Relationships between Stalk Resistance and Corn Borers, Agronomic Traits, and Cell Wall Hydroxycinnamates in a Set of Recombinant Inbred Lines from a Maize MAGIC Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Plant and Insect Material
2.2. Resistance Trait (Tunnel Length)
2.3. Agronomic Traits
2.4. Days to Silking/Anthesis
2.5. Plant Height
2.6. Lodging
2.7. Grain Moisture
2.8. Grain Yield
2.9. Biochemical Analysis
2.10. Statistical Analysis
2.11. Contrast Analysis
2.12. Correlation Analysis
2.13. Multiple Linear Regression Analysis
3. Results
3.1. Contrast Analysis
3.2. Correlation Analysis
3.3. Multiple Linear Regression Analysis
4. Discussion
4.1. Relationship between Resistance to Corn Borer and Main Agronomic Traits
4.2. Role of Cell Wall Hydroxycinnamates as Defence Mechanism against Corn Borers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meissle, M.; Mouron, P.; Musa, T.; Bigler, F.; Pons, X.; Vasileiadis, V.P.; Otto, S.; Antichi, D.; Kiss, J.; Pálinkás, Z.; et al. Pests, pesticide use and alternative options in European maize production: Current status and future prospects. J. Appl. Entomol. 2010, 134, 357–375. [Google Scholar] [CrossRef]
- Butrón, A.; Malvar, R.A.; Cartea, M.E.; Ordás, A.; Velasco, P. Resistance of maize inbreds to pink stem borer. Crop Sci. 1999, 39, 102–107. [Google Scholar] [CrossRef]
- López, C.; Sans, A.; Asin, L.; EizaGuirre, M. Phenological Model for Sesamia nonagrioides (Lepi-doptera: Noctuidae). Environ. Entomol. 2001, 30, 23–30. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Quaranta, F.; Desiderio, E.; Visconti, A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. J. Sci. Food Agric. 2003, 83, 13–18. [Google Scholar] [CrossRef]
- Butrón, A.; Santiago, R.; Mansilla, P.; Pintos-Varela, C.; Ordás, A.; Malvar, R.A. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. J. Agric. Food Chem. 2006, 54, 6113–6117. [Google Scholar] [CrossRef] [PubMed]
- Klenke, J.R.; Russell, W.A.; Guthrie, W.D. Recurrent selection for resistance to European corn borer in corn synthetic and correlated effects on agronomic traits. Crop Sci. 1986, 26, 864–868. [Google Scholar] [CrossRef]
- Sandoya, G.; Malvar, R.A.; Santiago, R.; Alvarez, A.; Revilla, P.; Butrón, A. Effects of selection for resistance to Sesamia nonagrioides on maize yield, performance and stability under infestation with Sesamia nonagrioides and Ostrinia nubilalis in Spain. Ann. Appl. Biol. 2010, 156, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Butrón, A.; Romay, M.C.; Peña-Asín, J.; Alvarez, A.; Malvar, R.A. Genetic relationship between maize resistance to corn borer attack and yield. Crop Sci. 2012, 52, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Russell, W.A.; Wa, R. Effects of recurrent selection for European corn borer resistance on other agronomic characters in synthetic cultivars of maize. Maydica 1979, 24, 33–47. [Google Scholar]
- Bergvinson, D.J.; Arnason, J.T. Phytochemical changes during recurrent selection for resistance to the European corn borer. Crop Sci. 1997, 37, 1567–1572. [Google Scholar] [CrossRef]
- Buendgen, M.R.; Coors, J.G.; Grombacher, A.W.; Russell, W.A. European corn borer resistance and cell wall composition of tree maize populations. Crop Sci. 1990, 30, 505–510. [Google Scholar] [CrossRef]
