Evaluation of a New Generation of Coated Fertilizers to Reduce the Leaching of Mineral Nutrients and Greenhouse Gas (N2O) Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Characteristics
2.2. Assessment of the Quality and Physical Characteristics of Coated and Uncoated (Control) Fertilizers
2.3. Release Kinetics of the Mineral Nutrients Contained in the Coated and Uncoated Fertilizers
2.4. Mineral Nutrient Leaching with Coated and Uncoated Fertilizers in Two Growing Media
2.5. Assessment of Nitrogen Protoxide (N2O) Emissions from Coated and Uncoated Fertilizers
2.6. Statistical Analyses
3. Results
3.1. Physical Characteristics of Fertilizer Particles
3.2. Release Kinetics of Coated and Uncoated Fertilizers
3.3. Mineral Nutrient Leaching by Coated and Conventional Fertilizers
3.4. N2O Emissions from Coated and Uncoated Fertilizers
4. Discussion
5. Conclusion and Research Needs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GIEC. Changements climatiques 2014: Rapport de synthèse. In Contribution des Groupes de Travail I, II et III au Cinquième Rapport D’évaluation du Groupe d’Experts Intergouvernemental sur l’Évolution du Climat; Pachauri, R.K., Meyer, L.A., Eds.; GIEC: Genève, Switzerland, 2014; pp. 60–79. [Google Scholar]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; p. 180. [Google Scholar]
- Zhu, J.H.; Li, X.L.; Christie, P.; Li, J.L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosyst. Environ. 2005, 111, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B.; Farneselli, M.; Padilla, F.M. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Ann. Appl. Biol. 2015, 167, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Cameira, M.; Mota, M. Nitrogen related diffuse pollution from horticulture production—mitigation practices and assessment strategies. Horticulturae 2017, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Trenkel, M.E. Slow and Controlled-Release and Stabilized Fertilizers an Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; International Fertilizer Industry Association: Paris, France, 2010; p. 163. [Google Scholar]
- Statistique Canada. Enquête sur les Expéditions d’Engrais, Bulletin de Service N°21-022-X; Statistiques Canada: Ottawa, ON, Canada, 2016; p. 15. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. Technical Summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 37–53. [Google Scholar]
- Syakila, A.; Kroeze, C. The global nitrous oxide budget revisited. GHG. Measur. Manag. 2011, 1, 17–26. [Google Scholar] [CrossRef]
- Environnement Canada. Tendances en Matière d’Émissions au Canada, En81-18/2013F-PDF; Environnement Canada: Gatineau, QC, Canada, 2013; p. 95. [Google Scholar]
- Do Nascimento, C.A.C.; Vitti, G.C.; de Abreu Faria, L.; Luz, P.H.C.; Mendes, F.L. Ammonia volatilization from coated urea forms. Rev. Bras. Ciência Solo 2013, 37, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Giroux, I.; Sarrasin, B. Pesticides et Nitrates dans l’eau Souterraine près de Cultures de Pommes de Terre—Échantillonnage dans Quelques Régions du Québec en 2008 et 2009; MDDEP, Direction du Suivi de l’état de l’Environnement, Centre d’Expertise en Analyse Environnementale du Québec: Québec, QC, Canada, 2011; p. 31. [Google Scholar]
- Conseil des Académies Canadiennes. L’eau et l’Agriculture au Canada: Vers une Gestion Durable des Ressources en eau; Le Comité d’Experts sur la Gestion Durable de l’eau des Terres Agricoles du Canada, Conseil des Académies Canadiennes: Ottawa, ON, Canada, 2013; pp. 11–82. [Google Scholar]
