Productivity of Paddies as Influenced by Varied Rates of Recommended Nutrients in Conjunction with Biofertilizers in Local Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil Characteristics
2.3. Experiment Details
2.4. Crop Husbandry Practices
2.5. Data Collection
Data on Crop Traits
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence on Growth and Yield of Traditional Paddy Landraces under Different Fertility Levels and Biofertilizers
3.2. Influence on Nutrient Uptake under Different Fertility Levels and Biofertilizer Applications in Traditional Paddy Landraces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malo, M.; Sarkar, A. Nutrient Uptake, Soil Fertility Status and Nutrient Use Efficiency of Rice as Influenced by Inorganic and Bio-fertilizer in New Alluvial Zone of West Bengal. Curr. J. Appl. Sci. Technol. 2019, 38, 1–11. [Google Scholar] [CrossRef]
- Garai, T.K.; Datta, J.K.; Mondal, N.K. Evaluation of integrated nutrient management onbororice in alluvial soil and its impacts upon growth, yield attributes, yield and soil nutrient status. Arch. Agron. Soil Sci. 2013, 60, 1–14. [Google Scholar] [CrossRef]
- Timmer, C.P.; Block, S.; Dawe, D. Long-Run Dynamics of Rice Consumption, 1960–2050S. In Rice in the Global Economy: Strategic Research and Policy Issues for Food Security; Pandey, D., Byerlee, D., Dawe, A., Dobermann, S., Mohanty, S., Rozelle, W., Eds.; International Rice Research Institute: Los Banos, Philippines, 2010; pp. 139–174. [Google Scholar]
- Mohanty, S.; Wassmann, R.; Nelson, A.; Moya, P.; Jagadish, S.V.K. Rice and Climate Change: Significance for Food Security and Vulnerability; IRRI Discussion Paper Series; International Rice Research Institute: Los Banos, Philippines, 2013; p. 14. [Google Scholar]
- Khan, H.I. Appraisal of Biofertilizers in Rice: To Supplement Inorganic Chemical Fertilizer. Rice Sci. 2018, 25, 357–362. [Google Scholar] [CrossRef]
- Singh, M.K. Evaluation of Azospirillum strains as biofertilizers for rice. Int. J. Farm Sci. 2014, 4, 15–18. [Google Scholar]
- Ladha, J.; Reddy, P.M. Nitrogen fixation in rice systems: State of knowledge and future prospects. Plant Soil 2003, 252, 151–167. [Google Scholar] [CrossRef]
- Singh, Y.V. Crop and water productivity as influenced by rice cultivation methods under organic and inorganic sources of nutrient supply. Paddy Water Environ. 2013, 11, 531–542. [Google Scholar] [CrossRef]
- Singh, S.; Shivay, Y.S. Coating of prilled urea with ecofriendly neem (Azadirachta indica A. Juss.) Formulations for efficient nitrogen use in hybrid rice. Acta Agron. Hung. 2003, 51, 53–59. [Google Scholar] [CrossRef]
- Buresh, R.; Reddy, K.R.; Van Kessel, C. Nitrogen Transformations in Submerged Soils. In Agronomy Monographs; Wiley: Hobken, NJ, USA, 2015; pp. 401–436. [Google Scholar]
- Subehia, S.K.; Verma, S.; Sharma, S.P. Effect of long-term use of chemical fertilizers with and without organics forms of soil acidity, phosphorus adsorption and crop yields in an acid soil. J. Indian Soc. Soil Sci. 2005, 53, 308–314. [Google Scholar]
- Singh, M.; Chaure, N.K.; Parihar, S.S. Organic farming for sustainable agriculture. Indian Farm 2001, 12, 14–17. [Google Scholar]
- Sravan, U.S.; Singh, S.P. Effect of Integrated Nutrient Management on Yield and Quality of Basmati Rice Varieties. J. Agric. Sci. 2019, 11, 93. [Google Scholar] [CrossRef]
