The Effect of Tytanit Foliar Application and Different Nitrogen on Fibre Fraction Content and the Feed Value of Festulolium braunii
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Treatment Combinations
2.3. Forage Quality Determination
2.4. Meteorological Conditions
2.5. Statistical Analysis
- Determination of the effect of treatment across growing seasons:yijl = m + ai + gj + e1ij + bl + abil + e2ijl
- Determination of the effect of treatment across Festulolium braunii harvests:yijl = m + ai + gj + e1ij + bl + abil + e2ijl
3. Results and Discussion
3.1. Weather Conditions
3.2. NDF Content
3.3. ADF Content
3.4. ADL Content
3.5. Dry Matter Intake (DMI)
3.6. Relative Feed Value (RFV)
3.7. Correlation Coefficient
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Das, L.K.; Kundu, S.S.; Kumar, D.; Datt, C. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation. Vet. World 2015, 8, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszewska, M.; Kobyliński, A. The relative feed value of mixtures Festulolium braunii (K. Richt.) A. Camus with Medicago media Pers. depending on the varying participation on alfalfa in sowing. Acta Agroph. 2016, 23, 481–490. (In Polish) [Google Scholar]
- Salama, H.S.A.; Nawar, A.I. Variations of the cell wall components of multi-cut forage legumes, grasses and legume-grass binary mixtures grown in Egypt. Asian J. Crop. Sci. 2016, 8, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Aufrere, J.; Carrere, P.; Dudilieu, M.; Baumont, R. Estimation of nutritive value of grasses from semi-natural grasslands by biological, chemical and enzymatic methods. Grassl. Sci. Eur. 2008, 13, 426–428. [Google Scholar]
- Brzóska, F.; Śliwiński, B. Quality of roughages in ruminant nutrition and methods for its evaluation. Part II. Methods for analysis and evaluation of nutritive value of roughages. Wiad. Zoot. 2011, 4, 57–68. (In Polish) [Google Scholar]
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [Green Version]
- Ciepiela, G.A.; Godlewska, A.; Jankowska, J. The effect of seaweed Ecklonia maxima extract and mineral nitro gen on fodder grass chemical composition. Environ. Sci. Pollut. Res. 2016, 23, 2301–2307. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant. Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Sosnowski, J.; Truba, M.; Redzik, P.; Toczyska, E. The effect of growth regulator Tytanit dose on Medicago x varia T. Martin and Trifolium pretense L. yield and nutritional value. Saudi J. Biol. Sci. 2020, 27, 2890–2901. [Google Scholar] [CrossRef]
- Truba, M.; Jankowski, K.; Wiśniewska-Kadżajan, B.; Sosnowski, J.; Malinowska, E. The effect of soil conditioners on the quality of selected forage grasses. Appl. Ecol. Environ. Res. 2020, 18, 5123–5133. [Google Scholar] [CrossRef]
- Carvajal, M.; Alcaraz, C.F. Why titanium is a beneficial element for plants. J. Plant Nutr. 1998, 21, 655–664. [Google Scholar] [CrossRef]
- Hrubý, M.; Cígler, P.; Kuzel, S. Contribution to understanding the mechanism of titanium action in plant. J. Plant Nutr. 2002, 25, 577–598. [Google Scholar] [CrossRef]
- Buettner, K.M.; Valentine, A.M. Bioinorganic chemistry of titanium. Chem. Rev. 2012, 112, 1863–1881. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I. Effect of foliar fertilization with Tytanit on the dry matter yield and macroelements’ content in the meadow sward. Ecol. Chem. Eng. 2010, 17, 1607–1612. [Google Scholar]
- Kleiber, T.; Markiewicz, B. Application of “Tytanit” in greenhouse tomato growing. Acta Sci. Pol. Hortorum Cultus 2013, 12, 117–126. [Google Scholar]
- Kováčik, P.; Wiśniowska-Kielian, B.; Smoleń, S. Effect of application of Mg-Tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grain. J. Elem. 2018, 23, 697–708. [Google Scholar] [CrossRef]
- Malinowska, E.; Kalembasa, S. The yield and content of Ti, Fe, Mn, Cu in celery leaves (Apium graveolens L. Var. Dulce mill. Pers.) as a result of Tytanit application. Acta Sci. Pol. Hortorum Cultus 2012, 11, 69–80. [Google Scholar]