- Huang, J.; Xu, C.-C.; Ridoutt, B.G.; Wang, X.-C.; Ren, P.-A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Carson, L.C.; Ozores-Hampton, M. Factors affecting nutrient availability, placement, rate, and application timing of controlled-release fertilizers for Florida vegetable production using seepage irrigation. HortTechnology 2013, 23, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Bley, H.; Gianello, C.; Santos, L.d.S.; Selau, L.P.R. Nutrient release, plant nutrition, and potassium leaching from polymer-coated fertilizer. Rev. Bras. Ciência Solo 2017, 41, e0160142. [Google Scholar] [CrossRef] [Green Version]
- Eerd, L.L.V.; Turnbull, J.J.D.; Bakker, C.J.; Vyn, R.J.; McKeown, A.W.; Westerveld, S.M. Comparing soluble to controlled-release nitrogen fertilizers: Storage cabbage yield, profit margins, and N use efficiency. Can. J. Plant Sci. 2018, 98, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef]
- Kalra, Y.P.; Maynard, D.G. Méthodes d’analyse des sols forestiers et des tissus végétaux. In Rapport d’Information NOR-X-319F; Forets Canada, Region Nord-Ouest, Centre de Foresterie du Nord: Edmonton, AB, Canada, 1992; pp. 1–116. [Google Scholar]
- Timmer, V.R.; Parton, W.J. Monitoring nutrient status of containerized seedlings. In Proceedings of the Ontario Ministry of Natural Resources Nurseryman’s Meeting, Thunder Bay, ON, Canada, 7–11 June 1982; Ontario Ministry of Natural Resources: Toronto, ON, Canada, 1982; pp. 48–58. [Google Scholar]
- Lamhamedi, M.S.; Lambany, G.; Margolis, H.A.; Renaud, M.; Veilleux, L.; Bernier, P.Y. Growth, physiology and leachate losses in Picea glauca seedlings (1 + 0) grown in air-slit containers under different irrigation regimes. Can. J. For. Res. 2001, 31, 1968–1980. [Google Scholar] [CrossRef] [Green Version]
- Lamhamedi, M.S.; Labbé, L.; Margolis, H.A.; Stowe, D.C.; Blais, L.; Renaud, M. Spatial variability of substrate water content and growth of white spruce seedlings. Soil Sci. Soc. Am. J. 2006, 70, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Landis, T.D.; Tinus, R.W.; Barnett, J.P. Seedling nutrition and irrigation in the container tree nursery manual. In Agriculture Handbook: 674; USDA Forest Service: Washington, DC, USA, 1989; Volume 4, pp. 1–67. [Google Scholar]
- Rochette, P.; Bertrand, N. Soil-surface gas emissions. In Soil Sampling and Methods of Analysis; Carter, M., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 851–861. [Google Scholar]
- Marble, S.C.; Prior, S.A.; Runion, G.B.; Torbert, H.; Gilliam, C.; Fain, G.B.; Sibley, J.; Knight, P. Effects of fertilizer placement on trace gas emissions from nursery container production. Hortscience 2012, 47, 1056–1062. [Google Scholar] [CrossRef]
- Lange, S.F.; Allaire, S.E.; Van Bochove, É. Transfer of CO2, N2O and CH4 to butyl rubber (polyisobutylene) septa during storage. J. Environ. Monit. 2008, 10, 775–777. [Google Scholar] [CrossRef]
- DeKlein, C.; Harvey, M. Nitrous Oxide Chamber Methodology Guidelines; Ministry for Primary Industries: Wellington, UK, 2015; pp. 1–146. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980; pp. 20–90. [Google Scholar]