- Kecskés, M.L.; Choudhury, A.T.M.A.; Casteriano, A.V.; Deaker, R.; Roughley, R.J.; Lewin, L.; Ford, R.; Kennedy, I.R. Effects of bacterial inoculant biofertilizers on growth, yield and nutrition of rice in Australia. J. Plant Nutr. 2015, 39, 377–388. [Google Scholar] [CrossRef]
- Hegde, D.M.; Dwivedi, B.S.; Sudhakara, S.N. Bio-fertilizers for cereal production in India—A review. Indian J. Agric. Sci. 1999, 69, 73–83. [Google Scholar]
- Davidson, J. Plant beneficial bacteria. Biotechnology 1988, 6, 282–286. [Google Scholar]
- Banayo, N.P.M.; Cruz, P.C.S.; Aguilar, E.A.; Badayos, R.B.; Haefele, S.M. Evaluation of Biofertilizers in Irrigated Rice: Effects on Grain Yield at Different Fertilizer Rates. Agriculture 2012, 2, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Suhag, M. Potential of Biofertilizers to Replace Chemical Fertilizers. Intern. Adv. Res. J. Sci. 2016, 3, 163–167. [Google Scholar]
- da Silva Araújo, A.E.; Baldani, V.L.; de Souza Galisa, P.; Pereira, J.A.; Baldani, J.I. Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the Northeast region of Brazil. Appl. Soil Ecol. 2013, 64, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Panhwar, Q.A.; Shamshuddin, J.; Naher, U.A.; Radziah, O.; Mohd Razi, I. Changes in the chemical properties of an acid sulfate soil and the growth of rice as affected by bio-fertilizer, ground magnesium limestone and basalt application. Pedosphere 2014, 24, 827–835. [Google Scholar] [CrossRef]
- Naher, U.A.; Othman, R.; Panhwar, Q.A.; Ismail, M.R. Biofertilizer for Sustainable Rice Production and Reduction of Environmental Pollution. In Crop Production and Global Environmental Issues; Springer Science and Business Media LLC: Berlin, Germany, 2015; pp. 283–291. [Google Scholar]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Hamoud, Y.A.; Shaghaleh, H.; Sheteiwy, M.S. The Integration of Bio and Organic Fertilizers Improve Plant Growth, Grain Yield, Quality and Metabolism of Hybrid Maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- FAI. Specialty Fertiliser Statistics, 4th ed.; The Fertiliser Association of India: New Delhi, India, 2015. [Google Scholar]
- Dwivedi, B.S.; Singh, V.K.; Meena, M.C.; Dey, A.; Datta, S.P. Integrated Nutrient Management for Enhancing Nitrogen Use Efficiency. Indian J. Ferti. 2016, 12, 62–71. [Google Scholar]
- Hanumaratti, N.G.; Prashanti, S.K.; Salimat, P.M.; Hanchinal, R.R.; Mohan Kumar, H.D.; Parameshwarappa, K.G.; Raikar, S.D. Traditional land races in Karnataka, Reservoir of valuble traits. Curr. Sci. 2008, 94, 242–247. [Google Scholar]
- Sehgal, J.; Mandal, D.K.; Mandal, C. Agro Ecological Subregions of India (Map); NBSS and LUP: Nagpur, India, 1995. [Google Scholar]
- IRRI. Standard Evaluation System (SES) for Rice, 5th ed.; International Rice Research Institute: Los Banos, Philippines, 2013. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Rich, C.I. Elemental analysis by flame photometry. In Methods of Soil Analysis, Part 2: Chemical and Mi-Crobiological Properties; American Society of Agronomy: Madison, WI, USA, 1965; pp. 849–864. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: Englewood Clirrs, NJ, USA, 1973. [Google Scholar]