- Ostrander, B.M.; Coors, J.G. Relationship between plant composition and European corn borer resistance in three maize populations. Crop Sci. 1997, 37, 1741–1745. [Google Scholar] [CrossRef]
- Fontaine, A.S.; Briand, M.; Barrière, Y. Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest. Maydica 2003, 48, 75–84. [Google Scholar]
- Méchin, V.; Argillier, O.; Menanteau, V.; Barrière, Y.; Mila, I.; Rollet, B.; Lapierre, C. Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J. Sci. Food Agric. 2000, 80, 574–580. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Lallemand, J.Y.; Guittet, E.; Rolando, C. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 1985, 26, 1359–1362. [Google Scholar] [CrossRef]
- Iiyama, K.; Lam, T.; Stone, B.A. Covalent crosslinks in the cell wall. Plant Physiol. 1994, 104, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Grabber, J.H.; Mertens, D.R.; Kim, H.; Funk, C.; Lu, F.; Ralph, J. Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J. Sci. Food Agric. 2009, 89, 122–129. [Google Scholar] [CrossRef]
- Santiago, R.; Butron, A.; Arnason, J.T.; Reid, L.M.; Souto, X.C.; Malvar, R.A. Putative role of pith cell wall phenylpropanoids in Sesamia nonagrioides (Lepidoptera: Noctuidae) resistance. J. Agric. Food Chem. 2006, 54, 2274–2279. [Google Scholar] [CrossRef] [PubMed]
- Barros-Rios, J.; Malvar, R.A.; Jung, H.J.G.; Santiago, R. Cell wall composition as a maize defense mechanism against corn borers. Phytochemistry 2011, 72, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Assabgui, R.A. Correlation of kernel (E)ferulic acid content of maize with resistance to fusarium graminearum. Phytopathology 1993, 83, 949. [Google Scholar] [CrossRef]
- Santiago, R.; Butrón, A.; Reid, L.M.; Arnason, J.T.; Sandoya, G.; Souto, X.C.; Malvar, R.A. Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Agric. Food Chem. 2006, 54, 9140–9144. [Google Scholar] [CrossRef] [PubMed]
- Barros-Rios, J.; Malvar, R.A.; Jung, H.J.G.; Bunzel, M.; Santiago, R. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability. Phytochemistry 2012, 83, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Santiago, R.; Sandoya, G.; Butrón, A.; Barros, J.; Malvar, R.A. Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). J. Agric. Food Chem. 2008, 56, 8017–8022. [Google Scholar] [CrossRef]
- Barros-Rios, J.; Santiago, R.; Jung, H.J.G.; Malvar, R.A. Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers. J. Agric. Food Chem. 2015, 63, 2206–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartea, M.E.; Malvar, R.A.; Revilla, P.; Ordás, A.; Alvarez, A. Seasonal occurrence and response of maize inbred lines to pink stem borer in the northwest of Spain. Maydica 1994, 39, 191–196. [Google Scholar]
- Santiago, R.; Souto, X.C.; Sotelo, J.; Butrón, A.; Malvar, R.A. Relationship between maize stem structural characteristics and resistance to pink stem borer (Lepidoptera: Noctuidae) attack. J. Econ. Entomol. 2003, 96, 1563–1570. [Google Scholar] [CrossRef]
- Ordas, B.; Malvar, R.A.; Santiago, R.; Butron, A. QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines. BMC Genom. 2010, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Cardinal, A.J.; Lee, M.; Sharopova, N.; Woodmanclikeman, W.L.; Long, M.J.; European, T.; Hu, O. Tunneling by the European Corn Borer in Maize. Crop Sci. 2001, 41, 835–845. [Google Scholar] [CrossRef]
