Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Irrigation System
2.3. Water Quality
2.4. Soil Analysis
2.5. Forage Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Evolution
3.2. Mineral Composition
3.3. NDF and ADF Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendoza-Grimón, V.; Hernández-Moreno, J.M.; Palacios-Díaz, M.D.P. Improving water use in fodder production. Water 2015, 7, 2612–2621. [Google Scholar] [CrossRef]
- Palacios-Díaz, M.P.; Mendoza-Grimón, V.; Fernández-Vera, J.R.; Hernández-Moreno, J.M. Effects of defoliation and nitrogen uptake on forage nutritive values of Pennisetum sp. J. Anim. Plant Sci. 2013, 23, 566–574. [Google Scholar]
- Palacios, M.P.; Mendoza-Grimón, V.; Fernández, F.; Fernández-Vera, J.R.; Hernández-Moreno, J.M. Sustainable Reclaimed Water Management by Subsurface Drip Irrigation System: A study case for forage production. Water Pract. Technol. 2008, 3. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Silva, G.D.; Semedo-Varela, A.; Palacios-Díaz, M.D.P. Cape Verde (West Africa) Successful Water Reuse Pilot Project: A Sustainable Way for Increasing Food Production in a Climate Change Scenario. Water 2021, 13, 160. [Google Scholar] [CrossRef]
- Winpenny, J.; Heinz, I.; Koo-Oshima, S. Reutilización del Agua en Agricultura: Beneficios Para Todos? FAO Informe sobre Temas hídricos: Rome, Italy, 2013; p. 35. [Google Scholar]
- Available online: https://www.ifad.org/en/web/operations/country/id/cape_verde (accessed on 20 March 2021).
- ANAS. Estação de Tratamento de Águas Residuais “ETAR” Cabo Verde. Estudo e Caracterização; Departamento de Gestão de Recursos Hídricos e Saneamento “DGRHS”, Agência Nacional de Água e Saneamento “ANAS”: June 2016. Available online: www.http://anas.gov.cv (accessed on 10 January 2021).
- SDG Cabo Verde. Sustainable Develpoment Goal. Voluntary National Report on the Implementation of the 2023 Agenda for Sustainable Development. 2018. Available online: https://sustainabledevelopment.un.org (accessed on 15 March 2021).
- INE.CV. 2018. Available online: http://ine.cv/estatisticas-por-tema/ (accessed on 15 March 2021).
- Satyavathi, C.T.; Solanki, R.; Kakani, R.; Bharadwaj, C.; Singhal, T.; Padaria, J.; Khandelwal, V.; Srivastava, R.; Tomar, R.S.; Iqubal, M.A. Genomics assisted breeding for abiotic stress tolerance in Millets. In Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance; Springer: New York, NY, USA, 2019; pp. 241–255. [Google Scholar]
- Staggenborg, S.; Dhuyvetter, K.C.; Gordon, W.B. Grain sorghum and corn comparisons: Yield, economic and environmental responses. Agron. J. 2008, 100, 1600–1604. [Google Scholar] [CrossRef] [Green Version]
- Bolaños, A.E.D.; Emile, J.-C. Distancia entre surcos en el rendimiento y calidad de la materia seca de maíz y de sorgo. Rev. Mex. Cienc. Pecu. 2011, 2, 299–312. [Google Scholar]
- Texas Cooperative Extension and Texas Agricultural Experiment Station. Bean and McCollum. Summary of Six Years of Forage Sorghum Variety Trials. Pub. SCS-2006-04; Texas Cooperative Extension and Texas Agricultural Experiment Station: College Station, TX, USA, 2006. [Google Scholar]
- McCuistion, K.C.; McCollum, F.T.; Bean, B.W.; Rowland, M.W. Observations on nutritional value of forage sorghums for silage. In Proceedings of the Plains Nutrition Council Spring Conference, San Antonio, TX, USA, 15–16 April 2004; p. 105. [Google Scholar]
- Oliver, A.L.; Grant, R.J.; Pedersen, J.F.; O’Rear, J. Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J. Dairy Sci. 2004, 87, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, J.F.; Gorz, H.J.; Haskins, F.A.; Ross, W.M. Variability for quality and agronomic traits in forage sorghum hybrids. Crop Sci. 1982, 22, 853–856. [Google Scholar] [CrossRef] [Green Version]
- ISRA. Fiches Techniques. In Institut Sénégalais de Recherches AgricolesFiches Variétales Niébé & Sorgho; ISRA: Dakar, Senegal, 2015; Volume 8, ISSN 0850-9980. [Google Scholar]
- Ball, D.M.; Collins, M.; Lacefield, G.D.; Martin, N.P.; Mertens, D.A.; Olson, K.A.; Putnam, D.H.; Under-sander, D.J.; Wolf, M.W. Understanding Forage Quality. American Farm Bureau Federation Publication 1-01; American Farm Bureau Federation: Park Ridge, IL, USA, 2001. [Google Scholar]
- Tasie, M.M.; Gebreyes, B.G. Characterization of Nutritional, Antinutritional, and Mineral Contents of Thirty-Five Sorghum Varieties Grown in Ethiopia. Int. J. Food Sci. 2020, 2020. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food and Agriculture Organization of the United Nations, Ed.; FAO Irrigation and Drainage Paper 46; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; ISBN 29251031061. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 10 March 2021).