- Steinbergs, A. A rapid turbidimetric method for the determination of small amounts of sulphur in plant material. Analysis 1953, 78, 47–53. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Sci. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Data that violate some assumptions of the analysis of variance. In Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1984; pp. 294–315. [Google Scholar]
- Onofri, A. Routine Statistical Analyses of Field Experiments by Using an Excel Extension. In Proceedings of the 6th National Conference Italian Biometric Society: “La statistica nelle scienze della vita e dell’ambiente”, Pisa, Italy, 20–22 June 2007; pp. 93–96. [Google Scholar]
- Gangadharaiah, H.B. Productivity of Contrasting Rice (Oryza sativa L.) Plant Types at Varied Levels of Fertility and Spacing. Master’s Thesis, University of Agric Science, Bangalore, India, 1983. [Google Scholar]
- Basavaraja, M.K. Response of Rice (Oryza sativa L.) Cultivars to the Population Dynamics under Aerobic Method. Master’s Thesis, University of Agric Science, Bangalore, India, 2007. [Google Scholar]
- Veerajurs, U.S.; Mahadevappa, M. Effect of spacing and fertilizer on growth and yield of Jaya, IR-8 and IR-5 varieties of paddy. Mysore J. Agric. Sci. 1972, 6, 399–404. [Google Scholar]
- Yogananda, S.B.; Reddy, V.C. Influence of urban compost and inorganic fertilizers on nutrient use efficiency, economics and sustainability of rice (Oryza sativa L.) production. J. Ecobiol. 2004, 16, 331. [Google Scholar]
- Tarafder, M.A.; Haque, M.Q.; Rahman, M.M.; Khan, M.R. Direct and residual effect of sulphur and zinc on potatoboro-t. aman rice cropping patterns. Prog. Agric. 2008, 19, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Kumar, P.; Prasad, B.; Singh, S. Effect of biofertilizers on growth, yield and economics of rice (Oryza sativa L.). Int. Res. J. Agric. Econ. Stat. 2015, 6, 386–391. [Google Scholar] [CrossRef]
- Singh, S.R.; Kundu, D.K.; Dey, P.; Mahapatra, B.S. Identification of Minimum Data Set Under Balanced Fertilization for Sustainable Rice Production and Maintaining Soil Quality in Alluvial Soils of Eastern India. Commun. Soil Sci. Plant Anal. 2017, 48, 2170–2192. [Google Scholar] [CrossRef]
- Sudha, B.; Chandini, S. Vermicompost—A potential organic manure for rice. Int. Agric. 2003, 41, 18. [Google Scholar]
- Mahata, M.; Debnath, P.; Ghosh, S. Critical limits of zinc in soil and rice plant grown in alluvial soils of West Bengal, India. SAARC J. Agric. 2014, 10, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, N.; Pathak, R.; Sacchan, A.K.; Dimree, S. Effect of Zinc and Biofertilizer on Changes in Soil Fertility Status under Hybrid Rice—Chickpea Cropping Sequence in Alluvial Soils of Central Uttar Pradesh. Curr. J. Appl. Sci. Technol. 2020, 39, 102–109. [Google Scholar] [CrossRef]
- Alam, S.; Seth, R.K. Comparative Study on Effect of Chemical and Bio-Fertilizer on Growth, Develop-ment and Yield Production of Paddy crop (Oryza sativa). Intern. J. Sci. Res. 2014, 3, 411–414. [Google Scholar]
- Dahal, B.R.; Bhandari, S. Biofertilizer: A Next Generation Fertilizer for Sustainable Rice Production. Int. J. Grad. Res. Rev. 2019, 5, 1–5. [Google Scholar]
