The Impact of Herbage Mass on Perennial Ryegrass Swards in Autumn on Autumn and over Winter Production and Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sward Measurements
2.3.1. Sward Height
2.3.2. Herbage Mass
2.3.3. Tiller Density
2.4. Chemical Analysis
2.4.1. Herbage Quality Analysis
2.4.2. Water Soluble Carbohydrates
2.5. Statistical Analysis
- µ = mean value for the variable
- ejkl = residual error term
- Yjkl = herbage yield (kg·DM·ha−1), sward height (cm), DMD (g·kg·DM−1) and CP (g·kg·DM −1), tiller density (m2) and WSC (>3.5 cm; mg·g−1 DW)
3. Results
3.1. Autumn Period
3.1.1. Herbage Mass
3.1.2. Pre-Defoliation Height
3.1.3. Sward Quality
Crude Protein
Dry Matter Digestibility
3.1.4. Water Soluble Carbohydrates in the Stubble
3.2. 1st Defoliation of Spring Period (21 February)
3.2.1. Herbage Mass
3.2.2. Pre-Defoliation Height
3.2.3. Sward Quality
Crude Protein
Dry Matter Digestibility
3.2.4. Water Soluble Carbohydrate in the Stubble
3.2.5. Spring Tiller Density
3.3. 2nd Rotation in Spring
Herbage Mass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hennessy, D.; Delaby, L.; van den Pol-van Dasselaar, A.; Shalloo, L. Increasing grazing in dairy cow milk production systems in Europe. Sustainability 2020, 12, 2443. [Google Scholar] [CrossRef] [Green Version]
- Grogan, D.; Gilliland, T.J. A review of perennial ryegrass variety evaluation in Ireland. Ir. J. Agric. Food Res. 2011, 50, 65–81. [Google Scholar]
- Finneran, E.; Crosson, P.; O’kiely, P.; Shalloo, L.; Forristal, P.D.; Wallace, M. Economic modelling of an integrated grazed and conserved perennial ryegrass forage production system. Grass Forage Sci. 2012, 67, 162–176. [Google Scholar] [CrossRef]
- Robson, M.J.; Ryle, G.J.A.; Woledge, J. The grass plant—Its form and function. In The Grass Crop; Springer: Dordrecht, The Netherlands, 1988; pp. 25–83. [Google Scholar]
- Donnellan, T.; Hanrahan, K.; Lanigan, G. Future Scenarios for Irish Agriculture: Implications for Greenhouse Gas and Ammonia Emissions; Teagasc: Athenry, Ireland, 2018. [Google Scholar]
- MacDonald, K.; Glassey, C.; Rawnsley, R. The emergence, development and effectiveness of decision rules for pasture based dairy systems. In Proceedings of the Australasian Dairy Science Symposium: Meeting the Challenges for Pasture-Based Dairying, Christchurch, New Zealand, 31 August–2 September 2010. [Google Scholar]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finneran, E.; Crosson, P.; O’kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Simulation modelling of the cost of producing and utilising feeds for ruminants on Irish farms. J. Farm Manag. 2010, 14, 95–116. [Google Scholar]
- Kennedy, E.; O’Donovan, M.; Murphy, J.P.; Delaby, L.; O’Mara, F. Effects of grass pasture and concentrate-based feeding systems for spring-calving dairy cows in early spring on performance during lactation. Grass Forage Sci. 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Lemaire, G.; Chapman, D. Tissue flows in grazed plant communities. In The Ecology and Management of Grazing Systems; CAB International: Oxfordshire, UK, 1996. [Google Scholar]
- Schulte, R.; Crosson, P.; Donnellan, T.; Farrelly, N.; Finnan, J.; Lalor, S.; O’Mara, F. A marginal abatement cost curve for Irish agriculture. In Teagasc Submission to the National Climate Policy Development Consultation; Teagasc: Carlow, Ireland, 2012. [Google Scholar]
- O’Brien, D.; Hennessy, T.; Moran, B.; Shalloo, L. Relating the carbon footprint of milk from Irish dairy farms to economic performance. J. Dairy Sci. 2015, 98, 7394–7407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donovan, M.; Lewis, E.; O’Kiely, P. Requirements of future grass-based ruminant production systems in Ireland. Ir. J. Agric. Food Res. 2011, 50, 1–21. [Google Scholar]
- Läpple, D.; Hennessy, T.; O’Donovan, M. Extended grazing: A detailed analysis of Irish dairy farms. J. Dairy Sci. 2012, 95, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teagasc. Grass10 Newsletter. Available online: https://www.teagasc.ie/publications/2020/grass10-newsletter---22nd-september-2020.php (accessed on 31 May 2021).
