Evening Primrose and Rapeseed Yield Components and Grain Oil Concentrations Were Differentially Modulated by the N, P, and K Supplies in a Mediterranean Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Extraction of Seeds Oils and Gas Chromatography (GC) Analysis of Fatty Acid Methyl Esters (FAME)
2.3. Computations and Statistical Analyses
3. Results
3.1. Seed Yield, Yield Components, and Seed Oil Concentration on Yield
3.2. Fatty Acid Composition of the Seed Oil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balch, S.A.; McKenney, C.B.; Auld, D.L. Evaluation of Gamma-linolenic Acid Composition of Evening Primrose (Oenothera) Species Native to Texas. HortScience 2003, 38, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Greiner, S.; Köhl, K. Growing evening primroses (Oenothera). Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef]
- Christie, W.W. The analysis of evening primrose oil. Ind. Crop. Prod. 1999, 10, 73–83. [Google Scholar] [CrossRef]
- Laskoś, K.; Pisulewska, E.; Waligórski, P.; Janowiak, F.; Janeczko, A.; Sadura, I.; Polaszczyk, S.; Czyczyło-Mysza, I.M. Herbal Additives Substantially Modify Antioxidant Properties and Tocopherol Content of Cold-Pressed Oils. Antioxidants 2021, 10, 781. [Google Scholar] [CrossRef]
- Hanczakowski, P.; Szymczyk, B.; Wolski, T. The nutritive value of the residues remaining after oil extraction from seeds of evening primrose (Oenothera biennis L.). J. Sci. Food Agric. 1993, 63, 375–376. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Zuo, G.; Lim, S.S.; Yan, H. Defatted Seeds of Oenothera biennis as a Potential Functional Food Ingredient for Diabetes. Foods 2021, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-C.; Hua, H.-M.; Li, J.; Lapinskas, P. Studies on the cultivation and uses of evening primrose (Oenothera spp.) in China. Econ. Bot. 2001, 55, 83–92. [Google Scholar] [CrossRef]
- Fieldsend, A.F. Agronomic Factors Affecting the Yield of Crops of Evening Primrose (Oenothera spp.). Bul. Univ. Stiint. Agric. Med. Vet. Cluj Napoca Ser. Agric. 2003, 59, 58–63. [Google Scholar]
- Fieldsend, A.F. Low temperature effects on the growth of evening primrose (Oenothera spp.) rosettes. Acta Agron. Hung. 2004, 52, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Giménez, R.; Sorlino, D.M.; Bertero, H.D.; Ploschuk, E.L. Flowering regulation in the facultative biennial Oenothera biennis L.: Environmental effects and their relation to growth rate. Ind. Crop. Prod. 2013, 44, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, F.; Monti, A.; Berti, M.T. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crops Prod. 2013, 50, 580–595. [Google Scholar] [CrossRef]
- Fieldsend, A.F.; Morison, J.I.L. Manipulating light capture and seed yield in winter and spring evening primrose (Oenothera spp.). Asp. Appl. Biol. 1999, 55, 233–240. [Google Scholar]
- Gambino, P.; Vilela, A. Morphological traits and allocation patterns related to stress-tolerance and seed-yield in wild and domesticated evening primrose (Oenothera L. Onagraceae). Ind. Crop. Prod. 2011, 34, 1269–1276. [Google Scholar] [CrossRef]
- Şekeroǧlu, N.; Özgüven, M. Effects of different nitrogen doses and row spacing applications on yield and quality of Oenothera biennis L. grown in irrigated lowland and unirrigated dryland conditions. Turk. J. Agric. For. 2006, 30, 125–136. [Google Scholar]
