, R.; Antonini, G. Microbiological quality of ready-to-eat leafy green salads during shelf-life and home-refrigeration. Foods 2020, 9, 1421. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Carillo, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Kyriacou, M.C.; Sifola, M.I.; Rouphael, Y. Physiological and nutraceutical quality of green and red pigmented lettuce in response to nacl concentration in two successive harvests. Agronomy 2020, 10, 1358. [Google Scholar] [CrossRef]
- Alvino, A.; Barbieri, G. Vegetables of temperate climates: Leafy vegetables. In The Encyclopedia of Food and Health; Oxford University Press: Oxford, UK, 2016; pp. 393–400. [Google Scholar] [CrossRef]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.; Gil, M.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Mulabagal, V.; Ngouajio, M.; Nair, A.; Zhang, Y.; Gottumukkala, A.; Nair, M. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem. 2010, 118, 300–306. [Google Scholar] [CrossRef]
- Durazzo, A.; Azzini, E.; Lazzé, M.; Raguzzini, A.; Pizzala, R.; Maiani, G.; Palomba, L. Antioxidants in Italian head lettuce (Lactuca sativa var. capitatal.) grown in organic and conventional systems under greenhouse conditions. J. Food Biochem. 2013, 38. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Gratacós-Cubarsí, M.; Sárraga, C.; García-Regueiro, J.-A.; Castellari, M. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochem. Anal. 2011, 22, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Sofo, A.; Lundegårdh, B.; Mårtensson, A.; Manfra, M.; Pepe, G.; Sommella, E.; De Nisco, M.; Tenore, G.C.; Campiglia, P.; Scopa, A. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Sci. Hortic. 2016, 204, 106–115. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Złotek, U.; Świeca, M.; Jakubczyk, A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem. 2014, 148, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Kim, H.-J.; Fonseca, J.M.; Choi, J.-H.; Kubota, C.; Kwon, D.Y. Salt in Irrigation Water Affects the Nutritional and Visual Properties of Romaine Lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Colla, G.; Fiorentino, N.; Sabatino, L.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cirillo, V.; Shabani, E.; et al. Appraisal of combined applications of trichoderma virens and a biopolymer-based biostimulant on lettuce agronomical, physiological, and qualitative properties under variable n regimes. Agronomy 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Vitaglione, P.; Colla, G.; Napolitano, F.; Raimondi, G.; Kyriacou, M.; Colantuono, A.; Giordano, M.; Pannico, A.; Maiello, R.; et al. Influence of mild saline stress and growing season on yield and leaf quality of baby lettuce grown in floating system. Acta Hortic. 2019, 1242, 147–152. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Woodrow, P.; Ciarmiello, L.F.; Annunziata, M.G.; Pacifico, S.; Iannuzzi, F.; Mirto, A.; D’Amelia, L.; Dell’Aversana, E.; Piccolella, S.; Fuggi, A.; et al. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol. Plant. 2017, 159, 290–312. [Google Scholar] [CrossRef]