- Vasanthi, D.; Kumaraswamy, K. Efficiency of vermicompost on the yield and soil fertility. In Proceedings of the National Seminar on Organic Farming and Sustainable Agriculture, UAS, Bengaluru, India, 9–11 October 1996; p. 40. [Google Scholar]
- Dwivedi, R.; Srivastva, P.C. Effect of zinc sulphate application and the cyclic incorporation of cereal straw on yields, the tissue concentration and uptake of Zn by crops and availability of Zn in soil under rice–wheat rotation. Int. J. Recycl. Org. Waste Agric. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Lal, M.; Naresh, R.; Yadav, R.; Yadav, A.K.; Yadav, K.; Kumar, R.; Chandra, M.S.; Rajput, P. Effect of Organic and Inorganic Nutrient Sources on Productivity, Grain Quality of Rice and Soil Health in North-West IGP: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2488–2514. [Google Scholar] [CrossRef]
- Devaraju, K.M.; Gowda, H.; Raju, B.M. Nitrogen response of Karnataka Rice Hybrid-2. IRRI Notes 1998, 23, 43. [Google Scholar]
- Ravi, R.; Srivasthava, O.P. Vermicompost-a potential supplement to nitrogenous fertilizers in rice cultures. IRRN 1997, 22, 31. [Google Scholar]
- Mahajan, G.R.; Manjunath, B.L.; Morajkar, S.; Desai, A.; Das, B.; Paramesh, V. Long-Term Effect of Various Organic and Inorganic Nutrient Sources on Rice Yield and Soil Quality in West Coast India Using Suitable Indexing Techniques. Commun. Soil Sci. Plant Anal. 2021, 1–15. [Google Scholar] [CrossRef]
- Jeena, P.K.; Rao, C.P.; Subbaiah, G. Effect of zinc management practices on growth, yield and economics in rice. Crop Prod. 2006, 43, 326–328. [Google Scholar]
- Jayadeva, H.M. Studies on Nitrogen Losses, Methane Emission and Productivity of Rice under Crop Establishment Tech-Niques. Ph.D. Thesis, University of Agric Science, Bangalore, India, 2007; pp. 130–171. [Google Scholar]
- Subramanian, K.S. Kumaraswamy, Fertilization on chemical properties of soil. J. Indian Soc. Soil Sci. 1989, 37, 171–173. [Google Scholar]
- Katyal, J.C.; Sharma, B.D. Role of micronutrients in crop production soils. Fertil. News. 1979, 24, 33–50. [Google Scholar]
- Saha, A.L.; De Datta, S.K. Sulphur and Zinc interaction in low land rice. J. Crop Sci. 1991, 16, 15–18. [Google Scholar]
- Jadhav, A.B.; Talashilkar, S.C.; Power, A.G. Influence of the conjunctive use of FYM, vermicompost and urea on growth and nutrient uptake in rice. J. Maharastra Agric. Univ. 1997, 22, 249–250. [Google Scholar]
- Dixit, V.; Parihar, A.K.; Shukla, G. Effect of Sulphur and Zinc on Yield Quality and Nutrient Uptake of Hybrid Rice in Sodic Soil. Int. J. Environ. Sci. Tech. 2012, 1, 53–57. [Google Scholar]
- Murali, M.K.; Setty, R.A. Growth, yield and nutrient uptake of scented rice (Oryza sativa L.) as influenced by levels of NPK, vermicompost and triacontanol. Mysore J. Agri. Sci. 2001, 35, 1–4. [Google Scholar]
- Subhashini, D.V. Growth Promotion and Increased Potassium Uptake of Tobacco by Potassium-Mobilizing Bacterium Frateuria aurantia Grown at Different Potassium Levels in Vertisols. Commun. Soil Sci. Plant Anal. 2014, 46, 210–220. [Google Scholar] [CrossRef]
- Kumar, M.; Zeyad, M.T.; Choudhary, P.; Paul, S.; Chakdar, H.; Rajawat, M.V.S. Thiobacillus. Benef. Microbes Agro Ecol. 2020, 1, 545–557. [Google Scholar]