- Shahbazi, M.; Nematzadeh-Gharakhili, G.; Yamchi, A.; Bagherani, N. Effect of salinity stress on yield, oil quality and expression of delta 6-fatty acid desatutase (D6DES) gene in evening primrose (Oenothera biennis L.). Plant Cell Biotechnol. Mol. Biol. 2018, 19, 148–154. [Google Scholar]
- Said, M.E.-A.; Militello, M.; Saia, S.; Settanni, L.; Aleo, A.; Mammina, C.; Bombarda, I.; Vanloot, P.; Roussel, C.; Dupuy, N. Artemisia arborescens Essential Oil Composition, Enantiomeric Distribution, and Antimicrobial Activity from Different Wild Populations from the Mediterranean Area. Chem. Biodivers. 2016, 13, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Remorini, D.; Saia, S.; Massai, R.; Tonutti, P. Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci. Hortic. 2013, 159, 52–58. [Google Scholar] [CrossRef]
- Drebenstedt, I.; Hart, L.; Poll, C.; Marhan, S.; Kandeler, E.; Böttcher, C.; Meiners, T.; Hartung, J.; Högy, P. Do Soil Warming and Changes in Precipitation Patterns Affect Seed Yield and Seed Quality of Field-Grown Winter Oilseed Rape? Agronomy 2020, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Stobart, R.M.; Simpson, M.J.A. The effect of nitrogen rate on yield and oil content in evening primrose. In Domestication, Production and Utilization of New Crops; Smartt, J., Haq, N., Eds.; International Centre for Underutilised Crops: Southampton, UK, 1997; p. 282. [Google Scholar]
- Ghasemnezhad, A.; Honermeier, B. Yield, oil constituents, and protein content of evening primrose (Oenothera biennis L.) seeds depending on harvest time, harvest method and nitrogen application. Ind. Crop. Prod. 2008, 28, 17–23. [Google Scholar] [CrossRef]
- Ghasemnezhad, A.; Honermeier, B. Effects of Nitrogen and Pre-Harvest Desiccation on Seed Yield and Oil Quality of Evening Primrose (Oenothera biennis L.). J. Med. Plants Prod. 2012, 1, 61–65. [Google Scholar]
- Said-Al Ahl, H.A.H.; Sabra, A.S.; Alzuaibr, F.M.A.; Ramadan, M.F.; Gendy, A.S.H. Growth, yield and fatty acids response of Oenothera biennis to water stress and potassium fertilizer application. Int. J. Pharm. Pharm. Sci. 2016, 8, 77–82. [Google Scholar]
- Yousaf, M.; Li, X.; Ren, T.; Cong, R.; Ata-Ul-Karim, S.T.; Shah, A.N.; Khan, M.J.; Zhang, Z.; Fahad, S.; Lu, J. Response of Nitrogen, Phosphorus and Potassium Fertilization on Productivity and Quality of Winter Rapeseed in Central China. Int. J. Agric. Biol. 2016, 18, 1137–1142. [Google Scholar] [CrossRef]
- Szczepanek, M.; Siwik-Ziomek, A. P and K Accumulation by Rapeseed as Affected by Biostimulant under Different NPK and S Fertilization Doses. Agronomy 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.N.; Wheida, A.; El Nazer, M.; Adel, M.; El Leithy, L.; Siour, G.; Coman, A.; Borbon, A.; Magdy, A.W.; Omar, M.; et al. Past (1950–2017) and future (−2100) temperature and precipitation trends in Egypt. Weather Clim. Extrem. 2019, 26, 100225. [Google Scholar] [CrossRef]
- Jackson, M. Soil Chemical Analysis; Prentice Hall Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plant and Soil; State University Ghent: Ghent, Belgium, 1982. [Google Scholar]
- Bremner, J.M. Total Nitrogen. Soil Sci. Soc. Am. Am. Soc. Agron. 1996, 1085–1121. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS Press: Urbana, IL, USA, 1994. [Google Scholar]
- ISO ISO 12966-2:2017. Animal and vegetable fats and oils—Preparation of methyl esters of fatty acids. Eur. Stand. 2017. Available online: https://www.iso.org/standard/72142.html (accessed on 31 May 2021).