- Soil Survey Staff. Keys to Soil Taxonomy, 8th ed.; 1998-NRCS.; U.S.D.A.: Lincoln, NE, USA, 1998. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part2. Chemical and Microbiological Properties, Agronomy Monograph 9.2; Miller, R.H., Keeney, E.R., Eds.; America Society Agronomy, Inc.: Madison, WI, USA; Soil Science of America, Inc.: Madison, WI, USA, 1982; pp. 1035–1049. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber. Neutral Detergent Fiber. and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Palacios-Díaz, M.P.; Mendoza-Grimón, V.; Fernández-Vera, J.R.; Rodríguez-Rodríguez, F.; Tejedor-Junco, M.T.; Hernández-Moreno, J.M. Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Agric. Water Manag. 2009, 96, 1659–1666. [Google Scholar] [CrossRef]
- Perderna, M.; Mereu, A.; Cromer Eand Villalba, J.J. Preference for inorganic sources of calcium and phosphorus by sheep as a function of need. Anim. Sci. J. 2020. 91, 13460.
- Galavi, M.; Jalali, A.; Mousavi, S.R.; Galavi, H. Effect of treated municipal wastewater on forage yield, quantitative and qualitative properties of sorghum (Sorghum bicolor Speed feed). Asian J. Plant Sci. 2009, 8, 489–494. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Hernández Moreno, J.M.; Palacios-Díaz, M.P. Mineral balance and absorption from soil of Pennisetum sp at different stages. Int. J. Environ. Agric. Res. 2016, 2, 29–35. [Google Scholar]
- Saini, A. Forage quality of Sorghum (Sorghum bicolor) as influenced by Irrigation, nitrogen levels and harvesting stage. Indian J. Sci. Res. 2012, 3, 67–72. [Google Scholar]
- Suttle. Natural sources on minera. In Mineral Nutrition of Livestock, 4th ed.; British Library: London, UK, 2010. [Google Scholar]
- Harty, A. Cow Mineral Nutrition: Macro Minerals and Their Importance. Available online: https://extension.sdstate.edu/cow-mineral-nutrition-macro-minerals-and-their-importance (accessed on 10 June 2020).