- Lalitha, M.; Kumar, K.S.A.; Dharumarajan, S.; Balakrishnan, N.; Srinivasan, R.; Nair, K.M.; Hegde, R.; Singh, S.K. Role of Vesicular-Arbuscular Mycorrhizae in Mobilization of Soil Phosphorus. In Agriculturally Important Microbes for Sustainable Agriculture; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 317–331. [Google Scholar]
- Shahane, A.A.; Shivay, Y.S.; Prasanna, R.; Kumar, D. Nutrient removal by rice–wheat cropping system as influenced by crop establishment techniques and fertilization options in conjunction with microbial inoculation. Sci. Rep. 2020, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rex Immanuel, R.; Thiruppathi, M.; Saravanaperumal, M.; Murugan, G.; Sudhagar Rao, G.B. Impact of crop geometry and integrated nutrient management on NPK uptake and nitrogen use efficiency of rice. J. Emerg. Tech. Innov. Res. 2019, 6, 598–602. [Google Scholar]
- Choudhary, M.; Ghasal, P.C.; Yadav, R.P.; Meena, V.S.; Mondal, T.; Bisht, J.K. Towards Plant-Beneficiary Rhizobacteria and Agricultural Sustainability. In Role of Rhizospheric Microbes in Soil; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 1–46. [Google Scholar]
- Gami, S.K.; Ladha, J.K.; Pathak, H.; Shah, M.P.; Pasquin, E.; Pandey, S.P.; Hobbs, P.R.; Joshy, D. Long term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal. Biol. Fertil. Soils 2001, 34, 73–78. [Google Scholar]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
Varieties | Plant Height (cm) | No. of Tillers per Hill | Total Dry Matter (g hill−1) | Grain Yield (t ha−1) | Straw Yield (t ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
M1: Hal doddiga | 112 | 111 ** | 112 | 13.9 | 14.2 ** | 13.9 | 49.4 | 50.0 ** | 49.7 | 6.40 ** | 6.31 ** | 6.36 ** | 7.45 ** | 7.35 ** | 7.40 ** |
M2: Mysore sanna | 113 | 112 ** | 113 | 14.2 ** | 14.5 ** | 14.2 ** | 53.9 ** | 49.9 | 51.9 ** | 6.31 | 6.12 | 6.21 ** | 7.46 ** | 7.20 | 7.33 ** |
M3: Padmarekha | 118 ** | 115 ** | 116 ** | 14.7 ** | 15.1 ** | 14.7 ** | 52.0 ** | 52.4 ** | 52.2 ** | 6.70 ** | 6.54 ** | 6.62 ** | 7.39 ** | 7.54 ** | 7.47 ** |
M4: Halga | 110 | 106 | 108 | 13.7 | 13.1 | 13.7 | 48.6 | 49.3 | 48.9 | 6.36 ** | 6.24 ** | 6.30 ** | 7.41 ** | 7.15 | 7.28 ** |
M5: Kemp jadda bhatta | 116 ** | 112 ** | 114 ** | 13.9 | 13.6 | 13.9 | 47.6 | 47.4 | 47.5 | 6.39 ** | 6.21 | 6.30 ** | 7.21 ** | 7.40 ** | 7.30 ** |
M6: Kari kagga | 101 | 101 | 101 | 9.0 | 8.5 | 9.0 | 38.5 | 38.4 | 38.5 | 4.52 | 4.71 | 4.62 | 5.68 | 5.92 | 5.80 |
Mean | 112 | 109 | 111 | 13.2 | 13.2 | 13.2 | 48.34 | 47.87 | 48.1 | 6.12 | 6.02 | 6.07 | 7.10 | 7.09 | 7.10 |
S.Em± | 0.9 | 1.2 | 0.7 | 0.13 | 0.35 | 0.13 | 0.68 | 0.53 | 0.36 | 0.10 | 0.08 | 0.06 | 0.14 | 0.08 | 0.06 |
LSD (p = 0.05) | 3.3 | 4.2 | 2.6 | 0.47 | 1.29 | 0.47 | 2.47 | 1.94 | 1.32 | 0.35 | 0.30 | 0.23 | 0.52 | 0.27 | 0.24 |
Fertilization levels | |||||||||||||||
S1: Farmer’s practice | 99 | 96 | 97 | 10.1 | 9.9 | 10.1 | 20.8 | 21.2 | 21.0 | 5.50 | 5.18 | 5.34 | 6.17 | 6.16 | 6.17 |
S2: 50% RDF + biofertilizers | 110 | 109 | 109 | 13.1 | 13.3 | 13.1 | 49.4 | 48.7 | 49.1 | 5.85 | 5.87 | 5.86 | 6.88 | 7.00 | 6.96 |
S3: 75% RDF + biofertilizers | 117 | 116 ** | 117 ** | 14.6 ** | 14.4 ** | 14.6 ** | 58.6 | 59.0 | 58.8 | 6.37 | 5.87 | 6.37 | 7.56 ** | 7.34 ** | 7.55 ** |
S4: 100% RDF + biofertilizers | 121 ** | 117 ** | 119 ** | 15.1 ** | 14.9 ** | 15.1 ** | 64.5 ** | 62.6 ** | 63.5 ** | 6.74 ** | 6.38 ** | 6.70 ** | 7.79 ** | 7.58 ** | 7.72 ** |
