Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Characterisation
2.2. Inoculation of Olives
2.3. Olive Oil Extraction
2.4. Chemical and Sensory Characterisation of Olive Oil
2.5. Statistical Analysis
3. Results and Discussion
3.1. Olive Characterisation
3.2. Olive Oil Characterisation by Quality Criteria
3.2.1. Chemical Parameters
3.2.2. Sensory Analysis
3.3. Fatty Acid Composition
3.4. Phenol Contents
3.5. Multivariate Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graniti, A.; Faedda, R.; Cacciola, S.O.; San Lio, M. Olive diseases in a changing ecosystem. In Olive Diseases and Disorders; Schena, L., Agosteo, G.E., Cacciola, S.O., Eds.; Transworld Research Network: Kerala, India, 2011; pp. 1–31. [Google Scholar]
- Kolainis, S.; Koletti, A.; Lykogianni, M.; Karamanou, D.; Gkizi, D.; Tjamos, S.E.; Paraskeuopoulos, A.; Aliferis, K.A. An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLoS ONE 2020, 15, e0233916. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Faedda, R.; Sinatra, F.; Agosteo, G.E.; Schena, L.; Frisullo, S.; Magnano di San Lio, G. Olive anthracnose. J. Plant Pathol. 2012, 94, 29–44. [Google Scholar] [CrossRef]
- Talhinhas, P.; Gonçalves, E.; Sreenivasaprasad, S.; Oliveira, H. Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides species complexes) on eight olive cultivars commonly grown in Portugal. Eur. J. Plant Pathol. 2015, 142, 73–83. [Google Scholar] [CrossRef]
- Moral, J.; Xaviér, C.J.; Viruega, J.R.; Roca, L.F.; Caballero, J.; Trapero, A. Variability in Susceptibility to Anthracnose in the World Collection of Olive Cultivars of Cordoba (Spain). Front. Plant Sci. 2017, 8, 1892. [Google Scholar] [CrossRef] [Green Version]
- Talhinhas, P.; Loureiro, A.; Oliveira, H. Olive anthracnose: A yield- and oil quality-degrading disease caused by several species of Colletotrichum that differ in virulence, host preference and geographical distribution. Mol. Plant Pathol. 2018, 19, 1797–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antelmi, I.; Sion, V.; Nigro, F. First Report of Colletotrichum nymphaeae on Olive in Italy. Plant Dis. 2019, 103, 765. [Google Scholar] [CrossRef]
- Carvalho, M.T.; Simoes-Lopes, P.; Silva, M.J.M. Influence of different olive infection rates of Colletotrichum acutatum on some important olive oil chemical parameters. Acta Hortic. 2008, 791, 555–559. [Google Scholar] [CrossRef]
- Moral, J.; Xaviér, C.; Roca, L.F.; Romero, J.; Moreda, W.; Trapero, A. Olive Anthracnose and its effect on oil quality. Grasas Aceites 2014, 65, e028. [Google Scholar] [CrossRef]
- Leoni, C.; Bruzzone, J.; Villamil, J.J.; Martínez, C.; Montelongo, M.J.; Bentancur, O.; Conde-Innamorato, P. Percentage of anthracnose (Colletotrichum acutatum s.s.) acceptable in olives for the production of extra virgin olive oil. Crop. Prot. 2018, 108, 47–53. [Google Scholar] [CrossRef]
- Talhinhas, P.; Sreenivasaprasad, S.; Neves-Martins, J.; Oliveira, H. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl. Environ. Microbiol. 2005, 71, 2987–2998. [Google Scholar] [CrossRef] [Green Version]
- Baroncelli, R.; Talhinhas, P.; Pensec, F.; Sukno, S.A.; Le Floch, G.; Thon, M.R. The Colletotrichum acutatum Species Complex as a Model System to Study Evolution and Host Specialization in Plant Pathogens. Front. Microbiol. 2017, 8, 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schena, L.; Abdelfattah, A.; Mosca, S.; Li Destri Nicosia, M.G.; Agosteo, G.E.; Cacciola, S.O. Quantitative detection of Colletotrichum godetiae and C. acutatum sensu stricto in the phyllosphere and carposphere of olive during four phenological phases. Eur. J. Plant Pathol. 2017, 149, 337–347. [Google Scholar] [CrossRef]
- EC. eAmbrosia—The EU Geographical Indications Register. Available online: https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/geographical-indications-register/ (accessed on 30 March 2021).