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; Clark, J.H., Beede, D.K., Erdman, R.A., Goff, J.P., Grummer, R.R., Linn, J.G., Pell, A.N., Schwab, C.G., Tomkins, T., Varga, G.A., et al., Eds.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Khalil, J.K.; Sawaya, W.N.; Al Mohammed, H.M. Chemical composition and nutritional quality of sorghum flour and bread. Qual. Plant Foods Hum. Nutr. 1984, 34, 141–150. [Google Scholar] [CrossRef]
- Gerrano, A.S.; Labuschagne, M.T.; van Biljon, A.; Shargie, N.G. Quantification of Mineral Composition and Total Protein Content in Sorghum [Sorghum Bicolor (L.) Moench] Genotypes. Cereal Res. Commun. 2016, 44, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Al-Jaloud, A.A.; Hussain, G.; Al-Saati, A.J.; Karimulla, S. Effect of wastewater irrigation on mineral com-position of corn and sorghum plants in a pot experiment. J. Plant Nutr. 1995, 18, 1677–1692. [Google Scholar] [CrossRef]
- Bean, B.W.; Baumhardt, R.L.; McCollum, F.T.; McCuistion, K.C. Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Res. 2013, 142, 20–26. [Google Scholar] [CrossRef]
- Soni, P.G.; Yadav, R.K.; Kumar, A.; Yadav, G.; Kumar, G.; Yadav, T. Effect of Domestic Wastewater and Irrigation Schedules on Quality of Fodder Sorghum. J. Soil Salin. Water Qual. 2016, 8, 173–179. [Google Scholar]
- Janhi, K.; Matshaya, Z.; Chiduza, C.; Muzangwa, L. Clipping Forage Sorghum Twice and Nitrogen Topdressing Offer an Option for Dual-Purpose Use for Cover Cropping and Fodder in Mixed Crop/Livestock Farming Systems. Agronomy 2020, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Lemerle, C.; Etheridge, M.O.; Trigg, T.E. The effect of stages of maturity on digestibility and chemical composition of maize. In Proceedings of the Symposium at the University of New England, 24–27 November 1985. [Google Scholar]
- Lyons, S.E.; Ketterings, Q.M.; Godwin, G.S.; Cherney, D.J.; Cherney, J.H.; Van Amburgh, M.E.; Meisinger, J.J.; Kilcer, T.F. Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. J. Dairy Sci. 2019, 102, 7134–7149. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, S.; Cupina, B.; Simic, A.; Prodanovic, S.; Zivanovic, T. Effect of nitrogen fertilization and under sowing on yield and qualitative of cynosuretumcristati type meadows in hilly-mountains grasslands in Serbia. J. Cent. Eur. Agric. 2005, 6, 509–514. [Google Scholar]
- Atis, I.; Konuskan, O.; Duru, M.; Gozubenli, H.; Yilmaz, S. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars. Int. J. Agric. Biol. 2012, 14, 879–886. [Google Scholar]
- Singh, S.; Shukla, G.P. Genetic diversity in the nutritive value of dual purpose sorghum hybrids. Anim. Nutr. Feed Technol. 2010, 10, 93–100. [Google Scholar]