- Giovino, A.; Marino, P.; Domina, G.; Rapisarda, P.; Rizza, G.; Saia, S. Fatty acid composition of the seed lipids of Chamaerops humilis L. natural populations and its relation with the environment. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2015, 149, 767–776. [Google Scholar]
- Schabenberger, O. Introducing the Glimmix Procedure for Generalized Linear Mixed Models. SUGI 196-30 Proc 2005, 1–20. Available online: https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/196-30.pdf (accessed on 31 May 2021).
- Saia, S.; Aissa, E.; Luziatelli, F.; Ruzzi, M.; Colla, G.; Ficca, A.G.; Cardarelli, M.; Rouphael, Y. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 2020, 30, 133–147. [Google Scholar] [CrossRef]
- Amato, G.; Giambalvo, D.; Frenda, A.S.; Mazza, F.; Ruisi, P.; Saia, S.; Di Miceli, G. Sulla (Hedysarum coronarium L.) as Potential Feedstock for Biofuel and Protein. BioEnergy Res. 2016, 9, 711–719. [Google Scholar] [CrossRef]
- Amiri-Darban, N.; Nourmohammadi, G.; Shirani Rad, A.H.; Mirhadi, S.M.J.; Majidi Heravan, I. Potassium sulfate and ammonium sulfate affect quality and quantity of camelina oil grown with different irrigation regimes. Ind. Crop. Prod. 2020, 148, 112308. [Google Scholar] [CrossRef]
- Nazli, R.I.; Tansi, V.; Öztürk, H.H.; Kusvuran, A. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Ind. Crop. Prod. 2018, 125, 9–23. [Google Scholar] [CrossRef]
- Saia, S.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Ruisi, P. Influence of Arbuscular Mycorrhizae on Biomass Production and Nitrogen Fixation of Berseem Clover Plants Subjected to Water Stress. PLoS ONE 2014, 9, e90738. [Google Scholar] [CrossRef] [Green Version]
- Fieldsend, A.F.; Morison, J.I. Contrasting growth and dry matter partitioning in winter and spring evening primrose crops (Oenothera spp.). Field Crop. Res. 2000, 68, 9–20. [Google Scholar] [CrossRef]
- Neupane, D.; Solomon, J.K.Q.; Mclennon, E.; Davison, J.; Lawry, T. Camelina production parameters response to different irrigation regimes. Ind. Crop. Prod. 2020, 148, 112286. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Ramadan, M.F. Oil yield and fatty acid profile of Oenothera biennis as affected by different levels of nitrogen and zinc fertilization. Riv. Ital. Sostanze Grasse 2017, 94, 27–36. [Google Scholar]
- Cheema, M.A.; Malik, M.A.; Hussain, A.; Shah, S.H.; Basra, S.M.A. Effects of Time and Rate of Nitrogen and Phosphorus Application on the Growth and the Seed and Oil Yields of Canola (Brassica napus L.). J. Agron. Crop Sci. 2001, 186, 103–110. [Google Scholar] [CrossRef]