- Talhinhas, P.; Mota-Capitão, C.; Martins, S.; Ramos, A.P.; Neves-Martins, J.; Guerra-Guimarães, L.; Várzea, V.; Silva, M.C.; Sreenivasaprasad, S.; Oliveira, H. Epidemiology, histopathology and aetiology of olive anthracnose caused by Colletotrichum acutatum and C. gloeosporioides in Portugal. Plant Pathol. 2011, 60, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Crous, P.W. The Colletotrichum acutatum species complex. Stud. Mycol. 2012, 73, 37–113. [Google Scholar] [CrossRef] [Green Version]
- Official Journal of the European Union. European Union. Commission Regulation (EU) No 61/2011 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; Official Journal of the European Union: Brussels, Belgium, 2011; Volume L23, pp. 1–14. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:023:0001:0014:en:PDF (accessed on 30 March 2021).
- Biedermann, M.; Bongartz, A.; Mariani, C.; Grob, K. Fatty acid methyl and ethyl esters as well as wax esters for evaluating the quality of olive oils. Eur. Food Res. Technol. 2008, 228, 65–74. [Google Scholar] [CrossRef]
- Servili, M.; Montedoro, G. Contribution of phenolic compounds to virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2002, 104, 602–613. [Google Scholar] [CrossRef]
- Andrewes, P.; Busch, J.L.H.C.; Joode, T.; Groenewegen, A.; Alexandre, H. Sensory Properties of Virgin Olive Oil Polyphenols: Identification of Deacetoxy-ligstroside Aglycon as a Key Contributor to Pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef]
- EFSA. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the Substantiation of Health Claims Related to Polyphenols in Olive and Protection of LDL Particles from Oxidative Damage (ID 1333, 1638, 1639, 1696, 2865), Maintenance of Normal Blood HDL–Cholesterol Concentrations (ID 1639), Maintenance of Normal Blood Pressure (ID 3781), Anti–Inflammatory Properties (ID 1882), Contributes to the Upper Respiratory Tract Health (ID 3468), Can Help to Maintain a Normal Function of Gastrointestinal Tract (3779), and Contributes to Body Defences against External Agents (ID 3467) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. 2011. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/2033 (accessed on 30 March 2021).
- Peres, F.; Martins, L.L.; Mourato, M.; Vitorino, C.; Ferreira-Dias, S. Bioactive Compounds of Portuguese Virgin Olive Oils Discriminate Cultivar and Ripening Stage. J. Am. Oil Chem. Soc. 2016, 93, 1137–1147. [Google Scholar] [CrossRef]
- Moral, J.; Alsalimiya, M.; Roca, L.F.; Díez, C.M.; León, L.; de la Rosa, R.; Barranco, D.; Rallo, L.; Trapero, A. Relative Susceptibility of New Olive Cultivars to Spilocaea oleagina, Colletotrichum acutatum, and Pseudocercospora cladosporioides. Plant Dis. 2015, 99, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Gouvinhas, I.; Martins-Lopes, P.; Carvalho, T.; Barros, A.; Gomes, S. Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism. Agriculture 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Moral, J.; Bouhmidi, K.; Trapero, A. Influence of Fruit Maturity, Cultivar Susceptibility, and Inoculation Method on Infection of Olive Fruit by Colletotrichum acutatum. Plant Dis. 2008, 92, 1421–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouvinhas, I.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Carvalho, T.; Machado, N.; Barros, A. Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening. J. Chem. 2017, 2017, 5197613. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- IPMA. Normais Climatológicas—1981–2010 (Provisórias)—Castelo Branco. Available online: https://www.ipma.pt/pt/oclima/normais.clima/1981-2010/005/ (accessed on 10 January 2021).
- IOC. Guide for the Determination of the Characteristics of Oil-Olives. COI/OH/Doc. Nº.1. 2011. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OH-Doc.-1-2011-Eng.pdf (accessed on 30 March 2021).
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Laboratory-scale optimization of olive oil extraction: Simultaneous addition of enzymes and microtalc improves the yield. Eur. J. Lipid Sci. Technol. 2014, 116, 1054–1062. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Commission Implementing Regulation (EU) No 1348/2013 of 16 December 2013 amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; Official Journal of the European Union: Brussels, Belgium, 2013; Volume L338, pp. 31–67. Available online: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32013R1348 (accessed on 30 March 2021).
