Grain Yield and Quality Traits of Durum Wheat (Triticum durum Desf.) Treated with Seaweed- and Humic Acid-Based Biostimulants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locality Description and Climate Characteristics
2.2. Plant Material
2.3. Foliar Fertilizers Based on Bioactive Compounds Characterisation
2.4. Preparation of Field Experiment and Treatments
2.5. Harvesting and Laboratory Analysis of Samples
2.6. Statistical Analysis Methods
3. Results
3.1. Weather Conditions in Experimental Years
3.2. Impact of the Foliar Bioactive Substances Treatment on Grain Yield and Quality Traits
3.3. Interactions between Experimental Factors
3.3.1. Biofertilization x Weather Conditions (BW)
3.3.2. Biofertilization x Variety (BV)
3.3.3. Biofertilization x Variety x Weather Conditions (BVW)
3.4. Correlation Analysis for Production Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassoun, G.; Motzo, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Food Agric. 2018, 99, 2059–2067. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 June 2021).
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Bellido, L.; Fuentes, M.; Castillo, J.E.; Lopez-Garrido, F.J.; Fernandez, E.J. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yieldunder rain-fed Mediterranean conditions. Agron. J. 1996, 88, 783–791. [Google Scholar] [CrossRef]
- Ames, N.P.; Clarke, J.M.; Marchylo, B.A.; Dexter, J.E.; Woods, S.M. Effect of Environment and Genotype on Durum Wheat Gluten Strength and Pasta Viscoelasticity. Cereal Chem. 1999, 76, 582–586. [Google Scholar] [CrossRef]
- Laurent, E.-A.; Ahmed, N.; Durieu, C.; Grieu, P.; Lamaze, T. Marine and fungal biostimulants improve grain yield, nitrogen absorption and allocation in durum wheat platns. J. Agric. Sci. 2020, 158, 279–287. [Google Scholar] [CrossRef]
- Adams, R.M.; Hurd, B.H.; Lenhart, S.; Leary, N. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Kiliç, H.; Yagbasanlar, T. The Effect of Drought Stress on Grain Yield, Yield Components and some Quality Traits of Durum Wheat (Triticum turgidum ssp. durum) Cultivars. Not. Bot. Horti. Agrobot. Cluj-Napoca 2010, 38, 164–170. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P.; et al. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2011, 15, 136–144. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; 2018; in press. [Google Scholar]
- Delfine, S.; Tognetti, R.; Desiderio, E.; Alvino, A. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustain. Dev. 2005, 25, 183–191. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant Biostimulant Regulatory Framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Katsenios, N.; Chanioti, S.; Giannoglou, M.; Djordjevic, N.; Katsaros, G. Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Sci. Rep. 2020, 10, 21060. [Google Scholar] [CrossRef]
- Rehman, H.U.; Alharby, H.F.; Alzahrani, Y.; Rady, M.M. Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil. Plant Physiol. Biochem. 2018, 126, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, G.L.; Kneivel, D.P.; Watschke, T.L. Effects of a Biostimulant on the Heat Tolerance Associated with Photosynthetic Capacity, Membrane Thermostability, and Polyphenol Production of Perennial Ryegrass. Crop Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Latique, S.; Elouaer, M.A.; Halima, C.; Chérif, H.; Mimoun, E.K. Alleviation of Salt Stress in Durum Wheat (Triticum durum L.) Seedlings Through the Application of Liquid Seaweed Extracts of Fucus spiralis. Commun. Soil Sci. Plant Anal. 2017, 48, 2582–2593. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2013, 26, 465–490. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Schiavon, M.; Ertani, A.; Nardi, S. Effects of an Alfalfa Protein Hydrolysate on the Gene Expression and Activity of Enzymes of the Tricarboxylic Acid (TCA) Cycle and Nitrogen Metabolism in Zea mays L. J. Agric. Food Chem. 2008, 56, 11800–11808. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Francioso, O.; Ertani, A.; Muscolo, A.; Nardi, S. Isopentenyladenosine and cytokinin-like activity of different humic substances. J. Geochem. Explor. 2013, 129, 70–75. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Polienko, E.A.; Gorovtsov, A.V.; Lyhman, V.A.; Pavlov, P.D. The effect of humic substances on winter wheat yield and fertility of ordinary chernozem. Ann. Agrar. Sci. 2017, 15, 239–242. [Google Scholar] [CrossRef]