- Papst, C.; Bohn, M.; Utz, H.F.; Melchinger, A.E.; Klein, D.; Eder, J. QTL mapping for European corn borer resistance (Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize (Zea mays L.) germplasm. Theor. Appl. Genet. 2004, 108, 1545–1554. [Google Scholar] [CrossRef]
- Glowinski, A.; Flint-Garcia, S. Germplasm resources for mapping quantitative traits in maize. In The Maize Genome; Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 143–159. ISBN 978-3-319-97427-9. [Google Scholar]
- Butrón, A.; Santiago, R.; Cao, A.; Samayoa, L.; Malvar, R. QTLs for Resistance to fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis. 2019, 103, 897–904. [Google Scholar] [CrossRef]
- Jiménez-Galindo, J.C.; Malvar, R.A.; Butrón, A.; Santiago, R.; Samayoa, L.F.; Caicedo, M.; Ordás, B. Mapping of resistance to corn borers in a MAGIC population of maize. BMC Plant Biol. 2019, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Eizaguirre, M.; Albajes, R. Diapause induction in the stem corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Entomol. Gen. 1992, 17, 277–283. [Google Scholar] [CrossRef]
- Santiago, R.; López-Malvar, A.; Souto, C.; Barros-Ríos, J. Methods for determining cell wall-bound phenolics in maize stem tissues. J. Agric. Food Chem. 2018, 66, 1279–1284. [Google Scholar] [CrossRef]
- SAS Institute. Base SAS 9.4 Procedures Guide; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Holland, J.B. Estimating genotypic correlation and their standard errors using multivariate restricted maximum likelihood estimation with SAS Prco MIXED. Crop Sci. 2006, 46, 642–656. [Google Scholar] [CrossRef] [Green Version]
- Butrón, A.; Revilla, P.; Sandoya, G.; Ordás, A.; Malvar, R.A. Resistance to reduce corn borer damage in maize for bread, in Spain. Crop Prot. 2009, 28, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Sandoya, G.; Santiago, R.; Malvar, R.A.; Butrón, A. Evaluation of structural and antibiosis resistance mechanisms during selection against Mediterranean corn borer (Sesamia nonagrioides Lef) in the maize synthetic EPS12. Crop Prot. 2010, 29, 7–10. [Google Scholar] [CrossRef]
- Samayoa, L.F.; Butron, A.; Malvar, R.A. QTL mapping for maize resistance and yield under infes-tation with Sesamia nonagrioides. Mol. Breed. 2014, 34, 1331–1344. [Google Scholar] [CrossRef] [Green Version]
- Krakowsky, M.D.; Lee, M.; Woodman-Clikeman, W.L.; Long, M.J.; Sharopova, N. QTL mapping of resistance to stalk tunneling by the european corn borer in RILs of maize population B73 X De811. Crop Sci. 2004, 44, 274–282. [Google Scholar] [CrossRef]
- Jiménez-Galindo, J.C.; Ordás, B.; Butrón, A.; Samayoa, L.F.; Malvar, R.A. QTL mapping for yield and resistance against mediterranean corn borer in maize. front. Plant Sci. 2017, 8, 2–11. [Google Scholar]
- Krakowsky, M.D.; Brinkman, M.J.; Woodman-Clikeman, W.L.; Lee, M. Genetic components of resistance to stalk tunneling by the European corn borer in maize. Crop Sci. 2002, 42, 1309–1315. [Google Scholar] [CrossRef] [Green Version]
- Bohn, M.; Schulz, B.; Kreps, R.; Klein, D.; Melchinger, A.E. QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. Theor. Appl. Genet. 2000, 101, 907–917. [Google Scholar] [CrossRef]
- Sandoya, G.; Butrón, A.; Alvarez, A.; Ordás, A.; Malvar, R.A. Direct response of a maize synthetic to recurrent selection for resistance to stem borers. Crop Sci. 2008, 48, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Ordás, B.; Revilla, P.; Romay, M.C.; Malvar, R.A.; Butrón, A.; Ordás, A. Eighteen cycles of recur-rent mass selection for early flowering in two maize synthetics. Euphytica 2019, 215, 49. [Google Scholar] [CrossRef]