- Wadas, W.; Kalinowski, K. Effects of Tytanit on the dry matter and macroelement contents in potato tuber. J. Cent. Eur. Agric. 2018, 19, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Sosnowski, J. The value of production, Energy and food of Festulolium braunii (K. Richt.) A. Camus microbiologically and mineral suppled. Fragm. Agron. 2012, 29, 115–122. [Google Scholar]
- Malinowska, E.; Jankowski, K. The effect of spent mushroom substrate and cow slurry on sugar content and digestability of alfalfa grass mixtures. Int. J. Agron. 2020, 2020, 3251742. [Google Scholar] [CrossRef]
- Malinowska, E.; Jankowski, K.; Kania, P.; Gałecka, M. The effect of Tytanit foliar application on the yield and nutritional value of Festulolium braunii. Agronomy 2020, 10, 848. [Google Scholar] [CrossRef]
- Radkowski, A. Leaf greenness (SPAD) index in timothy-grass seed plantation at different doses of titanium foliar fertilization. Ecol. Chem. Eng. A 2013, 20, 167–174. [Google Scholar]
- Borowiecki, J. Review on Festulolium braunii (K. Richter) A. Camus. Pam. Puł. 2005, 140, 15–23. (In Polish) [Google Scholar]
- Ostrowski, R. Festulolium—International hybrid of forage grasses. Biul. Inf. Inst. Zootech. 2000, 1, 55–62. (In Polish) [Google Scholar]
- Gutmane, I.; Adamovičs, A. Festulolium (× Festulolium ASch. & Graebn.) and hybrid ryegrass (Lolium × boucheanum Kunth.) seed yield components and their contribution to yield. Grassl. Sci. Eur. 2013, 13, 358–360. [Google Scholar]
- Sosnowski, J.; Jankowski, K. Effect of soil fertilizer on the floristic composition and yield of Braun’s festololium mixtures with red clover and alfalfa. Grass. Sci. Pol. 2010, 13, 157–166. (In Polish) [Google Scholar]
- Staniak, M. Yielding and nutritional value of Festulolium braunii variety Felopa depending on the date of cuting the first swath. I. Yield and selected elements of its structure. Pam. Puł. 2004, 137, 117–131. (In Polish) [Google Scholar]
- Frankow-Lindberg, B.E.; Olsson, K.F. Digestibility and fibre content of leaves and straw of three Festulolium hybrids during spring regrowth. Grassl. Sci. Eur. 2008, 13, 456–458. [Google Scholar]
- Elgersma, A.; Soegaard, K. Changes in nutritive value and herbage yield during extended growth intervals in grass-legume mixtures: Effects of species, maturity at cut and relationships between prodyctivity and components of feed quality. Grass Forage Sci. 2018, 73, 78–93. [Google Scholar] [CrossRef]
- Jankowski, K.; Ciepiela, G.A.; Jodełka, J.; Kolczarek, R. The Turfed Grounds; University of Podlasie: Siedlce, Poland, 2008. [Google Scholar]
- Linn, J.G.; Martin, N.P. Forage Quality Test and Interpretation; Minnesota Extension Service, University of Minnesota Extension Service: St. Paul, MN, USA, 1989; pp. 1–5. [Google Scholar]
- Jankowski, K.; Malinowska, E. Fiber fraction content in legume-grass mixtures treated with mushroom substrate and cow slurry. Agron. J. 2019, 111, 1650–1657. [Google Scholar] [CrossRef] [Green Version]
- Skowera, B.; Puła, J. Pluviometric extreme conditions in spring season in Poland in the years 1971–2000. Acta Agroph. 2004, 3, 171–177. (In Polish) [Google Scholar]
- StatSoftStatSoft, Inc. STATISTICA (Data Analysis Software System), Version 10. 2011. Available online: www.statsoft.com (accessed on 1 May 2021).
- Jonavičienė, K.; Paplauskienė, V.; Lemežiene, N.; Butkutė, B. Quality of timothy (Phleum pratense L.) and causality of its variation. Grass. Sci. Eur. 2008, 13, 471–473. [Google Scholar]
- Stejskalova, M.; Hejcmanova, P.; Hejcman, M. Forage value of leaf fodder main European broad—Leaved woody species. Grass. Sci. Eur. 2013, 18, 85–87. [Google Scholar]
- Mertens, D.R.; Mertens Innovation & Research LLC, Belleville, WI, USA. Personal communication, 2012.