- Blum, A.; Shpiler, L.; Golan, G.; Mayer, J. Yield stability and canopy temperature of wheat genotypes under drought-stress. Field Crop. Res. 1989, 22, 289–296. [Google Scholar] [CrossRef]
- Lin, C.S.; Binns, M.R. Genetic properties of four types of stability parameter. Theor. Appl. Genet. 1991, 82, 505–509. [Google Scholar] [CrossRef]
- De Vita, P.; Li Destri Nicosia, O.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Royo, C.; Álvaro, F.; Martos, V.; Ramdani, A.; Isidro, J.; Villegas, D.; García del Mortal, L.F. Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century. Euphytica 2007, 155, 259–270. [Google Scholar] [CrossRef]
- Álvaro, F.; Isidro, J.; Villegas, D.; García del Mortal, L.F.; Royo, C. Breeding Effects on Grain Filling, Biomass Partitioning, and Remobilization in Mediterranean Durum Wheat. Agron. J. 2008, 100, 361–370. [Google Scholar] [CrossRef]
- De Vita, P.; Mastrangelo, A.M.; Matteu, L.; Mazzucotelli, E.; Virzí, N.; Palumbo, M.; Lo Storto, M.; Rizza, F.; Cattivelli, L. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crop. Res. 2010, 119, 68–77. [Google Scholar] [CrossRef]
- Nachit, M.M. Durum wheat breeding for Mediterranean dryland of North Africa and West Asia. In Durum Wheats: “Challenges and Opportunities”; Rajram, S., Saari, E.E., Hetel, G.P., Eds.; CIMMYT: Syria, 1992. [Google Scholar]
- Koch, F.C.; McMeekin, T.L. A new direct nesslerization Micro-Kjeldahl method and a modification of the Nessler-folin reagent for ammonia. J. Am. Chem. Soc. 1924, 46, 2066–2069. [Google Scholar] [CrossRef]
- Panáková, Z.; Slamka, P.; Ložek, O. Effect of nitrification inhibitors on the content of available nitrogen forms in the soil under maize (Zea mays, L.) growing. J. Cent. Eur. Agric. 2016, 17, 1013–1032. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Saa, S.; Olivos-Del Rio, A.; Castro, S.; Brown, P.H. Foliar application of microbial and plant based biostimulants increased growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Front. Plant Sci. 2015, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, P.R.; McNeil, S.G.; Manu, M.; Bosomtwe, A.; Danso, J.K.; Osekre, E.; Opit, G. Development and evaluation of a low-cost probe-type instrument to measure the equilibrium moisture content of grain. Appl. Eng. Agric. 2017, 33, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Büyük, F.; Sayaslan, A.; Gökmen, S.; Şahin, N.; Yetim, H. Effects of different flour blends with varying protein content and quality on dough and crust properties of “etliekmek”, a pizza-like traditional food of Turkey. J. Food Sci. Technol. 2020, 57, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Kožnar, V.; Klabzuba, J. Recommendation of World Meteorological Organization to describing meteorological or climatological conditions. Rostl. výroba 2002, 48, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extract as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulute. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Ercoli, L.; Lulli, L.; Arduini, I.; Mariotti, M.; Masoni, A. Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. Eur. J. Agron. 2011, 35, 63–70. [Google Scholar] [CrossRef]