- Lévesque, V.; Rochette, P.; Ziadi, N.; Dorais, M.; Antoun, H. Mitigation of CO2, CH4 and N2O from a fertigated horticultural growing medium amended with biochars and a compost. App. Soil Ecol. 2018, 126, 129–139. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z. Effect of coating thickness on release characteristics of controlled release urea produced in fluidized bed using waterborne starch biopolymer as coating material. Procedia Eng. 2016, 148, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Rose, R. Slow Release Fertilizers 101. In National Proceedings: Forest and Conservation Nursery Associations-1999, 2000, and 2001; Dumroese, R.K., Riley, L.E., Landis, T.D., Eds.; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2002; pp. 304–308. [Google Scholar]
- Shaviv, A. Environmental friendly nitrogen fertilization. Sci. China. Ser. C Life Sci. 2005, 48, 937–947. [Google Scholar]
- Wilson, M.L.; Rosen, C.J.; Moncrief, J.F. Effects of polymer-coated urea on nitrate leaching and nitrogen uptake by potato. J. Environ. Qual. 2010, 39, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Zvomuya, F.; Rosen, C.J.; Russelle, M.P.; Gupta, S.C. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 2003, 32, 480–489. [Google Scholar] [CrossRef]
- Hyatt, C.R.; Venterea, R.T.; Rosen, C.J.; McNearney, M.; Wilson, M.L.; Dolan, M.S. Polymer-coated urea maintains potato yields and reduces nitrous oxide emissions in a Minnesota loamy sand. Soil Sci. Soc. Am. J. 2010, 74, 419–428. [Google Scholar] [CrossRef]
- Burton, D.L.; Zebarth, B.J.; Gillam, K.M.; MacLeod, J.A. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can. J. Soil Sci. 2008, 88, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.N.; Zebarth, B.J.; Dandie, C.E.; Burton, D.L.; Goyer, C.; Trevors, J.T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 2008, 40, 2553–2562. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Sorrenti, G.; Toselli, M. Soil leaching as affected by the amendment with biochar and compost. Agric. Ecosyst. Environ. 2016, 226, 56–64. [Google Scholar] [CrossRef]
- Gagnon, J. Impact des Différentes Formes d’Azote (Urée, NH4+, NO3−) sur la Croissance des Plants et sur le Lessivage des Engrais. In Proceedings of the Session de Formation sur la Nutrition Minérale des Plants Forestiers, DRF-MRNF, Québec, QC, Canada, 15 April 2009; p. 72. [Google Scholar]
- De Figueiredo, C.; Barbosa, D.V.; de Oliveira, S.A.; Fagioli, M.; Sato, J. Polymer-coated phosphate fertilizer and liming on the production and morphological parameters of corn. Rev. Cien. Agron. 2012, 43, 446–452. [Google Scholar]
- Benlamlih, F. Évaluation d’une nouvelle génération d’engrais enrobés pour diminuer le lessivage des éléments minéraux et réduire les émissions de gaz à effet de serre (N2O). Master’s Thesis, Université Laval, Québec, QC, Canada, 2019. [Google Scholar]
- International Potash Institute. Le Potassium Un Élément Essentiel à la vie; International Potash Institute: Zug, Switzerland, 2012; p. 22. [Google Scholar]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613, 829–839. [Google Scholar] [CrossRef] [PubMed]
Physical Characteristics | Fertilizers | ||||||
---|---|---|---|---|---|---|---|
Nitrogen | Potassium | Phosphorus | |||||
Aminaex | Biodrix N | Urea | Biodrix K | KCl | Biodrix P | MAP | |
Shape factor | 0.94 ± 0.04 b | 0.94 ± 0.04 b | 0.96 ± 0.05 a | 0.86 ± 0.06 b | 0.87 ± 0.06 a | 0.89 ± 0.06 a | 0.93 ± 0.07 b |
Projected area (mm2) | 7.00 ± 1.51 a | 6.83 ± 2.15 a | 6.83 ± 2.51 a | 10.58 ± 3.49 b | 8.98 ± 3.09 a | 10.45 ± 3.28 a | 4.93 ± 2.26 b |
Straight length (mm) | 3.26 ± 0.45 a | 3.19 ± 0.55 a | 3.15 ± 0.61 a | 4.33 ± 0.80 b | 3.97 ± 0.73 a | 4.10 ± 0.73 a | 2.75 ± 0.65 b |
Curved length (mm) | 3.37 ± 0.47 a | 3.32 ± 0.57 a | 3.36 ± 0.61 a | 4.57 ± 0.81 b | 4.28 ± 0.75 a | 4.33 ± 0.78 a | 3.04 ± 0.66 b |