- Lucini, L.; Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Bernardi, J.; Colla, G. Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Front. Plant Sci. 2016, 7, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Giordano, M.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Iron biofortification of red and green pigmented lettuce in closed soilless cultivation impacts crop performance and modulates mineral and bioactive composition. Agronomy 2019, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Kyriacou, M.C.; Carillo, P.; Pizzolongo, F.; Romano, R.; Sifola, M.I. Chemical eustress elicits tailored responses and enhances the functional quality of novel food perilla frutescens. Molecules 2019, 24, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neocleous, D.; Koukounaras, A.; Siomos, A.S.; Vasilakakis, M. Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce. J. Food Qual. 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Borgognone, D.; Cardarelli, M.; Rea, E.; Lucini, L.; Colla, G. Salinity source-induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon grown in floating system. J. Sci. Food Agric. 2014, 94, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Neocleous, D.; Koukounaras, A.; Siomos, A.; Vasilakakis, M. Changes in Photosynthesis, Yield, and Quality of Baby Lettuce under Salinity Stress. J. Agric. Sci. Technol. 2014, 16, 1335–1343. [Google Scholar]
- Scuderi, D.; Restuccia, C.; Chisari, M.; Barbagallo, R.N.; Caggia, C.; Giuffrida, F. Salinity of nutrient solution influences the shelf-life of fresh-cut lettuce grown in floating system. Postharvest Biol. Technol. 2011, 59, 132–137. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Cho, M.C.; Yang, E.Y.; Lee, J.G. Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy 2020, 10, 1627. [Google Scholar] [CrossRef]
- Adhikari, N.D.; Simko, I.; Mou, B. Phenomic and physiological analysis of salinity effects on lettuce. Sensors 2019, 19, 4814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudi, H.; Huang, J.; Gruber, M.Y.; Kaddour, R.; Lachaâl, M.; Ouerghi, Z.; Hannoufa, A. The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce. J. Agric. Food Chem. 2010, 58, 5122–5130. [Google Scholar] [CrossRef] [PubMed]
- Ntatsi, G.; Aliferis, K.A.; Rouphael, Y.; Napolitano, F.; Makris, K.; Kalala, G.; Katopodis, G.; Savvas, D. Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environ. Exp. Bot. 2017, 141, 113–123. [Google Scholar] [CrossRef]
- Cirillo, C.; De Micco, V.; Arena, C.; Carillo, P.; Pannico, A.; De Pascale, S.; Rouphael, Y. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl(2) Salinization. Front. Plant Sci. 2019, 10, 742. [Google Scholar] [CrossRef]