- Grzelak, M.; Bocian, T. Nutritional value of green fodder and hay from ecological meadows. J. Res. Appl. Agr. Eng. 2009, 54, 86–90. (In Polish) [Google Scholar]
- Jankowska-Huflejt, H.; Wróbel, B. Assessment of the suitability of feed from grassland for animals production on tested ecological farms. J. Res. Appl. Agr. Eng. 2008, 53, 103–108. (In Polish) [Google Scholar]
- Sosnowski, J. RFV value of Festulolium mixtures with red clover and alfalfa supplied with soil’s medium amendment. Grass. Sci. Pol. 2012, 15, 167–176. (In Polish) [Google Scholar]
- Wiśniewska-Kadżajan, B.; Stefaniak, G. Effects of slurry applied with soil conditioners and mineral fertilizers on fiber fraction content in Festulolium braunii (K. Richt.) A. Camus. Appl. Sci. 2020, 10, 6554. [Google Scholar] [CrossRef]
- Tomic, Z.; Bijelic, Z.; Zujovic, M.; Simic, A.; Kresovic, M.; Mandic, V.; Stanisic, N. The effect of nitrogen fertilization on quality and yield of grass—Legume mixtures. Grass. Sci. Eur. 2012, 17, 187–189. [Google Scholar]
- Sosnowski, J.; Jankowski, K. Evolution of the feed quality of Festulolium braunii mixtures with microbiologically supplied Red Clover and Alfalfa. J. Ecol. Eng. 2013, 14, 12–17. [Google Scholar] [CrossRef]
- Jankowska, J. Impact of different nitrogen fertilization and Starane 250 EC on the NDF and ADF content in the hay meadow. Fragm. Agron. 2013, 30, 59–67. (In Polish) [Google Scholar]
- Sosnowski, J. Reaction of Dactylis glomerata L., Festuca pratensis Huds. and Lolium perenne L. to microbiological fertilizer and mineral fertilization. Acta Sci. Pol. Agric. 2012, 11, 91–98. [Google Scholar]
- Acar, Z.; Tuzen, E.; Can, M.; Ayan, I. Effects of season on nutritional value of Tedera. Grassl. Sci. Eur. 2017, 22, 283–285. [Google Scholar]
- Kotlarz, A.; Stankiewicz, S.; Biel, W. Botanic and chemic composition of hay from semi-natural meadow and its nutritive value for horses. Acta Sci. Pol. Zootech. 2010, 9, 119–128. (In Polish) [Google Scholar]
- Grzelak, M. The productivity and fodder value of hay from extensively utilised Noteć river valley meadows. Sci. Nat. Technol. 2010, 4, 1–8. (In Polish) [Google Scholar]
- Wróbel, B.; Zielińska, K.; Fabiszewska, A. The effect of fertilisation with liquid cattle manure on meadow sward quality and its usefulness to ensilage. Probl. Agric. Eng. 2013, 2, 151–164. (In Polish) [Google Scholar]
- Barszczewski, J.; Wróbel, B.; Jankowska-Huflejt, H.; Mendra, M. The effect of different methods of fertilisation on meadow sward and silage quality. Sci. Pap. High. Sch. Agribus. Łomża 2010, 46, 7–16. (In Polish) [Google Scholar]
- Moore, J.E.; Undersander, D.J. Relative Forage Quality: An Alternative to Relative Feed Value and Quality Index. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 10–11 January 2002; pp. 16–32. [Google Scholar]
- Wiśniewska-Kadżajan, B.; Jankowski, K. Effect of slurry used with soil conditioners and fertilizers on structural, nonstructural carbohydrate and lignin content. Agron. J. 2021, 113, 2812–2820. [Google Scholar] [CrossRef]
Plot. | Treatment |
---|---|
1 | control (no treatment); |
2 | ammonium nitrate (N1) of 80 kg N ha−1, (24 g N to a plot); |
3 | ammonium nitrate (N2) of 160 kg N ha−1, (47 g N to a plot); |