Mean | 112 | 109 | 111 | 13.2 | 13.2 | 13.2 | 48.34 | 47.87 | 48.1 | 6.12 | 6.02 | 6.07 | 7.10 | 7.09 | 7.10 |
S.Em± | 1.1 | 1.5 | 1.8 | 0.25 | 0.46 | 0.28 | 0.63 | 0.79 | 0.54 | 0.06 | 0.07 | 0.05 | 0.10 | 0.09 | 0.07 |
LSD (p = 0.05) | 3.1 | 4.2 | 2.6 | 0.73 | 1.34 | 0.82 | 1.83 | 2.29 | 1.56 | 0.18 | 0.22 | 0.13 | 0.27 | 0.26 | 0.20 |
Interaction (M× S) | |||||||||||||||
S.Em± | 2.2 | 2.9 | 1.8 | 0.51 | 0.93 | 0.57 | 1.27 | 1.81 | 1.08 | 0.13 | 0.15 | 0.09 | 0.19 | 0.18 | 0.14 |
LSD (p = 0.05) | NS | NS | NS | 1.46 | 2.67 | 1.64 | 3.66 | NS | 3.13 | NS | 0.43 | 0.27 | NS | NS | NS |
Varieties | Productive Tillers per Hill | Panicle Length (cm) | Grain Weight (g spike−1) | No. of Grains per Panicle | Test Weight (g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
M1: Hal doddiga | 13.6 | 14.2 | 13.9 ** | 21.8 ** | 22.3 | 22.1 | 3.88 | 4.03 | 3.96 ** | 120.8 ** | 122.7 ** | 121.8 ** | 24.9 ** | 25.3 ** | 25.1 ** |
M2: Mysore sanna | 14.0 | 14.6 ** | 14.3 ** | 22.2 ** | 22.7 | 22.5 ** | 3.68 | 3.83 | 3.76 | 120.2 ** | 122.0 ** | 121.1 ** | 23.9 | 24.3 | 24.1 |
M3: Padmarekha | 14.4 | 15.0 ** | 14.7 ** | 23.0 ** | 23.5 ** | 23.2 ** | 4.21 ** | 4.36 | 4.28 ** | 125.0 ** | 126.9 ** | 125.9 ** | 26.0 ** | 26.4 ** | 26.2 ** |
M4: Halga | 13.3 | 13.9 | 13.6 | 21.4 ** | 21.9 | 21.7 | 3.71 | 3.86 | 3.78 | 117.6 ** | 119.2 | 118.4 | 23.1 | 23.5 | 23.3 |
M5: Kemp jadda bhatta | 13.3 | 13.9 | 13.6 | 21.1 | 21.6 | 21.3 | 3.71 | 3.84 | 3.77 | 116.4 ** | 118.1 | 117.3 | 22.6 | 23.0 | 22.8 |
M6: Kari kagga | 11.4 | 12.0 | 11.7 | 16.1 | 16.6 | 16.4 | 3.21 | 3.36 | 3.28 | 90.7 | 92.6 | 91.7 | 18.0 | 18.4 | 18.2 |
Mean | 13.32 | 13.92 | 13.62 | 20.93 | 21.43 | 21.18 | 3.73 | 3.88 | 3.81 | 115.13 | 116.90 | 116.01 | 23.08 | 23.48 | 23.28 |
S.Em± | 0.43 | 0.16 | 0.26 | 0.48 | 0.14 | 0.25 | 0.05 | 0.22 | 0.13 | 3.50 | 1.72 | 1.40 | 0.48 | 0.49 | 0.31 |
LSD (p = 0.05) | NS | 0.59 | 0.96 | 1.75 | 0.50 | 0.92 | 0.17 | NS | 0.48 | 12.72 | 6.25 | 5.10 | 1.75 | 1.78 | 1.11 |
Fertilization levels | |||||||||||||||
S1: Farmer’s practice | 10.9 | 11.5 | 11.2 | 17.40 | 17.90 | 17.7 | 2.63 | 2.78 | 2.71 | 91.29 | 92.91 | 92.1 | 18.75 | 19.15 | 19.0 |
S2: 50% RDF + biofertilizers | 12.5 | 13.1 | 12.8 | 19.6 | 20.1 | 19.8 | 3.73 | 3.88 | 3.80 | 113.7 | 115.6 | 114.7 | 21.05 | 21.45 | 21.3 |
S3: 75% RDF + biofertilizers | 14.6 ** | 15.2 | 14.9 | 22.8 | 23.3 | 23.0 | 4.12 | 4.27 | 4.20 | 125.1 ** | 126.9 | 126.0 | 24.65 | 25.05 | 24.9 |
S4: 100% RDF + biofertilizers | 15.3 ** | 15.9 ** | 15.6 ** | 24.0 ** | 24.5 ** | 24.3 ** | 4.45 ** | 4.59 | 4.50 ** | 130.4 ** | 132.2 ** | 131.3 ** | 27.85 ** | 28.25 ** | 28.1 ** |
Mean | 13.32 | 13.92 | 13.62 | 20.93 | 21.43 | 21.18 | 3.73 | 3.88 | 3.81 | 115.13 | 116.90 | 116.01 | 23.08 | 23.48 | 23.28 |
S.Em± | 0.34 | 0.17 | 0.19 | 0.59 | 0.13 | 0.31 | 0.06 | 0.13 | 0.07 | 2.08 | 1.52 | 1.20 | 0.59 | 0.55 | 0.41 |
LSD (p = 0.05) | 0.98 | 0.50 | 0.55 | 1.70 | 0.37 | 0.90 | 0.17 | 0.37 | 0.20 | 6.00 | 4.39 | 3.46 | 1.70 | 1.58 | 1.18 |
Interaction (M × S) | |||||||||||||||
S.Em± | 0.68 | 0.35 | 0.38 | 1.18 | 0.25 | 0.62 | 0.12 | 0.25 | 0.14 | 4.16 | 3.04 | 2.39 | 1.18 | 1.09 | 0.82 |
LSD (p = 0.05) | NS | NS | NS | NS | 0.74 | 1.80 | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Varieties | Uptake of N | Uptake of P2O5 | Uptake of K2O | Uptake of S | Uptake of Zn | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