- Scagel, C.F.; Bryla, D.R.; Lee, J. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 Salinity in ‘Siam Queen’ Basil. HortScience 2017, 52, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Borghesi, E.; Carmassi, G.; Uguccioni, M.C.; Vernieri, P.; Malorgio, F. Effects of calcium and salinity stress on quality of lettuce in soilless culture. J. Plant Nutr. 2013, 36, 677–690. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- Nicoletto, C.; Santagata, S.; Bona, S.; Sambo, P. Influence of cut number on qualitative traits in different cultivars of sweet basil. Ind. Crop. Prod. 2013, 44, 465–472. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I.C.F.R. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Formisano, L.; De Micco, V.; Pannico, A.; Giordano, M.; El-Nakhel, C.; Chiaiese, P.; Sacchi, R.; Rouphael, Y. Understanding the morpho-anatomical, physiological, and functional response of sweet basil to isosmotic nitrate to chloride ratios. Biology 2020, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis; Black, C.A., Ed.; American Society of Agronomy: Madison, WN, USA, 1965; Volume 2, pp. 1149–1178. [Google Scholar]
- Rouphael, Y.; Colla, G.; Graziani, G.; Ritieni, A.; Cardarelli, M.; De Pascale, S. Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 2017, 234. [Google Scholar] [CrossRef] [PubMed]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- El-Nakhel, C.; Giordano, M.; Pannico, A.; Carillo, P.; Fusco, G.M.; De Pascale, S.; Rouphael, Y. Cultivar-specific performance and qualitative descriptors for butterhead salanova lettuce produced in closed soilless cultivation as a candidate salad crop for human life support in space. Life 2019, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poljsak, B. Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med. Cell. Longev. 2011, 2011, 194586. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Maximova, E.; Fuggi, A.; Carillo, P. Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front. Plant Sci. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, J.A. Tansley Review No. 2. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol. 1985, 101, 25–77. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368. [Google Scholar] [CrossRef]
- Heldt, H.-W.; Heldt, F. 6—The Calvin cycle catalyzes photosynthetic CO2 assimilation. In Plant Biochemistry, 3rd ed.; Heldt, H.-W., Heldt, F., Eds.; Academic Press: Burlington, NJ, USA, 2005; pp. 165–193. [Google Scholar] [CrossRef]
- Carillo, P.; Cirillo, C.; De Micco, V.; Arena, C.; De Pascale, S.; Rouphael, Y. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. Agric. Water Manag. 2019, 212, 12–22. [Google Scholar] [CrossRef]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Raimondi, G.; Lucini, L.; Carillo, P.; Kyriacou, M.C.; Colla, G.; Cirillo, V.; Pannico, A.; El-Nakhel, C.; De Pascale, S. Physiological and metabolic responses triggered by omeprazole improve tomato plant Tolerance to NaCl Stress. Front. Plant Sci. 2018, 9, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuin, T.A.; Tian, Y.; Betts, S.A.; Chalmandrier, R.; Shabala, S. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct. Plant Biol. 2009, 36, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Ferchichi, S.; Hessini, K.; Dell’Aversana, E.; D’Amelia, L.; Woodrow, P.; Ciarmiello, L.F.; Fuggi, A.; Carillo, P. Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct. Plant Biol. 2018, 45, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Nakajima, T.; Xu, D.; Homma, K.; Kokubun, M. Genotypic variation in salinity tolerance and its association with nodulation and nitrogen uptake in soybean. Plant Prod. Sci. 2017, 20, 490–498. [Google Scholar] [CrossRef]
- Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Sampaio, S.L.; Ferreira, I.C.F.R.; Petropoulos, S.A. Grown to be blue—antioxidant properties and health effects of colored vegetables. Part II: Leafy, fruit, and other vegetables. Antioxidants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Chiaiese, P.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Rouphael, Y. Successive harvests affect yield, quality and metabolic profile of sweet basil (Ocimum basilicum L.). Agronomy 2020, 10, 830. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Carillo, P.; Woodrow, P.; Raimondi, G.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Colla, G.; Mori, M.; Giordano, M.; De Pascale, S.; et al. Omeprazole promotes chloride exclusion and induces salt tolerance in greenhouse basil. Agronomy 2019, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Diatloff, E.; Roberts, M.; Sanders, D.; Roberts, S.K. Characterization of anion channels in the plasma membrane of arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation. Plant Physiol. 2004, 136, 4136–4149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic modelling of lettuce transpiration for water status monitoring. Comput. Electron. Agric. 2018, 155, 50–57. Available online: https://core.ac.uk/download/pdf/288197019.pdf (accessed on 29 March 2021). [CrossRef]
Source of Variance | Leaf Area | Fresh Yield | Dry Biomass | Leaf Dry Matter |
---|---|---|---|---|
(cm2 Plant−1) | (kg m−2) | (g m−2) | (%) | |
Cultivar (CV) | ||||
Green | 99.39 ± 2.36 a | 4.29 ± 0.13 a | 218.17 ± 9.56 a | 5.11 ± 0.15 |
Red | 90.79 ± 3.56 b | 3.65 ± 0.16 b | 177.16 ± 10.72 b | 4.80 ± 0.14 |
Salinity (S) | ||||
Control | 102.27 ± 4.77 | 4.48 ± 0.25 a | 221.89 ± 16.41 | 4.98 ± 0.19 |
CaCl2 | 96.38 ± 4.66 | 4.06 ± 0.23 ab | 204.70 ± 17.36 | 4.99 ± 0.23 |
KCl | 90.04 ± 4.62 | 3.66 ± 0.20 b | 180.82 ± 14.52 | 4.88 ± 0.18 |
NaCl | 91.66 ± 3 | 3.68 ± 0.15 b | 183.25 ± 11.48 | 4.98 ± 0.24 |
Cut (C) | ||||
Cut 1 | 89.14 ± 2.93 b | 3.78 ± 0.17 b | 170.42 ± 8.00 b | 4.53 ± 0.06 b |
Cut 2 | 101.05 ± 2.87 a | 4.16 ± 0.14 a | 224.91 ± 10.69 a | 5.38 ± 0.15 a |
CV × S | ||||
Control, Green | 103.28 ± 6.26 | 4.70 ± 0.35 | 239.69 ± 21.67 | 5.21 ± 0.27 |
Control, Red | 101.27 ± 7.78 | 4.27 ± 0.37 | 204.08 ± 24.26 | 4.74 ± 0.24 |
CaCl2, Green | 104.33 ± 3.89 | 4.53 ± 0.21 | 242.46 ± 19.54 | 5.36 ± 0.36 |
CaCl2, Red | 88.43 ± 7.43 | 3.60 ± 0.32 | 166.94 ± 19.33 | 4.62 ± 0.25 |
KCl, Green | 95.1 ± 4.95 | 4.01 ± 0.21 | 197.67 ± 16.59 | 4.91 ± 0.24 |
KCl, Red | 84.99 ± 7.69 | 3.30 ± 0.29 | 163.98 ± 23.22 | 4.85 ± 0.28 |
NaCl, Green | 94.84 ± 2.75 | 3.92 ± 0.19 | 192.87 ± 11.55 | 4.96 ± 0.32 |
NaCl, Red | 88.49 ± 5.29 | 3.44 ± 0.21 | 173.63 ± 20.22 | 5.00 ± 0.38 |
S × C | ||||
Control, Cut 1 | 90.71 ± 4.14 | 4.23 ± 0.40 | 192.98 ± 15.67 | 4.70 ± 0.13 |
Control, Cut 2 | 113.84 ± 5.43 | 4.74 ± 0.31 | 250.79 ± 24.6 | 5.26 ± 0.32 |
CaCl2, Cut 1 | 88.88 ± 7.86 | 3.77 ± 0.41 | 172.61 ± 18.71 | 4.58 ± 0.08 |