- Porter, M.J.; Pan, W.L.; Schillinger, W.F.; Madsen, I.J.; Sowers, K.E.; Tao, H. Winter canola response to soil and fertilizer nitrogen in semiarid Mediterranean conditions. Agron. J. 2020, 112, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, D.; Kumar, S.; Nleya, T. Nitrogen and sulfur fertilizers effects on growth and yield of Brassica carinata in South Dakota. Agron. J. 2020, 113, 1945–1960. [Google Scholar] [CrossRef]
- Russell, G. Physiological restraints on the economic viability of the evening primrose crop in eastern Scotland. Crop Res. Hortic. Res. 1988, 28, 25–33. [Google Scholar]
- Leach, J.E.; Darby, R.J.; Williams, I.H.; Fitt, B.D.L.; Rawlinson, C.J. Factors affecting growth and yield of winter oilseed rape (Brassica napus L.), 1985–89. J. Agric. Sci. 1994, 122, 405–413. [Google Scholar] [CrossRef]
- Fieldsend, A.F.; Morison, J.I.L. Climatic conditions during seed growth significantly influence oil content and quality in winter and spring evening primrose crops (Oenothera spp.). Ind. Crop. Prod. 2000, 12, 137–147. [Google Scholar] [CrossRef]
- Krol, B.; Berbec, S. Effect of mineral fertilization on development and seed yield of evening primrose. Ann. Univ. Mariae Curie Sklodowska Sect. E Agric. 2004, v. 59, 1731–1737. [Google Scholar]
- Swaefy, H.M.F.; Mohamed, H.F.Y.; Mahmoud, A.A. Response of Oenothera biennis var. grandiflora to different compost levels versus chemical fertilization. Bull. Fac. Agric. Cairo Univ. 2008, 59, 281–294. [Google Scholar]
- Said-Al Ahl, H.A.H.; Mehanna, H.M.; Ramadan, M.F. Impact of water regime and phosphorus fertilization and their interaction on the characteristics of rapeseed (Brassica napus) and fatty acid profile of extracted oil. Commun. Biometry Crop Sci. 2016, 11, 64–76. [Google Scholar]
- Kuai, J.; Sun, Y.; Zuo, Q.; Huang, H.; Liao, Q.; Wu, C.; Lu, J.; Wu, J.; Zhou, G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci. Rep. 2015, 5, 18835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, G.; Li, T.; Zhang, X.; Yu, H.; Huang, H.; Gupta, D.K. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area. J. Hazard. Mater. 2009, 171, 542–550. [Google Scholar] [CrossRef]
- Mohammadi, M.; Modarres-Sanavy, S.A.M.; Pirdashti, H.; Zand, B.; Tahmasebi-Sarvestani, Z. Arbuscular mycorrhizae alleviate water deficit stress and improve antioxidant response, more than nitrogen fixing bacteria or chemical fertilizer in the evening primrose. Rhizosphere 2019, 9, 76–89. [Google Scholar] [CrossRef]