- Pizarro, M.L.; Becerra, M.; Sayago, A.; Beltrán, M.; Beltrán, R. Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil. Food Anal. Methods 2013, 6, 123–132. [Google Scholar] [CrossRef]
- Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry; Ellis Horwood and Prentice Hall: Chichester, UK, 1993. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gomes, S.; Bacelar, E.; Martins-Lopes, P.; Carvalho, T.; Guedes-Pinto, H. Infection process of olive fruits by Colletotrichum acutatum and the protective role of the cuticle and epidermis. J. Agric. Sci. 2012, 4, 101. [Google Scholar] [CrossRef]
- Mafra, I.; Barros, A.S.; Nunes, C.; Vitorino, R.; Saraiva, J.; Smith, A.C.; Waldron, K.W.; Delgadillo, I.; Coimbra, M.A. Ripening-related changes in the cell walls of olive (Olea europaea L.) pulp of two consecutive harvests. J. Sci. Food Agric. 2006, 86, 988–998. [Google Scholar] [CrossRef]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Sousa, C.; Gouvinhas, I.; Barreira, D.; Carvalho, M.T.; Vilela, A.; Lopes, J.; Martins-Lopes, P.; Barros, A.I. ‘Cobrançosa’ Olive Oil and Drupe: Chemical Composition at Two Ripening Stages. J. Am. Oil Chem. Soc. 2014, 91, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Official Journal of the European Union. Commission Delegated Regulation (EU) No 2019/1604 of 27 September 2019 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; Official Journal of the European Union: Brussels, Belgium, 2019; Volume L250, pp. 14–48. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1604&from=EN (accessed on 30 March 2021).
- Runcio, A.; Sorgonà, L.; Mincione, A.; Santacaterina, S.; Poiana, M. Volatile compounds of virgin olive oil obtained from Italian cultivars grown in Calabria.: Effect of processing methods, cultivar, stone removal, and antracnose attack. Food Chem. 2008, 106, 735–740. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of Extra Virgin Olive Oil: Adulteration, Oxidative Stability, and Antioxidants. J. Agric. Food Chem. 2010, 58, 5991–6006. [Google Scholar] [CrossRef]
- Fakas, S.; Kefalogianni, I.; Makri, A.; Tsoumpeli, G.; Rouni, G.; Gardeli, C.; Papanikolaou, S.; Aggelis, G. Characterization of olive fruit microflora and its effect on olive oil volatile compounds biogenesis. Eur. J. Lipid Sci. Technol. 2010, 112, 1024–1032. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Gómez-Coca, R.B.; Moreda, W.; Pérez-Camino, M.C. Sensory defects of virgin olive oil from a microbiological perspective. Trends Food Sci. Technol. 2015, 43, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Circi, S.; Capitani, D.; Randazzo, A.; Ingallina, C.; Mannina, L.; Sobolev, A.P. Panel test and chemical analyses of commercial olive oils: A comparative study. Chem. Biol. Technol. Agric. 2017, 4, 18. [Google Scholar] [CrossRef]
- Kirsch, C.; Hahlbrock, K.; Somssich, I.E. Rapid and Transient Induction of a Parsley Microsomal [delta]12 Fatty Acid Desaturase mRNA by Fungal Elicitor. Plant Physiol. 1997, 115, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madi, L.; Wang, X.; Kobiler, I.; Lichter, A.; Prusky, D. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol. Mol. Plant Pathol. 2003, 62, 277–283. [Google Scholar] [CrossRef]