CaCl2, Cut 2 | 103.88 ± 3.36 | 4.36 ± 0.17 | 236.79 ± 23.75 | 5.40 ± 0.41 |
KCl, Cut 1 | 86.85 ± 7.96 | 3.46 ± 0.31 | 156.48 ± 17.93 | 4.47 ± 0.15 |
KCl, Cut 2 | 93.24 ± 5.14 | 3.85 ± 0.25 | 205.17 ± 19.23 | 5.29 ± 0.22 |
NaCl, Cut 1 | 90.11 ± 3.65 | 3.65 ± 0.21 | 159.63 ± 9.82 | 4.38 ± 0.12 |
NaCl, Cut 2 | 93.22 ± 5.04 | 3.71 ± 0.25 | 206.88 ± 16.12 | 5.58 ± 0.29 |
CV × C | ||||
Green, Cut 1 | 97.79 ± 3.15 a | 4.37 ± 0.20 a | 197.24 ± 8.93 | 4.58 ± 0.10 |
Green, Cut 2 | 100.98 ± 3.59 a | 4.21 ± 0.19 a | 239.1 ± 14.93 | 5.65 ± 0.16 |
Red, Cut 1 | 80.48 ± 3.5 b | 3.18 ± 0.13 b | 143.61 ± 7.56 | 4.49 ± 0.08 |
Red, Cut 2 | 101.11 ± 4.64 a | 4.12 ± 0.23 a | 210.71 ± 14.78 | 5.11 ± 0.24 |
Significance | ||||
Cultivar (CV) | * | ** | ** | n.s. |
Salinity (S) | n.s. | ** | n.s. | n.s. |
Cut (C) | ** | * | *** | *** |
CV × S | n.s. | n.s. | n.s. | n.s. |
S × C | n.s. | n.s. | n.s. | n.s. |
CV × C | * | ** | n.s. | n.s. |
CV × S × C | n.s. | n.s. | n.s. | n.s. |
Source of Variance | L* | a* | b* | TSS | Juice pH | Juice EC |
---|---|---|---|---|---|---|
Cultivar (CV) | ||||||
Green | 50.28 ± 0.39 a | -7.84 ± 0.15 b | 24.58 ± 0.49 a | 4.75 ± 0.22 | 5.99 ± 0.02 | 4.89 ± 0.19 |
Red | 41.26 ± 0.56 b | −4.09 ± 0.33 a | 16.42 ± 0.55 b | 4.82 ± 0.20 | 6.03 ± 0.02 | 4.73 ± 0.24 |
Salinity (S) | ||||||
Control | 45.40 ± 1.90 | −6.09 ± 0.88 | 20.58 ± 1.81 | 4.37 ± 0.18 | 5.99 ± 0.02 ab | 4.25 ± 0.25 b |
CaCl2 | 45.11 ± 1.40 | −6.52 ± 0.55 | 20.51 ± 1.40 | 4.68 ± 0.28 | 5.93 ± 0.02 b | 5.13 ± 0.28 a |
KCl | 45.78 ± 1.58 | −5.43 ± 0.73 | 19.65 ± 1.42 | 5.06 ± 0.30 | 6.05 ± 0.03 a | 4.87 ± 0.36 ab |
NaCl | 46.79 ± 1.04 | −6.37 ± 0.50 | 21.26 ± 0.98 | 5.03 ± 0.38 | 6.07 ± 0.03 a | 4.99 ± 0.28 a |
Cut (C) | ||||||
Cut 1 | 45.91 ± 1.00 | −6.32 ± 0.44 | 21.45 ± 0.95 a | 4.18 ± 0.12 b | 6.00 ± 0.02 | 5.11 ± 0.15 a |
Cut 2 | 45.63 ± 1.11 | −5.85 ± 0.50 | 19.55 ± 1.00 b | 5.39 ± 0.21 a | 6.02 ± 0.02 | 4.51 ± 0.25 b |
CV × S | ||||||
Control, Green | 51.50 ± 0.94 | −8.12 ± 0.49 | 25.76 ± 1.70 | 4.40 ± 0.21 | 5.97 ± 0.02 | 4.54 ± 0.26 |
Control, Red | 39.31 ± 0.45 | −3.04 ± 0.19 | 15.39 ± 0.85 | 4.33 ± 0.30 | 6.02 ± 0.03 | 3.96 ± 0.42 |
CaCl2,Green | 49.36 ± 0.51 | −8.02 ± 0.13 | 24.72 ± 0.31 | 4.65 ± 0.41 | 5.90 ± 0.03 | 4.81 ± 0.49 |
CaCl2,Red | 40.86 ± 1.07 | −4.72 ± 0.43 | 16.29 ± 1.21 | 4.72 ± 0.41 | 5.96 ± 0.02 | 5.45 ± 0.25 |
KCl, Green | 50.34 ± 0.89 | −7.52 ± 0.33 | 23.72 ± 0.83 | 5.08 ± 0.56 | 6.07 ± 0.05 | 5.07 ± 0.51 |
KCl, Red | 41.22 ± 1.37 | −3.33 ± 0.71 | 15.58 ± 1.28 | 5.03 ± 0.30 | 6.04 ± 0.04 | 4.66 ± 0.54 |
NaCl, Green | 49.93 ± 0.56 | −7.69 ± 0.17 | 24.12 ± 0.57 | 4.87 ± 0.59 | 6.03 ± 0.03 | 5.14 ± 0.26 |
NaCl, Red | 43.66 ± 0.73 | −5.04 ± 0.59 | 18.41 ± 0.77 | 5.18 ± 0.54 | 6.10 ± 0.05 | 4.84 ± 0.51 |
S × C | ||||||
Control, Cut 1 | 44.97 ± 2.98 | −6.63 ± 1.47 | 22.65 ± 2.90 | 4.20 ± 0.29 | 6.03 ± 0.03 abc | 4.82 ± 0.21 ab |
Control, Cut 2 | 45.83 ± 2.64 | −5.55 ± 1.09 | 18.50 ± 2.06 | 4.53 ± 0.21 | 5.96 ± 0.02 bc | 3.69 ± 0.33 b |
CaCl2, Cut 1 | 45.80 ± 1.81 | −6.61 ± 0.73 | 21.56 ± 1.64 | 3.93 ± 0.24 | 5.93 ± 0.03 c | 4.57 ± 0.36 ab |