- Dillon, P.; Crosse, S.; Roche, J.R. The effect of grazing intensity in late summer/autumn on sward characteristics and milk production of spring-calving dairy cows. Ir. J. Agric. food Res. 1998, 37, 1–15. [Google Scholar]
- Claffey, A.; Delaby, L.; Boland, T.; Egan, M. Implications of adapting autumn grazing management on spring herbage production–the effect on late lactation milk production and the subsequent response in early lactation animal performance. Livest. Sci. 2020, 231, 103870. [Google Scholar] [CrossRef]
- Hennessy, D.; O’Donovan, M.; French, P.; Laidlaw, A. Effects of date of autumn closing and timing of winter grazing on herbage production in winter and spring. Grass Forage Sci. 2006, 61, 363–374. [Google Scholar] [CrossRef]
- Teagasc. Grazing Guide. 2011. Available online: https://www.teagasc.ie/animals/beef/grassland/grassland-management (accessed on 31 May 2021).
- Brereton, A.; Carton, O.; O’Keeffe, W. Tissue turnover in perennial ryegrass (Lolium perenne L.) during winter. Ir. J. Agric. Res. 1985, 24, 49–62. [Google Scholar]
- Parsons, A.; Chapman, D. The principles of pasture growth and utilization. In Grass: Its Production and Utilization; Hopkins, A., Ed.; Blackwell Science Ltd.: Oxford, UK, 2000; pp. 31–89. [Google Scholar]
- Lawrence, D.C.; O’Donovan, M.; Boland, T.M.; Kennedy, E. Effects of autumn and spring defoliation management on the dry-matter yield and herbage quality of perennial ryegrass swards throughout the year. Grass Forage Sci. 2017, 72, 38–49. [Google Scholar] [CrossRef]
- Davies, A.; Simons, R. Effect of autumn cutting regime on developmental morphology and spring growth of perennial ryegrass. J. Agric. Sci. 1979, 92, 457–469. [Google Scholar] [CrossRef]
- Wingler, A.; Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 2016, 7, 1130. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, D.; O’Donovan, M.; French, P.; Laidlaw, A. Factors influencing tissue turnover during winter in perennial ryegrass dominated swards. Grass Forage Sci. 2008, 63, 202–211. [Google Scholar] [CrossRef]
- Looney, C.; Hennessy, D.; Wingler, A.; Claffey, A.; Egan, M. An examination of the effect of autumn closing date on over-winter herbage production and on spring yield. Ir. J. Agric. Food Res. 2021. [Google Scholar]
- Laidlaw, A.; Mayne, C. Setting management limits for the production and utilization of herbage for out-of-season grazing. Grass Forage Sci. 2000, 55, 14–25. [Google Scholar] [CrossRef]
- Garay, A.H. Tiller size/density compensation in perennial ryegrass miniature swards subject to differing defoliation heights and a proposed productivity index. Grass Forage Sci. 1999, 54, 347–356. [Google Scholar] [CrossRef]
- Ryan, W.; Hennessy, D.; Murphy, J.; Boland, T. The effects of autumn closing date on sward leaf area index and herbage mass during the winter period. Grass Forage Sci. 2010, 65, 200–211. [Google Scholar] [CrossRef]