- Blezinger, S. Developing Sound Forage Analyses a Program. 1999. Available online: http://www.cattletoday.com/archive/1999/September/Cattle_Today20.shtml (accessed on 22 March 2021).
µS/cm | mg/L | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | EC | COD | BOD5 | NO3− | SAR | Cl− | Na | Ca | Mg | TSS | ||
RW | mean | 7.5 | 2970 | 32 | 6.3 | 320 | 6.8 | 415 | 361.6 | 91.3 | 71.4 | 214.0 |
std | 0.7 | 355.9 | 1.4 | 0.4 | 157.2 | 2.1 | 35.4 | 91.3 | 5.5 | 9.9 | 19.8 |
µS/cm | (meq/L)1/2 | mg/L | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wells | pH | EC | SAR | Na | K | Ca | Mg | Cl− | NO3− | SO42− | B | Cu | Fe | Zn | Mn | |
PT33 | mean | 8.1 | 1150 | 2.2 | 99 | 9.15 | 55 | 62 | 140 | 45.5 | 39.5 | 0.135 | <0.015 | <0.015 | 0.016 | <0.005 |
std | 0 | 50 | 0.03 | 1 | 0.05 | 1 | 2 | 0 | 1.5 | 2.5 | 0.005 | ─ | ─ | ─ | ─ | |
FT59 | mean | 7.95 | 1250 | 1.285 | 65.5 | 7.3 | 96 | 60.5 | 190 | 45 | 46 | 0.07 | <0.015 | <0.015 | <0.010 | <0.005 |
std | 0 | 106.1 | 0.01 | 2.47 | 0.28 | 9.90 | 5.30 | 42.42 | 0.71 | 1.41 | 0 | ─ | ─ | ─ | ─ |
dS/m | % | mg/kg | meq/100 g | mg/kg | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | Treat | pH | EC1:5 | OM | Ntot | C/N | Nitrate | P | K | Ca | Mg | Na | B | Cu | Fe | Mn | Zn | |
pre_manure | mean | 8 | 0.76 | 1.3 | 0.1 | 8.2 | 737.3 | 56.0 | 3.3 | 29.1 | 15.6 | 6.7 | 1.1 | 1.2 | 5.4 | 2.3 | 1.1 | |
std | 0.19 | 0.19 | 0.17 | 0.01 | 0.55 | 169.47 | 3.46 | 0.35 | 10.04 | 2.56 | 2.95 | 0.34 | 0.15 | 2.00 | 0.31 | 0.24 | ||
post_manure | mean | 8.2 | 0.89 | 1.8 | 0.12 | 8.5 | 648.3 | 65.0 | 3.6 | 26.5 | 14.1 | 5.7 | 1.4 | 1.2 | 5.4 | 4.4 | 1.1 | |
std | 0.12 | 0.39 | 0.50 | 0.03 | 0.68 | 300.43 | 9.85 | 0.85 | 9.92 | 2.29 | 1.39 | 0.17 | 0.18 | 1.07 | 0.53 | 0.24 | ||
seeding | T1 | mean | 8 | 1.6 | 2.5 | 0.2 | 9.2 | 984.0 | 87.0 | 5.9 | 19.6 | 15.1 | 6.9 | 1.6 | 1.5 | 4.7 | 11.1 | 1.8 |
std | 0.14 | 0.92 | 0.55 | 0.03 | 0.78 | 473.56 | 3.46 | 1.37 | 1.75 | 1.32 | 2.07 | 0.15 | 0.74 | 0.10 | 0.65 | 0.41 | ||
T2 | mean | 8.0 | 2.2 | 2.46 | 0.2 | 8.7 | 1124.0 | 82.7 | 6.0 | 18.3 | 13.7 | 8.1 | 1.4 | 1.4 | 4.4 | 11.9 | 1.9 | |
std | 0.12 | 0.70 | 0.53 | 0.01 | 1.61 | 437.12 | 16.77 | 0.26 | 0.72 | 1.99 | 0.95 | 0.15 | 0.00 | 0.21 | 1.72 | 0.13 | ||
T3 | mean | 8.0 | 1.6 | 3.2 | 0.2 | 10.0 | 842.7 | 108.0 | 6.9 | 25.2 | 12.9 | 6.1 | 1.7 | 1.4 | 4.4 | 15.7 | 2.0 | |
std | 0.12 | 0.07 | 0.82 | 0.03 | 1.00 | 11.85 | 40.73 | 1.42 | 12.24 | 2.40 | 1.39 | 0.25 | 0.15 | 0.06 | 4.58 | 0.37 | ||
Post first harvest | T1 | mean | 8.0 | 7.1 | 3.5 | 0.3 | 6.3 | 5175.0 | 80.5 | 8.8 | 21.3 | 16.0 | 12.9 | 2.1 | 1.7 | 5.0 | 7.5 | 2.7 |