M1: Hal doddiga | 90.0 ** | 94.2 ** | 92.1 | 30.3 | 31.0 | 30.6 | 101.9 | 105.5 | 103.7 | 18.0 | 17.9 ** | 18.0 ** | 110.6 ** | 111.9 ** | 111.3 ** |
M2: Mysore sanna | 79.6 | 67.1 | 81.6 | 29.6 | 30.6 | 30.1 | 99.1 | 102.8 | 100.9 | 17.7 | 17.6 ** | 17.7 | 107.8 ** | 110.1 ** | 108.9 ** |
M3: Padmarekha | 102.8 ** | 91.6 ** | 104.1 ** | 33.8 ** | 34.1 ** | 34.0 ** | 108.1 ** | 113.5 ** | 110.8 ** | 19.0 ** | 18.6 ** | 18.8 ** | 112.8 ** | 115.3 ** | 114.1 ** |
M4: Halga | 88.9 ** | 84.7 | 90.8 | 27.6 | 30.4 | 29.0 | 94.0 | 97.3 | 95.6 | 17.5 | 17.4 | 17.5 | 101.8 | 108.8 | 105.3 |
M5: Kemp jadda bhatta | 92.7 ** | 94.5 ** | 94.5 | 26.6 | 28.8 | 27.7 | 92.1 | 95.8 | 94.0 | 17.1 | 17.1 | 17.1 | 101.1 | 106.8 | 104.0 |
M6: Kari kagga | 54.8 | 50.5 | 56.4 | 19.2 | 19.9 | 19.5 | 85.1 | 89.8 | 87.5 | 15.4 | 15.3 | 15.3 | 94.6 | 96.7 | 95.6 |
Mean | 84.8 | 80.4 | 86.6 | 27.8 | 29.2 | 28.5 | 96.7 | 100.8 | 98.7 | 17.5 | 17.3 | 17.4 | 104.8 | 108.3 | 106.5 |
S.Em± | 1.4 | 1.1 | 2.3 | 0.6 | 0.6 | 0.3 | 1.4 | 1.6 | 0.9 | 2.6 | 0.3 | 0.2 | 2.6 | 1.4 | 1.9 |
LSD (p = 0.05) | 16.6 | 4.2 | 8.5 | 2.2 | 2.1 | 1.2 | 5.0 | 5.7 | 3.1 | 0.6 | 1.1 | 0.8 | 9.6 | 5.2 | 6.8 |
Fertilization levels | |||||||||||||||
S1: Farmer’s practice | 47.1 | 47.1 | 47.1 | 9.0 | 10.7 | 9.9 | 32.2 | 35.9 | 34.1 | 39.9 | 6.7 | 6.8 | 39.9 | 41.7 | 40.8 |
S2: 50% RDF + biofertilizers | 82.1 | 85.8 | 84.5 | 32.1 | 32.8 | 32.4 | 96.3 | 99.9 | 98.1 | 112.8 | 19.2 | 19.2 | 112.8 | 119.2 | 116.0 |
S3: 75% RDF + biofertilizers | 96.3 | 101.3 ** | 98.9 | 34.3 ** | 36.4 ** | 35.4 ** | 120.8 | 124.4 | 122.6 | 21.1 ** | 21.2 ** | 21.2 | 128.2 | 131.3 | 129.7 |
S4: 100% RDF + biofertilizers | 113.7 ** | 86.6 | 122.0 ** | 35.9 ** | 36.7 ** | 36.3 ** | 137.7 ** | 142.9 ** | 140.3 ** | 22.5 ** | 22.2 ** | 22.4 ** | 138.3 ** | 138.3 ** | 139.6 ** |
Mean | 84.8 | 80.4 | 86.6 | 27.8 | 29.2 | 28.5 | 96.7 | 100.8 | 98.7 | 17.5 | 17.3 | 17.4 | 104.8 | 108.3 | 106.5 |
S.Em± | 2.7 | 1.6 | 1.6 | 0.9 | 0.5 | 0.5 | 1.9 | 1.9 | 0.8 | 0.5 | 0.5 | 0.3 | 3.1 | 2.2 | 2.0 |
LSD (p = 0.05) | 7.9 | 4.5 | 3.8 | 2.5 | 1.4 | 1.3 | 5.4 | 5.4 | 2.3 | 1.5 | 1.3 | 0.9 | 8.9 | 6.2 | 5.7 |
Interaction (M × S) | |||||||||||||||
S.Em± | 5.5 | 3.1 | 2.6 | 1.1 | 0.9 | 0.6 | 1.4 | 1.5 | 0.8 | 1.1 | 0.9 | 0.7 | 6.2 | 4.3 | 4.0 |
LSD (p = 0.05) | 15.8 | 9.0 | 7.6 | 3.2 | 2.7 | 1.7 | 3.9 | NS | NS | NS | NS | NS | NS | NS | NS |
Varieties | Available N | Available P2O5 | Available K2O | Available S | Available Zn | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
M1: Hal doddiga | 182.5 | 192.3 | 187.4 | 22.1 | 23.2 | 22.6 | 196.0 | 196.7 | 196.4 | 15.9 ** | 17.1 ** | 16.5 ** | 10.5 ** | 13.0 ** | 11.7 |
M2: Mysore sanna | 186.3 | 194.0 | 190.1 | 23.2 ** | 23.5 | 23.4 ** | 197.9 | 198.6 | 198.2 | 15.9 ** | 17.0 ** | 16.4 ** | 10.3 | 12.9 | 11.6 |
M3: Padmarekha | 187.7 | 195.3 | 191.5 | 24.4 ** | 25.4 ** | 24.9 ** | 201.9 ** | 202.6 ** | 202.3 ** | 16.3 ** | 17.4 ** | 16.9 ** | 10.9 ** | 13.4 ** | 12.2 ** |
M4: Halga | 185.7 | 194.3 | 190.0 | 23.9 ** | 24.9 ** | 24.4 ** | 198.8 | 199.6 | 199.2 | 15.6 ** | 16.7 | 16.2 ** | 10.3 | 12.7 | 11.5 |
M5: Kemp jadda bhatta | 182.8 | 195.2 | 189.0 | 21.6 | 22.3 | 22.0 | 199.7 | 200.4 | 200.0 | 15.3 ** | 16.2 | 15.7 | 10.2 | 12.5 | 11.3 |