CaCl2, Cut 2 | 44.42 ± 2.27 | −6.40 ± 0.94 | 19.46 ± 2.35 | 5.44 ± 0.24 | 5.93 ± 0.02 c | 5.68 ± 0.30 a |
KCl, Cut 1 | 45.57 ± 1.70 | −5.47 ± 0.83 | 19.74 ± 1.63 | 4.37 ± 0.22 | 5.99 ± 0.04 abc | 5.62 ± 0.22 a |
KCl, Cut 2 | 45.99 ± 2.84 | −5.39 ± 1.30 | 19.56 ± 2.50 | 5.75 ± 0.39 | 6.12 ± 0.03 a | 4.12 ± 0.54 b |
NaCl, Cut 1 | 47.29 ± 1.64 | −6.61 ± 0.63 | 21.87 ± 1.44 | 4.20 ± 0.27 | 6.05 ± 0.05 abc | 5.43 ± 0.25 a |
NaCl, Cut 2 | 46.29 ± 1.41 | −6.12 ± 0.81 | 20.66 ± 1.40 | 5.85 ± 0.55 | 6.08 ± 0.02 ab | 4.55 ± 0.45 ab |
CV × C | ||||||
Green, Cut 1 | 50.24 ± 0.62 | −8.02 ± 0.28 | 25.41 ± 0.89 | 3.98 ± 0.11 | 5.96 ± 0.02 | 4.93 ± 0.25 |
Green, Cut 2 | 50.32 ± 0.49 | −7.66 ± 0.13 | 23.76 ± 0.33 | 5.53 ± 0.30 | 6.03 ± 0.03 | 4.85 ± 0.30 |
Red, Cut 1 | 41.58 ± 0.62 | −4.46 ± 0.37 | 17.50 ± 0.42 | 4.38 ± 0.21 | 6.05 ± 0.03 | 5.29 ± 0.17 |
Red, Cut 2 | 40.94 ± 0.95 | −3.69 ± 0.55 | 15.34 ± 0.93 | 5.26 ± 0.29 | 6.01 ± 0.02 | 4.16 ± 0.38 |
Significance | ||||||
Cultivar (CV) | *** | *** | *** | n.s. | n.s. | n.s. |
Salinity (S) | n.s. | n.s. | n.s. | n.s. | *** | ** |
Cut (C) | n.s. | n.s. | ** | *** | n.s. | * |
CV × S | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
S × C | n.s. | n.s. | n.s. | n.s. | * | ** |
CV × C | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
CV × S × C | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Source of Variance | N (g kg−1 dw) | P (g kg−1 dw) | K (g kg−1 dw) | Ca (g kg−1 dw) | Mg (g kg−1 dw) | Na (g kg−1 dw) | Cl (g kg−1 dw) |
---|---|---|---|---|---|---|---|
Cultivar (CV) | |||||||
Green | 44.92 ± 0.46 | 3.14 ± 0.09 | 50.51 ± 2.99 | 7.36 ± 0.77 a | 2.09 ± 0.11 a | 5.66 ± 1.32 a | 23.46 ± 2.85 |
Red | 43.94 ± 0.59 | 3.05 ± 0.10 | 51.10 ± 3.19 | 5.46 ± 0.71 b | 1.73 ± 0.12 b | 4.55 ± 1.17 b | 25.35 ± 2.92 |
Salinity (S) | |||||||
Control | 44.38 ± 0.97 | 3.36 ± 0.10 a | 48.70 ± 2.40 b | 6.23 ± 0.65 b | 2.24 ± 0.21 a | 2.01 ± 0.24 b | 11.58 ± 0.61 c |
CaCl2 | 43.85 ± 0.76 | 2.79 ± 0.14 b | 46.33 ± 3.18 b | 10.84 ± 1.27 a | 2.13 ± 0.14 ab | 2.05 ± 0.23 b | 25.33 ± 3.34 b |
KCl | 44.43 ± 0.70 | 3.19 ± 0.08 a | 68.05 ± 4.14 a | 3.93 ± 0.28 c | 1.54 ± 0.12 c | 1.73 ± 0.20 b | 33.50 ± 2.75 a |
NaCl | 45.04 ± 0.60 | 3.03 ± 0.16 ab | 40.14 ± 2.73 b | 4.64 ± 0.41 c | 1.73 ± 0.15 bc | 14.63 ± 1.4 a | 27.21 ± 5.26 b |
Cut (C) | |||||||
Cut 1 | 46.04 ± 0.41 a | 2.85 ± 0.08 b | 48.91 ± 2.02 | 4.91 ± 0.40 b | 1.57 ± 0.08 b | 4.60 ± 0.87 a | 15.38 ± 1.35 b |
Cut 2 | 42.82 ± 0.43 b | 3.33 ± 0.08 a | 52.70 ± 3.84 | 7.91 ± 0.90 a | 2.25 ± 0.12 a | 5.61 ± 1.53 b | 33.44 ± 2.80 a |
CV × S | |||||||
Control, Green | 45.41 ± 0.90 | 3.41 ± 0.11 | 48.69 ± 1.97 | 7.50 ± 0.86 | 2.55 ± 0.27 | 2.27 ± 0.39 | 11.42 ± 0.69 |
Control, Red | 43.35 ± 1.70 | 3.31 ± 0.18 | 48.70 ± 4.63 | 4.97 ± 0.68 | 1.93 ± 0.29 | 1.76 ± 0.27 | 11.75 ± 1.09 |
CaCl2,Green | 44.34 ± 1.23 | 2.94 ± 0.23 | 43.97 ± 3.77 | 12.18 ± 1.64 | 2.25 ± 0.13 | 2.24 ± 0.42 | 22.42 ± 5.86 |
CaCl2,Red | 43.37 ± 0.96 | 2.64 ± 0.15 | 48.70 ± 5.30 | 9.49 ± 1.93 | 2.01 ± 0.26 | 1.86 ± 0.22 | 28.25 ± 3.38 |