- Velasco, P.; Revilla, P.; Monetti, L.; Butrón, A.; Ordás, A.; Malvar, R.A. Corn borers (Lepidoptera: Noctuidae, Crambidae) in Northwestern Spain: Population dynamics and distribution. Maydica 2007, 52, 195–203. [Google Scholar]
- Schön, C.C.; Lee, M.; Woodman, W.L.; Melchinger, A.E.; Guthrie, W.D. Mapping and character-zation of quantitative trait loci affecting resistance against second generation european corn bo-er in maize with the aid of rflps. Heredity 1993, 70, 660. [Google Scholar] [CrossRef] [Green Version]
- Santiago, R.; Malvar, R.A. Role of dehydrodiferulates in maize resistance to pests and diseases. Int. J. Mol. Sci. 2010, 11, 691–703. [Google Scholar] [CrossRef] [Green Version]
- López-Malvar, A.; Butrón, A.; Samayoa, L.F.; Figueroa-Garrido, D.J.; Malvar, R.A.; Santiago, R. Genome-wide association analysis for maize stem Cell Wall-bound Hydroxycinnamates. BMC Plant Biol. 2019, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barros-Rios, J.; Santiago, R.; Malvar, R.A.; Jung, H.J.G. Chemical composition and cell wall polysaccharide degradability of pith and rind tissues from mature maize internodes. Anim. Feed Sci. Technol. 2012, 172, 226–236. [Google Scholar] [CrossRef]
- Santiago, R.; Malvar, R.A.; Barros-Rios, J.; Samayoa, L.F.; Butrón, A. Hydroxycinnamate synthesis and association with mediterranean corn borer resistance. J. Agric. Food Chem. 2016, 64, 539–551. [Google Scholar] [CrossRef]
- Gesteiro, N.; Butrón, A.; Estévez, S.; Santiago, R. Unraveling the role of maize (Zea mays L.) cell-wall phenylpropanoids in stem-borer resistance. Phytochemistry 2021, 185, 112683. [Google Scholar] [CrossRef]
- Ralph, J.; Hatfield, R.D.; Quideau, S.; Helm, R.F.; Grabber, J.H.; Jung, H.J.G. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448–9456. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.; Yin, Y.; Xu, Y.; Chen, F.; Dixon, R.A. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc. Natl. Acad. Sci. USA 2010, 107, 14496–14501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.H.; Zhu, H.H.; Qiao, M.Y. Contribution of both lignin content and sinapyl monomer to disease resistance in tobacco. Plant Pathol. 2018, 67, 642–650. [Google Scholar] [CrossRef]
Tunnel Length (cm) | Large | Medium | Short | Checks | LSD a |
---|---|---|---|---|---|
Under Control Condition (Insecticide Protected) | |||||
Days to Anthesis | 67.0 a | 65.8 b | 63.2 c | 67.7 a | 0.8 |
Days to Silking | 68.5 ab | 67.4 b | 64.1 c | 69.3 a | 1.4 |
Grain Yield (t ha−1) | 5.48 a | 5.24 a | 4.01 b | 5.37 a | 0.88 |
Grain Moisture (%) | 19.3 a | 17.8 ab | 16.4 b | 18.6 ab | 2.4 |
Plant Height (cm) | 181 a | 170 b | 157 c | 181 d | 5 |
Lodging (%) | 13.23 ab | 20.67 a | 22.01 a | 9.19 b | 10.69 |
PCA (mg/g) | 6.43 a | 8.07 b | 10.0 c | 9.71 c | 1.58 |
FA (mg/g) | 1.68 a | 1.69 a | 1.60 a | 2.42 b | 0.51 |
DFA 5-5 (mg/g) | 0.058 a | 0.062 a | 0.067 a | 0.087 b | 0.017 |
DFA 8-O-4 (mg/g) | 0.090 a | 0.963 a | 0.097 a | 0.134 b | 0.029 |
DFA 8-5-l (mg/g) | 0.064 a | 0.068 ab | 0.065 a | 0.084 b | 0.011 |
DFA 8-5-b (mg/g) | 0.083 a | 0.090 a | 0.089 a | 0.127 b | 0.017 |
DFA 8-5 (mg/g) | 0.153 a | 0.158 a | 0.148 a | 0.211 b | 0.026 |