4 | Tytanit® (Ti1) at a concentration of 0.2%, (1 cm3 per 500 cm3 of water); |
5 | Tytanit® (Ti2) at a concentration of 1%, (5 cm3 fertiliser per 500 cm3 of water); ammonium nitrate (N1) + Tytanit® (Ti1); |
6 | ammonium nitrate (N2) + Tytanit® (Ti2) |
Quality Class | RFV Ranges | Feed Consumer |
---|---|---|
I | >151 | Best high-productivity cows |
II | 125–151 | High-productivity cows, young heifer selected for breeding |
III | 103–124 | Good-quality beef cattle, older heifers, dairy cows—to a limited extent |
IV | 87–102 | Beef cattle and dried dairy cows |
V | 75–86 | Dried beef cows—supplemented with high-energy feed |
Year | Month | |||||||
---|---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | Mean | |
2015 | 1.36 (o) | 1.87 (mw) | 1.64 (mw) | 0.59 (sd) | 1.92 (mw) | 0.64 (sd) | 0.12 (ed) | - |
2016 | 1.22 (md) | 2.63 (sw) | 0.87 (d) | 1.08 (md) | 0.18 (ed) | 1.46 (o) | 1.94 (mw) | - |
2017 | 2.88 (sw) | 1.15 (md) | 1.08 (md) | 0.45 (sd) | 0.96 (d) | 1.92 (mw) | 1.90 (mw) | - |
Treatment | Means across Growing Seasons | Means across Cuts | ||||||
---|---|---|---|---|---|---|---|---|
Years | Cuts | |||||||
2015 | 2016 | 2017 | Mean | I | II | III | Mean | |
0 | 539.3 | 562.5 | 554.5 | 552.1 A | 559.5 | 530.9 | 565.9 | 552.1 A |
N1 | 546.2 | 520.7 | 531.4 | 532.8 BC | 528.7 | 552.7 | 516.8 | 532.8 BC |
N2 | 537.3 | 534.2 | 567.5 | 546.3 AB | 544.2 | 547.9 | 546.9 | 546.3 AB |
Ti1 | 517.5 | 527.5 | 532.5 | 525.8 BC | 539.6 | 520.9 | 516.9 | 525.8 C |
Ti2 | 537.3 | 536.3 | 575.2 | 549.6 A | 536.5 | 570.2 | 542.1 | 549.6 A |
N1 + Ti1 | 505.9 | 527.5 | 538.3 | 523.9 C | 521.8 | 522.4 | 527.5 | 523.9 C |
N2 + Ti2 | 516.8 | 540.3 | 541.3 | 532.8 BC | 530.4 | 525.4 | 542.6 | 532.8 BC |
mean | 528.6 c | 535.6 b | 548.7 a | 537.6 | 537.2 a | 538.6 a | 537.0 a | 537.6 |
Treatment | Means across Growing Seasons | Means across Cuts | ||||||
---|---|---|---|---|---|---|---|---|
Years | Cuts | |||||||
2015 | 2016 | 2017 | Mean | I | II | III | Mean | |
0 | 358.7 | 336.7 | 329.2 | 341.5 E | 237.0 | 220.8 | 318.7 | 258.8 AB |
N1 | 368.6 | 324.9 | 362.2 | 351.9 CD | 235.1 | 218.5 | 341.9 | 265.2 A |
N2 | 347.8 | 374.5 | 352.8 | 358.4 BC | 233.2 | 215.85 | 343.1 | 264.1 AB |
Ti1 | 348.0 | 355.8 | 319.7 | 341.2 E | 230.8 | 213.27 | 322.2 | 255.4 AB |
Ti2 | 381.7 | 374.2 | 367.8 | 374.6 A | 228.7 | 210.68 | 358.4 | 265.9 A |
N1 + Ti1 | 368.5 | 360.6 | 364.9 | 364.7 B | 226.0 | 207.31 | 349.8 | 261.1 AB |
N2 + Ti2 | 323.0 | 355.9 | 358.7 | 345.9 DE | 223.4 | 204.08 | 317.7 | 248.4 B |
mean | 356.6 a | 354.7 ab | 350.8 b | 354.0 | 230.6 a | 212.93 b | 336.0 a | 259.8 |
Treatment | Means across Growing Seasons | Means across Cuts | ||||||
---|---|---|---|---|---|---|---|---|
Years | Cuts | |||||||
2015 | 2016 | 2017 | Mean | I | II | III | Mean | |
0 | 33.32 | 35.22 | 42.33 | 36.96 D | 37.21 | 37.41 | 36.24 | 36.95 D |
N1 | 43.92 | 38.13 | 43.56 | 41.87 AB | 43.15 | 40.99 | 41.45 | 41.86 AB |
N2 | 34.53 | 41.48 | 47.69 | 41.23 B | 40.27 | 40.60 | 42.82 | 41.23 B |
Ti1 | 45.99 | 38.12 | 45.10 | 43.07 A | 42.34 | 44.37 | 42.49 | 43.07 A |
Ti2 | 44.75 | 36.09 | 35.67 | 38.84 C | 38.57 | 39.80 | 38.13 | 38.83 C |