- Saia, S.; Colla, G.; Raimondi, G.; Di Stasio, E.; Cardarelli, M.; Bonini, P.; Vitaglione, P.; De Pascale, S.; Rouphael, Y. An endophytic fungi-based biostimulant modulated lettuce yield, physiological and functional quality responses to both moderate and severe water limitation. Sci. Hortic. 2019, 256, 108595. [Google Scholar] [CrossRef]
- Lazzara, S.; Militello, M.; Carrubba, A.; Napoli, E.; Saia, S. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza 2017, 27, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.A.M.F.; Meawad, A.A.; Noby, M.F.A.; Abdelkader, M.A. Effect of gamma irradiation and potassium fertilization on gridgeth and productivity of borage (Borago officinalis L.) plant. Zagazig J. Agric. Res. 2017, 44, 1601–1613. [Google Scholar]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł.; Zając, T. Biomass Quality of Brassica Oilseed Crops in Response to Sulfur Fertilization. Agron. J. 2015, 107, 1377–1391. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crop. Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Hansel, F.D.; Amado, T.J.C.; Ruiz Diaz, D.A.; Rosso, L.H.M.; Nicoloso, F.T.; Schorr, M. Phosphorus Fertilizer Placement and Tillage Affect Soybean Root Growth and Drought Tolerance. Agron. J. 2017, 109, 2936–2944. [Google Scholar] [CrossRef] [Green Version]
- Saia, S.; Fragasso, M.; De Vita, P.; Beleggia, R. Metabolomics provide valuable insight for the study of durum wheat: A review. J. Agric. Food Chem. 2019, 67, 3069–3085. [Google Scholar] [CrossRef] [PubMed]
- Velasco, L.; Fernández-Martínez, J.M.; De Haro, A. Inheritance of Increased Oleic Acid Concentration in High-Erucic Acid Ethiopian Mustard. Crop Sci. 2003, 43, 106. [Google Scholar] [CrossRef]
- Ecker, R.; Yaniv, Z. Genetic control of fatty acid composition in seed oil of Sinapis alba L. Euphytica 1993, 69, 45–49. [Google Scholar] [CrossRef]
- Heuer, B.; Yaniv, Z.; Ravina, I. Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Ind. Crop. Prod. 2002, 15, 163–167. [Google Scholar] [CrossRef]
Effect | Grain Yield | Yield per Pod | Number of Branches | Number of Pods | Pods per Branch | Plant Height | Oil Concentration in the Seed | Total Oil Yield | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
Sp | 9001 | <0.0001 | 1302 | <0.0001 | 10.9 | 0.0297 | 1339 | <0.0001 | 26.2 | 0.0069 | 785 | <0.0001 | 32,020 | <0.0001 | 12,781 | <0.0001 |
N | 1178 | <0.0001 | 41.4 | <0.0001 | 326 | <0.0001 | 696 | <0.0001 | 58 | <0.0001 | 759 | <0.0001 | 218 | <0.0001 | 1069 | <0.0001 |
Sp × N | 0.21 | 0.6507 | 128 | <0.0001 | 2.22 | 0.1400 | 67 | <0.0001 | 0.11 | 0.7432 | 61.0 | <0.0001 | 9.7 | 0.0026 | 25.1 | <0.0001 |