KCl, Green | 44.41 ± 1.05 | 3.18 ± 0.06 | 70.38 ± 4.24 | 4.29 ± 0.26 | 1.63 ± 0.12 | 1.96 ± 0.32 | 32.67 ± 3.31 |
KCl, Red | 44.45 ± 1.02 | 3.20 ± 0.15 | 65.73 ± 7.42 | 3.58 ± 0.47 | 1.44 ± 0.20 | 1.49 ± 0.24 | 34.33 ± 4.70 |
NaCl, Green | 45.51 ± 0.53 | 3.01 ± 0.26 | 39.01 ± 3.68 | 5.49 ± 0.43 | 1.94 ± 0.17 | 16.17 ± 1.51 | 27.33 ± 7.42 |
NaCl, Red | 44.58 ± 1.10 | 3.05 ± 0.20 | 41.27 ± 4.33 | 3.80 ± 0.52 | 1.52 ± 0.21 | 13.09 ± 2.32 | 27.08 ± 8.16 |
S × C | |||||||
Control, Cut 1 | 46.11 ± 0.99 | 3.10 ± 0.10 | 45.55 ± 2.66 | 4.62 ± 0.46 d | 1.68 ± 0.14 | 2.59 ± 0.30 c | 11.25 ± 0.77 d |
Control, Cut 2 | 42.65 ± 1.39 | 3.62 ± 0.09 | 51.84 ± 3.79 | 7.85 ± 0.77 b | 2.81 ± 0.21 | 1.43 ± 0.16 c | 11.92 ± 1.01 d |
CaCl2, Cut 1 | 45.68 ± 0.73 | 2.51 ± 0.08 | 47.95 ± 3.34 | 7.31 ± 0.82 bc | 1.83 ± 0.15 | 2.36 ± 0.31 c | 15.25 ± 2.62 d |
CaCl2, Cut 2 | 42.03 ± 0.81 | 3.06 ± 0.22 | 44.72 ± 5.69 | 14.36 ± 1.22 a | 2.43 ± 0.18 | 1.75 ± 0.33 c | 35.42 ± 1.29 b |
KCl, Cut 1 | 46.06 ± 0.87 | 3.05 ± 0.08 | 59.32 ± 4.43 | 3.51 ± 0.42 d | 1.27 ± 0.11 | 2.05 ± 0.28 c | 24.67 ± 0.46 c |
KCl, Cut 2 | 42.80 ± 0.57 | 3.33 ± 0.11 | 76.79 ± 5.01 | 4.36 ± 0.31 d | 1.80 ± 0.13 | 1.41 ± 0.24 c | 42.33 ± 1.38 a |
NaCl, Cut 1 | 46.29 ± 0.88 | 2.74 ± 0.23 | 42.82 ± 2.42 | 4.19 ± 0.52 d | 1.50 ± 0.14 | 11.41 ± 1.16 b | 10.33 ± 0.57 d |
NaCl, Cut 2 | 43.79 ± 0.42 | 3.32 ± 0.16 | 37.46 ± 4.91 | 5.09 ± 0.62 cd | 1.97 ± 0.23 | 17.85 ± 1.77 a | 44.08 ± 2.71 a |
CV × C | |||||||
Green, Cut 1 | 46.58 ± 0.43 | 2.96 ± 0.13 | 50.84 ± 2.61 | 6.03 ± 0.53 | 1.81 ± 0.08 | 5.58 ± 1.44 | 14.54 ± 1.97 |
Green, Cut 2 | 43.26 ± 0.46 | 3.31 ± 0.13 | 50.18 ± 5.52 | 8.69 ± 1.37 | 2.38 ± 0.18 | 5.74 ± 2.29 | 32.38 ± 3.97 |
Red, Cut 1 | 45.50 ± 0.68 | 2.73 ± 0.09 | 46.98 ± 3.10 | 3.79 ± 0.41 | 1.32 ± 0.08 | 3.62 ± 0.96 | 16.21 ± 1.91 |
Red, Cut 2 | 42.38 ± 0.73 | 3.36 ± 0.11 | 55.22 ± 5.48 | 7.13 ± 1.19 | 2.13 ± 0.17 | 5.48 ± 2.15 | 34.50 ± 4.09 |
Significance | |||||||
Cultivar (CV) | n.s. | n.s. | n.s. | *** | ** | * | n.s. |
Salinity (S) | n.s. | ** | *** | *** | *** | *** | *** |
Cut (C) | *** | *** | n.s. | *** | *** | *** | *** |
CV × S | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
S × C | n.s. | n.s. | n.s. | *** | n.s. | *** | *** |
CV × C | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
CV × S × C | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Source of Variance | Nitrate (mg kg−1 fw) | LAA (mmol Trolox 100g−1 dw) | HAA (mmol Ascorbic ac. eq. kg−1 dw) | TAA (mg 100g−1 fw) |
---|---|---|---|---|
Cultivar (CV) | ||||
Green | 1961.45 ± 104.81 | 3.72 ± 0.15 b | 1.40 ± 0.08 | 46.81 ± 3.00 b |
Red | 1917.22 ± 93.35 | 4.68 ± 0.25 a | 1.31 ± 0.09 | 67.23 ± 4.09 a |
Salinity (S) | ||||
Control | 2210.08 ± 118.69 a | 3.63 ± 0.27 b | 1.27 ± 0.03 | 45.29 ± 3.67 b |
CaCl2 | 1593.01 ± 109.51 b | 4.58 ± 0.3 a | 1.43 ± 0.06 | 74.41 ± 4.19 a |
KCl | 1975.78 ± 118.05 a | 3.94 ± 0.31 b | 1.38 ± 0.04 | 58.24 ± 6.78 b |
NaCl | 1978.47 ± 157.22 a | 4.64 ± 0.34 a | 1.31 ± 0.04 | 50.14 ± 4.90 b |
Cut (C) | ||||
Cut 1 | 2115.92 ± 74.67 a | 4.95 ± 0.19 a | 1.27 ± 0.02 b | 54.83 ± 4.87 |
Cut 2 | 1762.75 ± 107.03 b | 3.45 ± 0.15 b | 1.42 ± 0.03 a | 59.21 ± 3.26 |