- Alexander, S.; Black, A.; Boland, A.; Burke, J.; Carton, O.T.; Coulter, B.S.; Humphreys, J. Major and Micro Nutrient Advice for Productive Agricultural Crops, 50th ed.; Teagasc: Carlow, Ireland, 2008. [Google Scholar]
- McSweeney, D.; Foley, C.; Halton, P.; O’Brien, B. Calibration of an automated grass height measurement tool equipped with global positioning system to enhance the precision of grass measurement in pasture-based farming systems. In Proceedings of the 18th EGF Symposium on ‘Grassland and Forages in High Output Dairy Farming Systems’, Wageningen, The Netherlands, 15–17 June 2015; Volume 20, pp. 265–267. [Google Scholar]
- Jewiss, O. Shoot development and number. In Sward Measurement Handbook; The British Grassland Society: Reading, UK, 1993; pp. 99–120. [Google Scholar]
- Burns, G.; Gilliland, T.; Grogan, D.; Watson, S.; O’Kiely, P. Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. J. Agric. Sci. 2013, 151, 331–346. [Google Scholar] [CrossRef]
- Thomas, T. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Peacock, J.M. Temperature and leaf growth in Lolium perenne III factors affecting seasonal differences. J. Appl. Ecol. 1975, 12, 685–697. [Google Scholar] [CrossRef]
- Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; O’Connor, D.; Delaby, L. Relationships between meteorological data and grass growth over time in the south of Ireland. Ir. Geogr. 2013, 46, 175–201. [Google Scholar] [CrossRef] [Green Version]
- Carton, O.T.; Brereton, A.J.; O’Keeffe, W.F.; Keane, G.P. Effects of autumn closing date and grazing severity in a rotationally grazed sward during winter and spring: 1. Dry matter production. Ir. J. Agric. Res. 1988, 27, 141–150. [Google Scholar]
- Carton, O.T.; Brereton, A.J.; O’Keeffe, W.F.; Keane, G.P. Effects of autumn closing date and grazing severity in a rotationally grazed sward during winter and spring: 2. Tissue turnover. Ir. J. Agric. Res. 1988, 27, 151–165. [Google Scholar]
- Fulkerson, W.J.; Donaghy, D.J. Plant-soluble carbohydrate reserves and senescence-key criteria for developing an effective grazing management system for ryegrass-based pastures: A review. Aust. J. Exp. Agric. 2001, 41, 261–275. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Slack, K.; Hennessy, D.W.; Hough, G.M. Nutrients in ryegrass (Lolium spp.), white clover (Trifolium repens) and kikuyu (Pennisetum clandestinum) pastures in relation to season and stage of regrowth in a subtropical environment. Aust. J. Exp. Agric. 1998, 38, 227–240. [Google Scholar] [CrossRef]
- Kavanagh, S. Feeding the dairy cow. In Teagasc Dairy Manual; Teagasc: Carlow, Ireland, 2016. [Google Scholar]
- Tuñon, G.; Kennedy, E.; Horan, B.; Hennessy, D.; Lopez-Villalobos, N.; Kemp, P.; O’Donovan, M. Effect of grazing severity on perennial ryegrass herbage production and sward structural characteristics throughout an entire grazing season. Grass Forage Sci. 2014, 69, 104–118. [Google Scholar] [CrossRef]