P | 636 | <0.0001 | 3.80 | 0.0549 | 102 | <0.0001 | 174 | <0.0001 | 21.4 | <0.0001 | 216 | <0.0001 | 127 | <0.0001 | 579 | <0.0001 |
Sp × P | 0.19 | 0.6613 | 22.3 | <0.0001 | 2.22 | 0.1400 | 6.3 | 0.0144 | 1.18 | 0.2810 | 9.1 | 0.0035 | 4.9 | 0.0307 | 13.0 | 0.0006 |
N × P | 37.0 | <0.0001 | 10.6 | 0.0017 | 9.9 | 0.0023 | 0.20 | 0.6596 | 0.25 | 0.6163 | 6.5 | 0.0130 | 0.60 | 0.4393 | 33 | <0.0001 |
Sp × N × P | 16.7 | 0.0001 | 6.6 | 0.0121 | 6.2 | 0.0151 | 4.5 | 0.0367 | 1.03 | 0.3142 | 0.06 | 0.8122 | 2.42 | 0.1241 | 24.1 | <0.0001 |
K | 159 | <0.0001 | 26.6 | <0.0001 | 12.1 | 0.0008 | 7.2 | 0.0092 | 1.63 | 0.2059 | 2.97 | 0.0889 | 28.2 | <0.0001 | 146 | <0.0001 |
Sp × K | 1.70 | 0.1958 | 11.1 | 0.0013 | 0.25 | 0.6206 | 9.3 | 0.0031 | 0.53 | 0.4708 | 2.58 | 0.1125 | 2.84 | 0.0962 | 8.7 | 0.0042 |
N × K | 56.4 | <0.0001 | 16.4 | 0.0001 | 3.32 | 0.0723 | 0.10 | 0.7530 | 0.55 | 0.4612 | 7.3 | 0.0087 | 0.27 | 0.6057 | 50 | <0.0001 |
Sp × N × K | 14.1 | 0.0003 | 26.3 | <0.0001 | 0.25 | 0.6206 | 15.8 | 0.0002 | 0.71 | 0.4030 | 7.1 | 0.0095 | 2.42 | 0.1241 | 23 | <0.0001 |
P × K | 24.4 | <0.0001 | 2.72 | 0.1031 | 1.35 | 0.2497 | 0.61 | 0.4383 | 0.40 | 0.5274 | 7.0 | 0.0097 | 0.02 | 0.8972 | 22 | <0.0001 |
Sp × P × K | 13.1 | 0.0005 | 19.4 | <0.0001 | 1.35 | 0.2497 | 11.8 | 0.0010 | 0.01 | 0.9034 | 11.6 | 0.0011 | 2.84 | 0.0962 | 18.0 | <0.0001 |
N × P × K | 190 | <0.0001 | 0.56 | 0.4579 | 12.1 | 0.0008 | 67 | <0.0001 | 0.11 | 0.7437 | 32.1 | <0.0001 | 15.1 | 0.0002 | 158 | <0.0001 |
Sp × N × P × K | 6.7 | 0.0118 | 5.9 | 0.0179 | 0.69 | 0.4100 | 0.28 | 0.6001 | 0.36 | 0.5514 | 0.75 | 0.3905 | 5.4 | 0.0224 | 0.15 | 0.7030 |
Grain Yield | Yield per Pod | Number of Branches | Number of Pods | Pods per Branch | Plant Height | Oil Concentration in the Seed | Total Oil Yield | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
[kg seed ha−1] | [mg seed pod−1] | [n brances plant−1] | [n pods m−2] | [n pods n branc−1] | [cm] | [kg oil (100 kg seed−1)] | [kg oil ha−1] | ||||
Evening Primrose | No N | No P | No K | 538 ± 8 | 59.95 ± 1.96 | 2.50 ± 0.22 | 901.3 ± 25.3 | 23.3 ± 2.3 | 64.9 ± 1.3 | 24.13 ± 0.02 | 130 ± 2 |
With K | 760 ± 7 | 60.78 ± 1.34 | 3.17 ± 0.17 | 1252.1 ± 24.3 | 24.8 ± 1.4 | 68.8 ± 0.6 | 24.32 ± 0.06 | 185 ± 2 | |||
With P | No K | 845 ± 5 | 65.53 ± 0.72 | 3.83 ± 0.17 | 1289.8 ± 13.0 | 21.0 ± 1.1 | 71.8 ± 0.5 | 24.53 ± 0.03 | 207 ± 1 | ||
With K | 827 ± 18 | 65.77 ± 1.98 | 3.83 ± 0.31 | 1260.2 ± 26.6 | 21.0 ± 1.9 | 71.4 ± 0.7 | 24.73 ± 0.08 | 205 ± 5 | |||
With N | No P | No K | 923 ± 8 | 65.44 ± 0.68 | 4.67 ± 0.21 | 1411.3 ± 20.7 | 18.9 ± 1.0 | 76.5 ± 0.7 | 24.70 ± 0.04 | 228 ± 2 | |