CV x S | ||||
Control, Green | 2366.26 ± 167.12 a | 3.22 ± 0.27 | 1.30 ± 0.05 | 35.55 ± 2.51 |
Control, Red | 2053.89 ± 155.88 ab | 4.04 ± 0.42 | 1.25 ± 0.05 | 55.02 ± 3.90 |
CaCl2,Green | 1530.81 ± 137.77 c | 4.02 ± 0.21 | 1.52 ± 0.06 | 63.97 ± 2.31 |
CaCl2,Red | 1655.21 ± 179.56 bc | 5.14 ± 0.46 | 1.33 ± 0.10 | 84.85 ± 5.33 |
KCl, Green | 1754.21 ± 108.87 bc | 3.70 ± 0.28 | 1.40 ± 0.08 | 44.37 ± 4.07 |
KCl, Red | 2197.36 ± 172.71 ab | 4.18 ± 0.57 | 1.36 ± 0.02 | 72.1 ± 10.44 |
NaCl, Green | 2194.54 ± 232.51 ab | 3.94 ± 0.34 | 1.39 ± 0.03 | 43.33 ± 7.02 |
NaCl, Red | 1762.4 ± 189.81 bc | 5.35 ± 0.43 | 1.24 ± 0.05 | 56.96 ± 6.14 |
S x C | ||||
Control, Cut 1 | 2033.59 ± 100.69 ab | 4.35 ± 0.29 | 1.19 ± 0.04 c | 41.38 ± 3.06 d |
Control, Cut 2 | 2386.56 ± 198.46 a | 2.91 ± 0.15 | 1.35 ± 0.03 bc | 49.20 ± 6.63 cd |
CaCl2, Cut 1 | 1864.45 ± 80.3 bc | 5.21 ± 0.45 | 1.26 ± 0.08 bc | 71.58 ± 6.06 ab |
CaCl2, Cut 2 | 1321.57 ± 129.81 d | 3.95 ± 0.16 | 1.59 ± 0.04 a | 77.24 ± 6.13 a |
KCl, Cut 1 | 2165.31 ± 175.53 ab | 4.76 ± 0.27 | 1.32 ± 0.02 bc | 64.86 ± 13.17 abc |
KCl, Cut 2 | 1786.25 ± 127.04 bc | 3.12 ± 0.30 | 1.44 ± 0.07 ab | 51.61 ± 3.36 bcd |
NaCl, Cut 1 | 2400.32 ± 156.61 a | 5.46 ± 0.35 | 1.32 ± 0.03 bc | 41.50 ± 8.32 d |
NaCl, Cut 2 | 1556.62 ± 114.24 c | 3.82 ± 0.33 | 1.31 ± 0.07 bc | 58.79 ± 2.52 abcd |
CV × C | ||||
Green, Cut 1 | 2123.77 ± 118.33 | 4.21 ± 0.13 b | 1.32 ± 0.03 | 41.91 ± 4.27 |
Green, Cut 2 | 1799.14 ± 164.77 | 3.22 ± 0.16 c | 1.48 ± 0.05 | 51.70 ± 3.87 |
Red, Cut 1 | 2108.06 ± 96.45 | 5.68 ± 0.17 a | 1.23 ± 0.04 | 67.74 ± 7.12 |
Red, Cut 2 | 1726.37 ± 143.24 | 3.68 ± 0.24 c | 1.36 ± 0.04 | 66.72 ± 4.39 |
Significance | ||||
Cultivar (CV) | n.s. | *** | n.s. | *** |
Salinity (S) | *** | *** | ** | *** |
Cut (C) | *** | *** | *** | n.s. |
CV × S | *** | n.s. | n.s. | n.s. |
S × C | *** | n.s. | ** | |
CV × C | n.s. | *** | n.s. | n.s. |
CV × S × C | n.s. | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carillo, P.; Soteriou, G.A.; Kyriacou, M.C.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Mola, I.D.; Mori, M.; Rouphael, Y. Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality. Agronomy 2021, 11, 1040. https://doi.org/10.3390/agronomy11061040
Carillo P, Soteriou GA, Kyriacou MC, Giordano M, Raimondi G, Napolitano F, Di Stasio E, Mola ID, Mori M, Rouphael Y. Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality. Agronomy. 2021; 11(6):1040. https://doi.org/10.3390/agronomy11061040
Chicago/Turabian StyleCarillo, Petronia, Georgios A. Soteriou, Marios C. Kyriacou, Maria Giordano, Giampaolo Raimondi, Francesco Napolitano, Emilio Di Stasio, Ida Di Mola, Mauro Mori, and Youssef Rouphael. 2021. "Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality" Agronomy 11, no. 6: 1040. https://doi.org/10.3390/agronomy11061040
APA StyleCarillo, P., Soteriou, G. A., Kyriacou, M. C., Giordano, M., Raimondi, G., Napolitano, F., Di Stasio, E., Mola, I. D., Mori, M., & Rouphael, Y. (2021). Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality. Agronomy, 11(6), 1040. https://doi.org/10.3390/agronomy11061040