- Binnie, R.; Mayne, C.; Laidlaw, A. The effects of rate and timing of application of fertilizer nitrogen in late summer on herbage mass and chemical composition of perennial ryegrass swards over the winter period in Northern Ireland. Grass Forage Sci. 2001, 56, 46–56. [Google Scholar] [CrossRef]
- Egan, M. The effect of supplementation type on animal performance in mid lactation during periods of reduced pasture growth. Ir. Dairy Grow. Sustain. 2019, 92–93. [Google Scholar]
- Korte, C.J.; Chu, A.C.P. Some effects of drought on perennial ryegrass swards. Proc. N. Z. Grassl. Assoc. 1983, 44, 211–216. [Google Scholar] [CrossRef]
- Barker, D.J.; Chu AC, P.; Korte, C.J. Some effects of spring defoliation and drought on perennial ryegrass swards. Proc. N. Z. Grassl. Assoc. 1985, 46, 57–63. [Google Scholar] [CrossRef]
Aug * | Sept | Oct | Nov | Dec | Jan | Feb | Mar | April | |
---|---|---|---|---|---|---|---|---|---|
Average daily air temp ** (°C) | |||||||||
Year 1—2018/2019 | 15.6 | 12.4 | 9.9 | 8.1 | 8.5 | 6.5 | 7.7 | 7.5 | 9.1 |
Year 2—2019/2020 | 15.6 | 13.6 | 9.7 | 7.1 | 6 | 6.1 | 6.5 | 6.3 | 9.8 |
10-year average | 14.8 | 13.3 | 10.9 | 7.6 | 5.7 | 5.4 | 5.5 | 6.4 | 8.7 |
Monthly rainfall (mm) | |||||||||
Year 1—2018/2019 | 43.3 | 60.0 | 72.4 | 167.1 | 168.2 | 65.9 | 56.7 | 117.9 | 108.9 |
Year 2—2019/2020 | 106.8 | 71.5 | 155.0 | 141.0 | 115.2 | 89.7 | 113.3 | 47.9 | 64.8 |
10-year average | 81.7 | 67.5 | 105.5 | 116.8 | 113.2 | 122.5 | 82.6 | 68.7 | 58.8 |
Solar radiation | |||||||||
Year 1—2018/2019 | 1329 | 1074 | 691 | 267 | 176 | 247 | 484 | 937 | 1316 |
Year 2—2019/2020 | 1376 | 1101 | 654 | 270 | 203 | 297 | 447 | 891 | 1391 |
10-year average *** | 1347 | 964 | 560 | 320 | 192 | 249 | 408 | 825 | 1314 |
Mean soil temp to a depth of 100 mm (°C) | |||||||||
Year 1—2018/2019 | 18.0 | 14.6 | 10.8 | 7.8 | 8.0 | 6.8 | 7.3 | 8.3 | 10.6 |
Year 2—2019/2020 | 17.5 | 15.2 | 10.9 | 7.4 | 5.9 | 5.7 | 5.9 | 6.7 | 11.0 |
10-year average | 17.0 | 15.0 | 11.9 | 7.9 | 5.4 | 5.0 | 5.4 | 6.9 | 10.2 |
Target Herbage Mass | Low | Medium | High | Very High | Defoliation Date Average | S.E. | Significance | ||
---|---|---|---|---|---|---|---|---|---|
Herbage mass (kg·DM·ha−1) | THM | DD | THM × DD | ||||||
Defoliation date 1 | 650 | 1210 | 1695 | 2758 | 1578 a | 153.6 | *** | *** | NS |
Defoliation date 2 | 962 | 2172 | 2187 | 3077 | 2100 b | ||||
Defoliation date 3 | 1088 | 1823 | 1932 | 2917 | 1940 b | ||||
Target herbage mass average | 900 1 | 1735 2 | 1938 2 | 2917 3 | |||||
Pre-defoliation height (cm) | Defoliation date average | ||||||||
Defoliation date 1 | 4.6 | 8.2 | 11.0 | 13.6 | 9.4 a | 0.32 | *** | *** | ** |
Defoliation date 2 | 7.0 | 10.1 | 11.3 | 12.9 | 10.3 b | ||||
Defoliation date 3 | 7.7 | 10.0 | 10.9 | 12.9 | 10.4 b | ||||