M6: Kari kagga | 177.6 | 186.1 | 181.9 | 20.4 | 20.5 | 20.4 | 192.4 | 193.2 | 192.8 | 13.6 | 14.1 | 13.9 | 9.5 | 11.6 | 10.5 |
Mean | 183.8 | 192.9 | 188.3 | 22.6 | 23.3 | 23.0 | 197.8 | 198.5 | 198.2 | 15.4 | 16.4 | 15.9 | 10.3 | 12.7 | 11.5 |
S.Em± | 2.85 | 2.07 | 1.78 | 0.41 | 0.3 | 0.3 | 0.04 | 0.05 | 0.03 | 0.37 | 0.38 | 0.26 | 0.14 | 0.25 | 0.11 |
LSD (p = 0.05) | NS | NS | NS | 1.51 | 1.08 | 1.1 | 0.16 | 0.18 | 0.11 | 1.33 | 1.38 | 0.93 | 0.52 | 0.89 | 0.40 |
Fertilization levels | |||||||||||||||
S1: Farmer’s practice | 164.9 | 173.9 | 169.4 | 14.2 | 15.2 | 14.7 | 191.0 | 191.8 | 191.4 | 6.6 | 7.2 | 6.9 | 4.2 | 5.1 | 4.7 |
S2: 50% RDF + biofertilizers | 172.5 | 180.3 | 176.4 | 19.6 | 20.7 | 20.1 | 195.4 | 196.2 | 195.8 | 16.7 | 18.0 | 17.4 | 11.3 | 13.9 | 12.6 |
S3: 75% RDF + biofertilizers | 193.4 | 203.2 | 198.3 | 24.8 | 25.2 | 25.0 | 200.3 | 201.1 | 200.7 | 18.6 | 19.4 | 19.0 | 12.2 | 15.2 | 13.7 |
S4: 100% RDF + biofertilizers | 204.2 ** | 214.1 ** | 209.2 ** | 31.8 ** | 32.1 ** | 32.0 ** | 204.3 ** | 205.1 ** | 204.7 ** | 19.8 ** | 21.0 ** | 20.4 ** | 13.4 ** | 16.5 ** | 14.9 ** |
Mean | 183.8 | 192.9 | 188.3 | 22.6 | 23.3 | 23.0 | 197.8 | 198.5 | 198.2 | 15.4 | 16.4 | 15.9 | 10.3 | 12.7 | 11.5 |
S.Em± | 2.81 | 3.34 | 1.89 | 0.94 | 0.38 | 0.51 | 0.03 | 0.03 | 0.02 | 0.52 | 0.39 | 0.26 | 0.20 | 0.27 | 0.20 |
LSD (p = 0.05) | 8.12 | 9.64 | 5.46 | 2.7 | 1.08 | 1.46 | 0.11 | 0.10 | 0.07 | 1.50 | 1.12 | 0.72 | 0.57 | 0.79 | 0.57 |
Interaction (M × S) | |||||||||||||||
S.Em± | 1.93 | 1.52 | 1.2 | 1.01 | 0.59 | 0.65 | 0.03 | 0.03 | 0.02 | 1.04 | 0.77 | 0.50 | 0.40 | 0.55 | 0.40 |
LSD (p = 0.05) | NS | NS | NS | NS | 1.7 | 1.88 | 0.08 | 0.09 | 0.05 | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nataraja, T.H.; Naika, R.; Shankarappa, S.K.; Reddy, K.V.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; El-Abedin, T.K.Z.; Elansary, H.O.; Abdelbacki, A.M.M. Productivity of Paddies as Influenced by Varied Rates of Recommended Nutrients in Conjunction with Biofertilizers in Local Landraces. Agronomy 2021, 11, 1165. https://doi.org/10.3390/agronomy11061165
Nataraja TH, Naika R, Shankarappa SK, Reddy KV, Abdelmohsen SAM, Al-Harbi FF, El-Abedin TKZ, Elansary HO, Abdelbacki AMM. Productivity of Paddies as Influenced by Varied Rates of Recommended Nutrients in Conjunction with Biofertilizers in Local Landraces. Agronomy. 2021; 11(6):1165. https://doi.org/10.3390/agronomy11061165
Chicago/Turabian StyleNataraja, T. H., Raja Naika, Shashidhar K. Shankarappa, Krishna Viswanatha Reddy, Shaimaa A. M. Abdelmohsen, Fatemah F. Al-Harbi, Tarek K. Zin El-Abedin, Hosam O. Elansary, and Ashraf M. M. Abdelbacki. 2021. "Productivity of Paddies as Influenced by Varied Rates of Recommended Nutrients in Conjunction with Biofertilizers in Local Landraces" Agronomy 11, no. 6: 1165. https://doi.org/10.3390/agronomy11061165
APA StyleNataraja, T. H., Naika, R., Shankarappa, S. K., Reddy, K. V., Abdelmohsen, S. A. M., Al-Harbi, F. F., El-Abedin, T. K. Z., Elansary, H. O., & Abdelbacki, A. M. M. (2021). Productivity of Paddies as Influenced by Varied Rates of Recommended Nutrients in Conjunction with Biofertilizers in Local Landraces. Agronomy, 11(6), 1165. https://doi.org/10.3390/agronomy11061165