std | 0.05 | 0.23 | 0.35 | 0.03 | 0.07 | 219.20 | 7.78 | 0.57 | 1.48 | 0.07 | 2.76 | 0.14 | 0.28 | 0.85 | 2.40 | 0.11 | ||
T2 | mean | 8.0 | 3.9 | 4.2 | 0.3 | 8.0 | 2750.0 | 98.0 | 8.5 | 29.8 | 17.4 | 12.3 | 1.9 | 1.7 | 5.8 | 9.7 | 2.4 | |
std | 0.08 | 0.44 | 1.27 | 0.06 | 1.06 | 339.41 | 52.33 | 3.39 | 16.05 | 1.98 | 0.64 | 0.14 | 0.21 | 0.85 | 3.89 | 0.61 | ||
T3 | mean | 8.0 | 3.7 | 3.2 | 0.2 | 7.7 | 2215.0 | 90.5 | 8.8 | 20.6 | 18.1 | 10.3 | 1.8 | 1.6 | 5.3 | 9.2 | 1.9 | |
std | 0.23 | 0.59 | 0.21 | 0.03 | 0.35 | 1265.72 | 26.16 | 0.49 | 2.33 | 1.41 | 0.92 | 0.00 | 0.07 | 0.57 | 2.05 | 0.30 |
% | mg/kg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest | Ntot | Ptot | K | Ca | Mg | Na | B | Cu | Fe | Mn | Zn | ||
T1 | 1 (90 days) | means | 2.02 c2 | 0.30 | 1.31 ab1 | 0.36 | 0.35 ab12 | 0.14 a1 | 13 b1 | 6.33 b1 | 151 ab1 | 62 b1 | 19 a1 |
std | 0.18 | 0.03 | 0.19 | 0.11 | 0.08 | 0.06 | 3.61 | 0.58 | 115.11 | 2.65 | 6.24 | ||
2 (53 days) | means | 1.6 b2 | 0.33 | 1.21 b1 | 0.15 | 0.24 a12 | 0.06 a1 | 12.33 b1 | 10.33 c1 | 118.33 b1 | 44 a1 | 30.67 b1 | |
std | 0.17 | 0.03 | 0.62 | 0.09 | 0.05 | 0.03 | 3.79 | 1.15 | 48.01 | 9.54 | 7.09 | ||
3 (100 days) | means | 1.32 a2 | 0.25 | 0.96 a1 | 0.33 | 0.34 b12 | 0.19 b1 | 12.67 ab1 | 5.33 a1 | 84.67 a1 | 48.7 a1 | 23.33 ab1 | |
std | 0.15 | 0.01 | 0.06 | 0.06 | 0.03 | 0.07 | 2.08 | 0.58 | 10.41 | 3.51 | 2.31 | ||
4 (48 days) | means | 1.86 bc2 | 0.32 | 1.46 b1 | 0.20 | 0.31 b12 | 0.07 a1 | 7.33 a1 | 5.33 ab1 | 87.67 ab1 | 40.67 a1 | 22.33 ab1 | |
std | 0.13 | 0.02 | 0.08 | 0.05 | 0.03 | 0.02 | 1.53 | 0.58 | 25.03 | 6.66 | 2.52 | ||
T2 | 1 (90 days) | means | 2.01 c2 | 0.29 | 1.31 ab1 | 0.36 | 0.34 ab2 | 0.11 a1 | 15 b1 | 6.67 b1 | 61.67 ab1 | 69.67 b1 | 23.33 a1 |
std | 0.09 | 0.02 | 0.16 | 0.12 | 0.06 | 0.03 | 2.65 | 1.15 | 5.69 | 7.02 | 2.31 | ||
2 (53 days) | means | 1.65 b2 | 0.34 | 1.62a b1 | 0.30 | 0.33 a2 | 0.09 a1 | 13.67 b1 | 9.67 c1 | 182 b1 | 50.67 a1 | 26.33 b1 | |
std | 0.22 | 0.05 | 0.23 | 0.02 | 0.03 | 0.01 | 1.53 | 1.15 | 57.38 | 10.50 | 1.53 | ||
3 (100 days) | means | 1.34 a2 | 0.27 | 1.08 a1 | 0.39 | 0.37 b2 | 0.15 b1 | 10.67 ab1 | 5 a1 | 70.33 a1 | 50 a1 | 24 ab1 | |
std | 0.05 | 0.03 | 0.17 | 0.05 | 0.01 | 0.02 | 2.89 | 0.00 | 6.51 | 11.79 | 2.65 | ||
4 (48 days) | means | 1.75 bc2 | 0.31 | 1.45 b1 | 0.26 | 0.35 b2 | 0.09 a1 | 7.67 a1 | 5 ab1 | 131.33 ab1 | 44 a1 | 21.33 ab1 | |
std | 0.32 | 0.04 | 0.12 | 0.09 | 0.07 | 0.01 | 2.52 | 1.00 | 44.06 | 10.15 | 5.03 | ||
T3 | 1 (90 days) | means | 1.81 c1 | 0.29 | 1.35 ab1 | 0.24 | 0.26 ab1 | 0.08 a1 | 10.33 b1 | 6 b1 | 129 ab1 | 54.33 b1 | 21.67 a1 |
std | 0.32 | 0.06 | 0.16 | 0.01 | 0.03 | 0.01 | 2.08 | 1.73 | 16.64 | 12.34 | 1.53 | ||