N1 +Ti1 | 28.63 | 35.57 | 42.10 | 35.43 D | 34.72 | 35.64 | 35.92 | 35.43 D |
N2 +Ti2 | 44.76 | 37.03 | 44.19 | 41.99 AB | 40.31 | 43.47 | 42.18 | 41.99 AB |
mean | 39.41 b | 37.37 c | 42.95 a | 39.91 | 39.51 a | 40.33 a | 39.89 a | 31.91 |
Treatment | Means across Growing Seasons | Means across Cuts | ||||||
---|---|---|---|---|---|---|---|---|
Years | Cuts | |||||||
2015 | 2016 | 2017 | Mean | I | II | III | Mean | |
0 | 2.23 | 2.13 | 2.16 | 2.17 A | 2.19 | 2.28 | 2.13 | 2.22 A |
N1 | 2.20 | 2.30 | 2.26 | 2.25 A | 2.26 | 2.15 | 2.29 | 2.23 A |
N2 | 2.23 | 2.32 | 2.11 | 2.20 A | 2.13 | 2.17 | 2.23 | 2.18 A |
Ti1 | 2.32 | 2.21 | 2.26 | 2.26 A | 2.23 | 2.31 | 2.33 | 2.29 A |
Ti2 | 2.23 | 2.25 | 2.09 | 2.19 A | 2.24 | 2.14 | 2.22 | 2.20 A |
N1 +Ti1 | 2.37 | 2.28 | 2.23 | 2.29 A | 2.30 | 2.30 | 2.28 | 2.29 A |
N2 +Ti2 | 2.32 | 2.23 | 2.22 | 2.26 A | 2.26 | 2.27 | 2.22 | 2.25 A |
mean | 2.28 a | 2.25 a | 2.19 a | 2.24 | 2.23 a | 2.23 a | 2.24 a | 2.24 |
Treatment | Means across Growing Seasons | Means across Cuts | ||||||
---|---|---|---|---|---|---|---|---|
Years | Cuts | |||||||
2015 | 2016 | 2017 | Mean | I | II | III | Mean | |
0 | 103.1 | 103.6 | 106.0 | 104.2 A | 102.8 | 107.7 | 105.3 | 105.3 ABC |
N1 | 102.7 | 114.7 | 106.3 | 107.9 A | 107.8 | 101.6 | 112.4 | 107.3 AB |
N2 | 104.8 | 106.1 | 100.6 | 103.8 A | 99.4 | 101.3 | 108.7 | 103.1 BC |
Ti1 | 111.1 | 102.9 | 112.0 | 108.7 A | 105.8 | 103.6 | 111.1 | 106.8 AB |
Ti2 | 102.3 | 109.2 | 97.29 | 102.9 B | 102.5 | 99.7 | 104.9 | 102.4 C |
N1 + Ti1 | 110.7 | 108.2 | 101.3 | 106.7 A | 105.9 | 102.2 | 106.2 | 104.8 ABC |
N2 + Ti2 | 114.6 | 105.9 | 103.4 | 108.0 A | 106.2 | 107.9 | 109.9 | 108.1 A |
mean | 107.0 a | 107.2 a | 103.8 b | 106.0 | 104.3 a | 103.4 a | 108.4 a | 106.0 |
Means across Growing Seasons | |||||
---|---|---|---|---|---|
Variable | NDF | ADF | ADL | RFV | DMI |
for NDF | |||||
NDF | 1.00 | ||||
ADF | 0.087 | 1.00 | |||
ADL | 0.120 | −0.184 | 1.00 | ||
RFV | −0.762 * | −0.540 * | −0.001 | 1.00 | |
DMI | −0.951 * | −0.015 | −0.106 | 0.773 * | 1.00 |
for ADF | |||||
ADF | 1.00 | ||||
NDF | 0.087 | 1.00 | |||
ADL | −0.037 | −0.028 | 1.00 | ||
RFV | −0.539 * | −0.762 * | 0.092 | 1.00 | |
DMI | 0.095 | −0.388 | 0.241 | 0.165 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowska, E.; Jankowski, K. The Effect of Tytanit Foliar Application and Different Nitrogen on Fibre Fraction Content and the Feed Value of Festulolium braunii. Agronomy 2021, 11, 1612. https://doi.org/10.3390/agronomy11081612
Malinowska E, Jankowski K. The Effect of Tytanit Foliar Application and Different Nitrogen on Fibre Fraction Content and the Feed Value of Festulolium braunii. Agronomy. 2021; 11(8):1612. https://doi.org/10.3390/agronomy11081612
Chicago/Turabian StyleMalinowska, Elżbieta, and Kazimierz Jankowski. 2021. "The Effect of Tytanit Foliar Application and Different Nitrogen on Fibre Fraction Content and the Feed Value of Festulolium braunii" Agronomy 11, no. 8: 1612. https://doi.org/10.3390/agronomy11081612
APA StyleMalinowska, E., & Jankowski, K. (2021). The Effect of Tytanit Foliar Application and Different Nitrogen on Fibre Fraction Content and the Feed Value of Festulolium braunii. Agronomy, 11(8), 1612. https://doi.org/10.3390/agronomy11081612