Target herbage mass average | 6.4 1 | 9.4 2 | 11.1 3 | 13.2 4 |
Target Herbage Mass | Low | Medium | High | Very High | Defoliation Date Average | S.E. | Significance | ||
---|---|---|---|---|---|---|---|---|---|
Crude Protein (g·kg−1 DM) | THM | DD | THM × DD | ||||||
Defoliation date 1 | 255 | 224 | 225 | 199 | 226 a | 2.9 | *** | ** | *** |
Defoliation date 2 | 232 | 215 | 212 | 209 | 217 b | ||||
Defoliation date 3 | 229 | 225 | 213 | 209 | 219 b | ||||
Target herbage mass average | 238 1 | 221 2 | 217 2 | 2063 | |||||
Dry Matter Digestibility (g·kg−1 DM) | Defoliation date average | ||||||||
Defoliation date 1 | 800 | 795 | 800 | 783 | 794 | 3.4 | * | NS | NS |
Defoliation date 2 | 812 | 813 | 791 | 794 | 803 | ||||
Defoliation date 3 | 802 | 802 | 794 | 784 | 796 | ||||
Target herbage mass average | 805 1 | 805 1 | 794 1,2 | 787 2 |
Target Herbage Mass | Low | Medium | High | Very High | Defoliation Date Average | S.E. | Significance | ||
---|---|---|---|---|---|---|---|---|---|
Water Soluble Carbohydrate in stubble (mg·g−1 DW) | THM | DD | THM × DD | ||||||
Defoliation date 1 | 27.6 | 35.8 | 39.8 | 33.1 | 34.0 a | 1.30 | ** | *** | * |
Defoliation date 2 | 33.1 | 30.6 | 31.4 | 35.5 | 32.6 b | ||||
Defoliation date 3 | 31.1 | 31.4 | 35.0 | 34.6 | 33.0 b | ||||
Target herbage mass average | 30.6 1 | 32.6 1,2 | 35.4 2 | 34.4 2 |
Defoliation Date | |||||
---|---|---|---|---|---|
Variable | DD1 | DD2 | DD3 | S.E. | Significance |
Herbage mass (kg·DM·ha−1) | 932 a | 711 b | 659 b | 23.8 | *** |
Pre-defoliation height (cm) | 7.3 a | 6.1 b | 5.8 c | 0.11 | *** |
Tiller density (tillers·m−2) | 3366 | 3273 | 3334 | 247.5 | NS |
WSC in the stubble (mg·g−1 DW) | 24.5 | 25.0 | 24.2 | 0.50 | NS |
Crude Protein (g·kg−1 DM) | 249 a | 257 b | 260 c | 1.0 | *** |
Dry matter digestibility (g·kg−1 DM) | 807 1 | 809 12 | 811 2 | 1.0 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Looney, C.; Wingler, A.; Egan, M. The Impact of Herbage Mass on Perennial Ryegrass Swards in Autumn on Autumn and over Winter Production and Characteristics. Agronomy 2021, 11, 1140. https://doi.org/10.3390/agronomy11061140
Looney C, Wingler A, Egan M. The Impact of Herbage Mass on Perennial Ryegrass Swards in Autumn on Autumn and over Winter Production and Characteristics. Agronomy. 2021; 11(6):1140. https://doi.org/10.3390/agronomy11061140
Chicago/Turabian StyleLooney, Caitlin, Astrid Wingler, and Michael Egan. 2021. "The Impact of Herbage Mass on Perennial Ryegrass Swards in Autumn on Autumn and over Winter Production and Characteristics" Agronomy 11, no. 6: 1140. https://doi.org/10.3390/agronomy11061140
APA StyleLooney, C., Wingler, A., & Egan, M. (2021). The Impact of Herbage Mass on Perennial Ryegrass Swards in Autumn on Autumn and over Winter Production and Characteristics. Agronomy, 11(6), 1140. https://doi.org/10.3390/agronomy11061140