2 (53 days) | means | 1.37 b1 | 0.27 | 1.67 b1 | 0.20 | 0.25 a1 | 0.08 a1 | 10.33 b1 | 9.33 c1 | 108.33 b1 | 42.67 a1 | 22.3 b1 | |
std | 0.17 | 0.01 | 0.03 | 0.03 | 0.01 | 0.02 | 3.51 | 0.58 | 18.01 | 15.04 | 2.08 | ||
3 (100 days) | means | 1.10 a1 | 0.23 | 1.21 a1 | 0.23 | 0.3 b1 | 0.17 b1 | 9.33 ab1 | 5 a1 | 68.33 a1 | 46.7 a1 | 24.67 ab1 | |
std | 0.13 | 0.02 | 0.29 | 0.02 | 0.01 | 0.11 | 1.15 | 0.00 | 4.51 | 6.66 | 2.52 | ||
4 (48 days) | means | 1.48 bc1 | 0.29 | 1.41 b1 | 0.27 | 0.35 b1 | 0.07 a1 | 8.67 a1 | 5.67 ab1 | 128 ab1 | 39.67 a1 | 21.67 ab1 | |
std | 0.20 | 0.01 | 0.02 | 0.09 | 0.06 | 0.01 | 1.53 | 0.58 | 31.61 | 7.23 | 4.51 | ||
Sorghum Bicolor 1 | 0.21 | 1.75 | 0.50 | 0.27 | 0.02 | 9.00 | 392.00 | 65.00 | 31.00 | ||||
Sorghum Sudanense 1 | 0.24 | 2.57 | 0.67 | 0.31 | 0.03 | 11.00 | 990.00 | 79.00 | 33.00 |
NDF% | ||||
---|---|---|---|---|
Harvest | T1 | T2 | T3 | |
1 | means | 53.81 a | 50.38 a | 56.23 a |
std | 2.10 | 8.85 | 2.68 | |
2 | means | 61.42 b | 65.26 b | 62.31 b |
std | 0.67 | 1.47 | 1.38 | |
3 | means | 61.06 bc | 61.42 bc | 61.95 bc |
std | 0.58 | 2.76 | 0.85 | |
4 | means | 59.43 c | 59.08 c | 61.53 c |
std | 1.54 | 1.77 | 1.30 | |
Sorghum bicolor 1 | 59 | |||
Sorghum sudanense 1 | 63.3 |
ADF% | ||||
---|---|---|---|---|
Harvest | T1 | T2 | T3 | |
1 | means | 33.90 a1 | 29.542 a1 | 29.63 a1 |
std | 9.58 | 5.29 | 4.98 | |
2 | means | 32.70 b1 | 36.14 b1 | 36.85 b1 |
std | 1.42 | 3.79 | 7.31 | |
3 | means | 30.40 ab1 | 33.32 ab1 | 34.50 ab1 |
std | 6.26 | 2.10 | 1.49 | |
4 | means | 32.33 ab1 | 31.67 ab1 | 33.41 ab1 |
std | 0.42 | 2.15 | 0.79 | |
Sorghum bicolor 1 | 36.659 | |||
Sorghum sudanense 1 | 40.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Grimón, V.; Amorós, R.; Fernández-Vera, J.R.; Hernádez-Moreno, J.M.; Palacios-Díaz, M.d.P. Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde. Agronomy 2021, 11, 1091. https://doi.org/10.3390/agronomy11061091
Mendoza-Grimón V, Amorós R, Fernández-Vera JR, Hernádez-Moreno JM, Palacios-Díaz MdP. Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde. Agronomy. 2021; 11(6):1091. https://doi.org/10.3390/agronomy11061091
Chicago/Turabian StyleMendoza-Grimón, Vanessa, Regla Amorós, Juan Ramón Fernández-Vera, Jose Manuel Hernádez-Moreno, and María del Pino Palacios-Díaz. 2021. "Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde" Agronomy 11, no. 6: 1091. https://doi.org/10.3390/agronomy11061091
APA StyleMendoza-Grimón, V., Amorós, R., Fernández-Vera, J. R., Hernádez-Moreno, J. M., & Palacios-Díaz, M. d. P. (2021). Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde. Agronomy, 11(6), 1091. https://doi.org/10.3390/agronomy11061091