With K | 872 ± 8 | 63.28 ± 0.56 | 5.00 ± 0.45 | 1378.9 ± 16.9 | 17.7 ± 1.5 | 75.3 ± 1.4 | 24.85 ± 0.03 | 217 ± 2 | |||
With P | No K | 981 ± 9 | 65.49 ± 0.86 | 5.50 ± 0.22 | 1500.3 ± 30.0 | 17.0 ± 0.9 | 81.3 ± 1.4 | 25.05 ± 0.13 | 246 ± 2 | ||
With K | 1134 ± 13 | 71.85 ± 0.35 | 6.50 ± 0.22 | 1578.6 ± 16.6 | 15.1 ± 0.6 | 86.0 ± 1.3 | 25.42 ± 0.10 | 288 ± 2 | |||
Rapeseed | No N | No P | No K | 1502 ± 7 | 88.09 ± 1.73 | 3.33 ± 0.21 | 1708.1 ± 32.0 | 32.3 ± 2.3 | 83.8 ± 1.5 | 33.95 ± 0.07 | 510 ± 2 |
With K | 1806 ± 27 | 103.95 ± 1.98 | 3.67 ± 0.33 | 1740.5 ± 42.2 | 30.5 ± 2.7 | 87.8 ± 0.7 | 34.38 ± 0.04 | 621 ± 9 | |||
With P | No K | 1872 ± 12 | 93.44 ± 2.98 | 4.33 ± 0.21 | 2015.7 ± 75.7 | 29.0 ± 1.4 | 98.8 ± 1.0 | 34.57 ± 0.04 | 647 ± 4 | ||
With K | 1909 ± 23 | 102.99 ± 0.72 | 4.17 ± 0.17 | 1853.8 ± 25.7 | 27.7 ± 1.2 | 89.3 ± 1.4 | 34.50 ± 0.06 | 659 ± 9 | |||
With N | No P | No K | 1952 ± 10 | 84.91 ± 1.34 | 5.33 ± 0.21 | 2301.7 ± 37.5 | 26.9 ± 1.2 | 102.1 ± 0.9 | 34.67 ± 0.07 | 677 ± 3 | |
With K | 1952 ± 10 | 89.97 ± 1.31 | 5.17 ± 0.31 | 2172.2 ± 37.5 | 26.5 ± 2.0 | 104.8 ± 1.5 | 34.57 ± 0.09 | 675 ± 5 | |||
With P | No K | 2033 ± 15 | 84.29 ± 0.72 | 6.67 ± 0.33 | 2412.4 ± 20.0 | 22.6 ± 1.1 | 112.5 ± 1.6 | 34.73 ± 0.08 | 706 ± 6 | ||
With K | 2069 ± 20 | 78.23 ± 1.51 | 8.17 ± 0.31 | 2647.1 ± 34.4 | 20.2 ± 0.8 | 115.7 ± 1.0 | 34.93 ± 0.06 | 723 ± 8 |
Effect | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C20:1 | C22:0 | C24:0 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
Sp | 4589 | <0.0001 | n.a.* | n.a. | 2073 | <0.0001 | 9 × 105 | <0.0001 | 1 × 106 | <0.0001 | 972 | <0.0001 | 156 | <0.0001 | 397 | 0.0003 | 571 | <0.0001 | n.a. | n.a. |
N | 4.0 | 0.05 | 2.36 | 0.13 | 4.5 | 0.04 | 0.90 | 0.35 | 0.53 | 0.47 | 1.06 | 0.31 | 0.08 | 0.78 | 0.16 | 0.69 | 0.09 | 0.77 | 0.00 | 0.96 |
Sp × N | 3.09 | 0.08 | n.a. | n.a. | 0.08 | 0.78 | 0.88 | 0.35 | 0.44 | 0.51 | 0.89 | 0.35 | 0.00 | 0.96 | 1.26 | 0.26 | 0.12 | 0.73 | n.a. | n.a. |
P | 0.73 | 0.40 | 0.02 | 0.90 | 0.60 | 0.44 | 1.24 | 0.27 | 2.48 | 0.12 | 0.64 | 0.43 | 0.03 | 0.87 | 0.11 | 0.74 | 0.04 | 0.85 | 0.05 | 0.83 |
Sp × P | 0.45 | 0.50 | n.a. | n.a. | 0.87 | 0.36 | 3.00 | 0.09 | 3.10 | 0.08 | 0.84 | 0.36 | 0.25 | 0.62 | 0.02 | 0.90 | 1.46 | 0.23 | n.a. | n.a. |
N × P | 0.95 | 0.33 | 0.02 | 0.90 | 2.82 | 0.10 | 0.39 | 0.54 | 1.62 | 0.21 | 0.17 | 0.68 | 1.13 | 0.29 | 0.32 | 0.57 | 0.78 | 0.38 | 0.60 | 0.44 |
Sp × N × P | 0.00 | 0.99 | n.a. | n.a. | 2.11 | 0.15 | 1.85 | 0.18 | 0.62 | 0.43 | 0.57 | 0.45 | 2.08 | 0.15 | 0.30 | 0.59 | 1.87 | 0.18 | n.a. | n.a. |