DFAT (mg/g) | 0.301 a | 0.317 a | 0.312 a | 0.435 b | 0.079 |
Under Infestation Condition | |||||
Days to Anthesis | 67.6 a | 66.0 ab | 63.2 b | 66 ab | 4.3 |
Days to Silking | 69.3 a | 67.3 b | 64.5 c | 69.9 a | 1.2 |
Grain Yield (t ha−1) | 5.69 a | 5.59 a | 4.20 a | 5.52 a | 2.12 |
Grain Moisture (%) | 16.7 a | 15.5 a | 14.8 a | 15.8 a | 5.1 |
Plant Height (cm) | 176 a | 162 ab | 146 b | 165 ab | 26 |
Lodging (%) | 40.03 a | 43.26 a | 50.40 a | 43.03 a | 30.21 |
Tunnel Length | Plant Height | Days to Anthesis | Days to Silking | Grain Yield | Lodging | Grain Moisture | |
---|---|---|---|---|---|---|---|
Under Control Condition (Insecticide Protected) | |||||||
Tunnel Length 1 | 0.57 * | 0.47 * | 0.43 * | 0.56 * | −0.12 | 0.54 * | |
Plant Height | 0.32 * | 0.39 * | 0.42 * | 0.63 * | 0.24 | 0.39 * | |
Days to Anthesis | 0.27 * | 0.18 | 0.96 * | 0.04 | 0.08 | 0.37 * | |
Days to Silking | 0.23 * | 0.19 | 0.87 * | −0.07 | 0.04 | 0.34 * | |
Grain Yield | 0.13 | 0.20 * | −0.07 | −0.13 | 0.10 * | 0.32 | |
Lodging | −0.09 | 0.10 | −0.04 | −0.03 | 0.18 | 0.32 | |
Grain Moisture | 0.30 * | 0.15 | 0.25 * | 0.24 * | 0.16 * | 0.13 | |
Under Infestation Condition | |||||||
Tunnel Length | 0.60 * | 0.43 * | 0.48 * | 0.68 * | −0.04 | 1 * | |
Plant Height | 0.43 * | 0.32 | 0.35 | 0.56 * | −0.11 | 0.40 | |
Days to Anthesis | 0.13 | 0.07 | 0.97 * | 0.10 | −0.10 | 0.71 * | |
Days to Silking | 0.13 | 0.06 | 0.93 * | 0.04 | −0.09 | 0.55 * | |
Grain Yield | 0.22 * | 0.38 * | 0.05 | −0.10 | 0.04 | 0.44 | |
Lodging | 0.02 | 0.08 | −0.01 | −0.06 | 0.17 | 0.41 | |
Grain Moisture | 0.08 | 0.17 | 0.19 | 0.21 * | 0.16 | 0.15 |
Step Wise Selection | |||
---|---|---|---|
Tunnel Length (cm) | |||
Step | Variable introduced in the Model | R2 Partial | R2 |
1 | PCA (mg/g) | 0.15 | 0.19 |
2 | FA (mg/g) | 0.28 | 0.44 |
3 | DFA 5-5 (mg/g) | 0.06 | 0.49 |
4 | DFAT (mg/g) | 0.04 | 0.53 |
Model | TUNNEL LENGTH: 42.13−3.08 × PCA + 5.87 × FA + 132.1 × DFA-8-5-l |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Malvar, A.; Reséndiz, Z.; Santiago, R.; Jiménez-Galindo, J.C.; Malvar, R.A. Relationships between Stalk Resistance and Corn Borers, Agronomic Traits, and Cell Wall Hydroxycinnamates in a Set of Recombinant Inbred Lines from a Maize MAGIC Population. Agronomy 2021, 11, 1132. https://doi.org/10.3390/agronomy11061132
López-Malvar A, Reséndiz Z, Santiago R, Jiménez-Galindo JC, Malvar RA. Relationships between Stalk Resistance and Corn Borers, Agronomic Traits, and Cell Wall Hydroxycinnamates in a Set of Recombinant Inbred Lines from a Maize MAGIC Population. Agronomy. 2021; 11(6):1132. https://doi.org/10.3390/agronomy11061132
Chicago/Turabian StyleLópez-Malvar, Ana, Zoila Reséndiz, Rogelio Santiago, José Cruz Jiménez-Galindo, and Rosa Ana Malvar. 2021. "Relationships between Stalk Resistance and Corn Borers, Agronomic Traits, and Cell Wall Hydroxycinnamates in a Set of Recombinant Inbred Lines from a Maize MAGIC Population" Agronomy 11, no. 6: 1132. https://doi.org/10.3390/agronomy11061132
APA StyleLópez-Malvar, A., Reséndiz, Z., Santiago, R., Jiménez-Galindo, J. C., & Malvar, R. A. (2021). Relationships between Stalk Resistance and Corn Borers, Agronomic Traits, and Cell Wall Hydroxycinnamates in a Set of Recombinant Inbred Lines from a Maize MAGIC Population. Agronomy, 11(6), 1132. https://doi.org/10.3390/agronomy11061132