- Kazaz, S.; Miray, R.; Baud, S. Acyl–Acyl Carrier Protein Desaturases and Plant Biotic Interactions. Cells 2021, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- Guilengue, N.; Neves-Martins, J.; Talhinhas, P. Response to Anthracnose in a Tarwi (Lupinus mutabilis) Collection Is Influenced by Anthocyanin Pigmentation. Plants 2020, 9, 583. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Nuckles, E.; Archbold, D.D. Effects of Phenolic Compounds on Growth of Colletotrichum spp. In Vitro. Curr. Microbiol. 2018, 75, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Mendonça, E.; Martins, A.; Anselmo, A.M. Biodegradation of natural phenolic compounds as single and mixed substrates by Fusarium flocciferum. Electron. J. Biotechnol. 2004, 7, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Martínková, L.; Kotik, M.; Marková, E.; Homolka, L. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere 2016, 149, 373–382. [Google Scholar] [CrossRef] [PubMed]
Quality Criteria | Olive Oils | Olive Oil Category [41] | ||
---|---|---|---|---|
Galega | Cobrançosa | EVOO | VOO | |
Acidity (% oleic acid) | 0.04 | 0.04 | ≤0.8 | ≤2.0 |
PV (meq O2 kg−1) | 6.26 | 10.18 | ≤20 | ≤20 |
K270 | 0.19 | 0.14 | ≤0.22 | ≤0.25 |
K232 | 1.59 | 1.67 | ≤2.50 | ≤2.60 |
Delta-K | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 |
Median of defect (Md) | 0 | 0 | Md = 0.0 | Md ≤ 3.5 |
Fruity median (Mf) | 5.0 | 5.8 | Mf ≥ 0 | Mf ≥ 0 |
FAEE (mg/kg) | 6 | 4 | ≤ 35 |
Fatty Acid | C16:0 (%) | C18:0 (%) | C18:2 (%) | C18:1 (%) | ||||
---|---|---|---|---|---|---|---|---|
Sample | GAL | COB | GAL | COB | GAL | COB | GAL | COB |
t0 | 14.99 abc | 13.57 bcde | 2.44 a | 2.93 cd | 5.14 h | 6.23 i | 75.53 a | 73.76 ab |
Ac3 | 14.74 bc | 13.29 cde | 2.45 a | 2.90 cd | 5.85 f | 6.87 fh | 74.69 bc | 73.79 a |
Ac7 | 15.65 ab | 13.20 de | 2.43 a | 2.97 bcd | 6.42 e | 6.69 h | 73.60 def | 73.66 ab |
Ac11 | 15.56 ab | 13.90 bc | 2.76 a | 3.00 abcd | 6.77 d | 7.19 e | 73.78 de | 73.36 abc |
Ac14 | 15.61 ab | 15.69 a | 2.47 a | 3.17 a | 6.97 c | 8.65 b | 73.34 ef | 72.40 d |
Ny3 | 14.91 abc | 13.53 bcde | 2.36 a | 2.82 d | 5.44 g | 6.68 h | 75.09 ab | 73.54 abc |
Ny7 | 14.70 bc | 13.02 e | 2.38 a | 2.91 cd | 5.93 f | 6.84 g | 74.10 cd | 73.52 abc |
Ny11 | 15.92 a | 13.66 bcde | 2.31 a | 3.03 abc | 6.93 e | 7.29 de | 73.86 de | 73.20 c |
Ny14 | 15.26 abc | 15.30 a | 2.67 a | 3.14 ab | 6.80 d | 9.05 a | 73.95 de | 72.15 d |
Go3 | 14.74 bc | 13.58 bcde | 2.48 a | 2.89 cd | 7.20 ab | 6.94 f | 73.30 ef | 73.59 abc |
Go7 | 14.35 c | 13.73 bcd | 2.47 a | 2.85 cd | 7.25 a | 7.36 d | 73.31 ef | 73.23 bc |
Go11 | 14.88 bc | 13.77 bcd | 2.59 a | 2.89 cd | 7.12 b | 8.14 c | 73.39 ef | 72.66 d |
Go14 | 15.00 abc | 14.19 b | 2.60 a | 2.94 cd | 6.93 c | 8.59 b | 72.98 f | 72.27 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peres, F.; Talhinhas, P.; Afonso, H.; Alegre, H.; Oliveira, H.; Ferreira-Dias, S. Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy 2021, 11, 1041. https://doi.org/10.3390/agronomy11061041
Peres F, Talhinhas P, Afonso H, Alegre H, Oliveira H, Ferreira-Dias S. Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy. 2021; 11(6):1041. https://doi.org/10.3390/agronomy11061041
Chicago/Turabian StylePeres, Fátima, Pedro Talhinhas, Hugo Afonso, Helena Alegre, Helena Oliveira, and Suzana Ferreira-Dias. 2021. "Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation" Agronomy 11, no. 6: 1041. https://doi.org/10.3390/agronomy11061041
APA StylePeres, F., Talhinhas, P., Afonso, H., Alegre, H., Oliveira, H., & Ferreira-Dias, S. (2021). Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy, 11(6), 1041. https://doi.org/10.3390/agronomy11061041