K | 0.09 | 0.77 | 0.72 | 0.40 | 0.06 | 0.80 | 0.04 | 0.84 | 0.00 | 0.97 | 0.01 | 0.94 | 0.15 | 0.70 | 0.70 | 0.41 | 0.88 | 0.35 | 0.44 | 0.51 |
Sp × K | 0.32 | 0.57 | n.a. | n.a. | 0.30 | 0.59 | 0.25 | 0.62 | 0.22 | 0.64 | 1.48 | 0.23 | 0.14 | 0.71 | 0.26 | 0.61 | 0.21 | 0.65 | n.a. | n.a. |
N × K | 1.26 | 0.26 | 1.47 | 0.23 | 0.17 | 0.68 | 0.24 | 0.63 | 0.91 | 0.34 | 1.58 | 0.21 | 1.33 | 0.25 | 1.10 | 0.30 | 0.02 | 0.89 | 0.44 | 0.51 |
Sp × N × K | 0.37 | 0.54 | n.a. | n.a. | 0.07 | 0.79 | 0.45 | 0.50 | 0.51 | 0.48 | 1.18 | 0.28 | 0.41 | 0.53 | 2.00 | 0.16 | 0.00 | 0.98 | n.a. | n.a. |
P × K | 1.95 | 0.17 | 0.01 | 0.93 | 0.08 | 0.78 | 0.02 | 0.88 | 0.61 | 0.44 | 0.21 | 0.65 | 0.56 | 0.46 | 0.00 | 0.99 | 0.04 | 0.85 | 0.15 | 0.70 |
Sp × P × K | 2.98 | 0.09 | n.a. | n.a. | 0.02 | 0.90 | 0.03 | 0.87 | 1.15 | 0.29 | 0.43 | 0.51 | 0.09 | 0.76 | 0.91 | 0.34 | 0.06 | 0.81 | n.a. | n.a. |
N × P × K | 0.98 | 0.33 | 0.50 | 0.49 | 0.20 | 0.66 | 0.01 | 0.91 | 0.08 | 0.78 | 1.69 | 0.20 | 2.15 | 0.15 | 0.04 | 0.84 | 0.00 | 0.98 | 0.69 | 0.41 |
Sp × N × P × K | 0.17 | 0.68 | n.a. | n.a. | 1.55 | 0.22 | 4.8 | 0.031 | 0.57 | 0.45 | 2.43 | 0.12 | 2.63 | 0.11 | 0.52 | 0.47 | 0.06 | 0.81 | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sany, H.; Said-Al Ahl, H.A.H.; Pari, L.; Sabra, A.S.; Ramadan, M.F.; Saia, S. Evening Primrose and Rapeseed Yield Components and Grain Oil Concentrations Were Differentially Modulated by the N, P, and K Supplies in a Mediterranean Area. Agronomy 2021, 11, 1271. https://doi.org/10.3390/agronomy11071271
Sany H, Said-Al Ahl HAH, Pari L, Sabra AS, Ramadan MF, Saia S. Evening Primrose and Rapeseed Yield Components and Grain Oil Concentrations Were Differentially Modulated by the N, P, and K Supplies in a Mediterranean Area. Agronomy. 2021; 11(7):1271. https://doi.org/10.3390/agronomy11071271
Chicago/Turabian StyleSany, Hoda, Hussein A. H. Said-Al Ahl, Luigi Pari, Ali S. Sabra, Mohamed F. Ramadan, and Sergio Saia. 2021. "Evening Primrose and Rapeseed Yield Components and Grain Oil Concentrations Were Differentially Modulated by the N, P, and K Supplies in a Mediterranean Area" Agronomy 11, no. 7: 1271. https://doi.org/10.3390/agronomy11071271
APA StyleSany, H., Said-Al Ahl, H. A. H., Pari, L., Sabra, A. S., Ramadan, M. F., & Saia, S. (2021). Evening Primrose and Rapeseed Yield Components and Grain Oil Concentrations Were Differentially Modulated by the N, P, and K Supplies in a Mediterranean Area. Agronomy, 11(7), 1271. https://doi.org/10.3390/agronomy11071271