Circular volume (mm3) | 13.49 ± 4.19 a | 13.45 ±6.46 a | 14.37± 7.71 a | 24.31 ± 12.24 b | 20.30± 11.04 a | 25.33 ± 12.46 a | 9.26 ± 6.41 b |
Cercle area (mm2) | 22.81 ± 4.93 a | 22.47 ±6.93 a | 23.40 ± 8.21 a | 34.93 ± 11.21 b | 30.97± 10.50 a | 34.92 ± 11.17 a | 17.63 ± 7.66 b |
Ellipsoidal area (mm2) | 16.62 ± 3.60 a | 16.38 ±5.05 a | 17.05 ± 5.98 a | 25.46 ± 8.17 b | 22.57 ± 7.65 a | 25.45 ± 8.14 a | 12.85 ± 5.58 b |
Projected perimeter (mm) | 9.62 ± 1.12 a | 9.45 ± 1.53 a | 9.30 ± 1.77 a | 12.33 ± 2.06 b | 11.26 ± 1.92 a | 12.07± 2.02 a | 7.99 ± 1.90 b |
Mineral Nutrients | Fertilizer | |||
---|---|---|---|---|
Aminaex | Biodrix N | Biodrix P | Biodrix K | |
N-NH4 (%) | 0.04 | 0.04 | 10.40 | 0.17 |
N-NO3 (%) | 0.01 | 0.01 | 0.01 | 0.10 |
P (%) | 0.01 | 0.01 | 20.30 ± 0.07 | 0.02 ± 0.29 |
K (%) | 0.04 ± 0.29 | 0.05 ± 0.08 | 0.10 ± 0.16 | 40.70 ± 0.09 |
Ca (%) | 0.71 ± 0.12 | 1.25 ± 0.10 | 1.84 ± 0.17 | 1.25 ± 0.32 |
Mg (%) | 0.30 ± 0.13 | 0.10 ± 0.10 | 0.20 ± 0.35 | 0.30 ± 0.27 |
Cl (%) | 0.03 ± 0.17 | 0.04 | 0.06 ± 0.37 | 44.70 ± 0.05 |
NO3 (%) | 0.02 | 0.02 | 0.03 ± 0.57 | 0.25 ± 0.09 |
SO4 (%) | 0.02 ± 0.25 | 0.03 ± 0.22 | 8.01 ± 0.07 | 0.08 ± 0.25 |
HPO4 (%) | --- | --- | 57.40 ± 0.02 | 0.11 ± 1.20 |
Urea (%) | 97.00 ± 0.02 | 98.00 ± 0.04 | --- | --- |
Aminaex | Biodrix N | Urea | Control | ||
---|---|---|---|---|---|
Substrate S1 | Cumul. Urea (mg) | 1540.44 ± 0.20 a | 1683.96 ± 0.09 a | 2019.11 ± 0.25 a | 4.80 ± 1.07 b |
Cumul. N-Urea (mg) | 719.45 ± 0.20 a | 787.45 ± 0.09 a | 942.31 ± 0.25 a | 2.24 ± 1.07 b | |
Cumul. mineral nitrogen (mg) | 50.29 ± 0.40 b | 61.82 ± 0.20 ab | 84.08 ± 0.13 a | 3.37 ± 0.24 c | |
Substrate S2 | Cumul. Urea (mg) | 1345.21 ± 0.10 b | 1263.72± 0.15 b | 1874.19 ± 0.13 a | 1.29 ± 0.85 c |
Cumul. N-Urea (mg) | 627.79 ± 0.10 b | 590.42 ± 0.15 b | 874.65 ± 0.13 a | 0.60 ± 0.85 c | |
Cumul. N-NH4 (mg) | 198.74 ± 0.30 a | 173.05 ± 0.16 a | 231.60 ± 0.07 a | 10.03 ± 0.08 b | |
Cumul. N-NO3 (mg) | 39.36 ± 0.26 b | 31.08 ± 0.14 b | 67.08 ± 0.13 a | 25.16 ± 0.10 b | |
Cumul. mineral nitrogen (mg) | 238.80 ± 0.24 ab | 202.60 ± 0.13 b | 297.32 ± 0.06 a | 35.22 ± 0.10 c |
Treatment | Cumulative N2O Efflux (mg m−2) |
---|---|
Aminaex | 154.0 ± 6.6 a |
Biodrix N | 171.0 ± 3.8 a |
Urea | 142.2 ± 9.5 a |
Control | 39.8 ± 3.4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benlamlih, F.Z.; Lamhamedi, M.S.; Pepin, S.; Benomar, L.; Messaddeq, Y. Evaluation of a New Generation of Coated Fertilizers to Reduce the Leaching of Mineral Nutrients and Greenhouse Gas (N2O) Emissions. Agronomy 2021, 11, 1129. https://doi.org/10.3390/agronomy11061129
Benlamlih FZ, Lamhamedi MS, Pepin S, Benomar L, Messaddeq Y. Evaluation of a New Generation of Coated Fertilizers to Reduce the Leaching of Mineral Nutrients and Greenhouse Gas (N2O) Emissions. Agronomy. 2021; 11(6):1129. https://doi.org/10.3390/agronomy11061129
Chicago/Turabian StyleBenlamlih, Fatima Zahra, Mohammed S. Lamhamedi, Steeve Pepin, Lahcen Benomar, and Younès Messaddeq. 2021. "Evaluation of a New Generation of Coated Fertilizers to Reduce the Leaching of Mineral Nutrients and Greenhouse Gas (N2O) Emissions" Agronomy 11, no. 6: 1129. https://doi.org/10.3390/agronomy11061129
APA StyleBenlamlih, F. Z., Lamhamedi, M. S., Pepin, S., Benomar, L., & Messaddeq, Y. (2021). Evaluation of a New Generation of Coated Fertilizers to Reduce the Leaching of Mineral Nutrients and Greenhouse Gas (N2O) Emissions. Agronomy, 11(6), 1129. https://doi.org/10.3390/agronomy11061129