- Ercoli, L.; Arduini, I.; Mariotti, M.; Lulli, L.; Masoni, A. Management of Sulphur fertilizer to improve durum wheat production and minimize S leaching. Eur. J. Agron. 2012, 38, 74–82. [Google Scholar] [CrossRef]
- El-Sirafy, Z.M.; Woodard, H.J.; El-Norjar, E.M. Contribution of Biofertilizers and Fertilizer Nitrogen to Nutrient Uptake and Yield of Egyptian Winter Wheat. J. Plant Nutr. 2006, 29, 587–599. [Google Scholar] [CrossRef]
- Narimani, H.; Rahimi, M.M.; Ahmadikhah, A.; Vaezi, B. Study on the effects of foliar spray of micronutrient on yield and yield components of durum wheat. Arch. Appl. Sci. Res. 2010, 2, 168–176. [Google Scholar]
- Salim, B.B.M. Influence of biochar and seaweed extract applications on growth, yield and mineral composition of wheat (Triticum aestivum L.) under sandy soil conditions. Ann. Agric. Sci. 2016, 61, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Knapowski, T.; Barczak, B.; Kozera, W.; Wszelaczyńska, E.; Pobereźny, J. Crop stimulants as a factor determining the yield and quality of winter wheat grown in Notec Valley, Poland. Curr. Sci. 2016, 116, 1009–1015. [Google Scholar] [CrossRef]
- Rašovsky, M.; Pačuta, V. Influence of selected agrotechnical measures and climate conditions on root yield and digestion of sugar beet. J. Cent. Eur. Agric. 2016, 17, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Dal Cortivo, C.; Ferrari, M.; Visioli, G.; Lauro, M.; Fomasier, F.; Barion, G.; Panozzo, A.; Vamerali, T. Effect of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field. Front. Plant Sci. 2020, 11, 72. [Google Scholar] [CrossRef] [Green Version]
- Behera, U.K.; Rautaray, S.K. Effect of biofertilizers and chemical fertilizers on productivity and quality parameters of durum wheat (Triticum turgidum) on a Vertisol of Central India. Arch. Agron. Soil Sci. 2010, 56, 65–72. [Google Scholar] [CrossRef]
- Brower, C.; Heibloem, M. Training Manual, 3rd ed.; FAO: Rome, Italy, 1986. [Google Scholar]
- Trnka, M.; Rötter, R.P.; Riuz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Trivedi, K.; Anand, K.G.V.; Ghosh, A. Science behind biostimulant action of seaweed extract on growth and crop yield: Insight into transcriptional changes in roots of maize treated with Kappaphycus alvarezii seaweed extract under soil moisture stressed conditions. J. Appl. Phycol. 2020, 32, 599–613. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Tahir, M.M.; Khurshid, M.; Khan, M.Z.; Abbasi, M.K.; Kazmi, M.H. Lignite-Derived Humic Acid Effect on Growth of Wheat Plants in Different Soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Dalal, A.; Bourstein, R.; Haish, N.; Shenhar, I.; Wallach, R.; Moshelion, M. Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated With “Productivity-Enhancing” and “Survivability-Enhancing” Biostimulants. Front. Plant Sci. 2019, 10, 905. [Google Scholar] [CrossRef] [Green Version]
- Fois, S.; Schlichting, L.; Marchylo, B.; Dexter, J.; Motzo, R.; Giunta, F. Environmental conditions affect semolina quality in durum wheat (Triticum turgidum ssp durum L.) cultivars with different gluten strength and gluten protein composition. J. Sci. Food Agric. 2019, 91, 2664–2673. [Google Scholar] [CrossRef]
- Edwards, N.M.; Gianibelli, M.C.; McCaig, T.N.; Clarke, J.M.; Ames, N.P.; Larroque, O.R.; Dexter, J.E. Relationships between dough strength, polymeric protein quantity and composition for diverse durum wheat genotypes. J. Cereal Sci. 2007, 45, 140–149. [Google Scholar] [CrossRef]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of water deficit on durum wheat storage protein composition and technological quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- Don, C.; Lookhart, G.; Naeem, H.; MacRitchie, F.; Hamer, R.J. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. J. Cereal Sci. 2005, 42, 69–80. [Google Scholar] [CrossRef]
- Beltrano, J.; Ronco, M.G. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Braz. J. Plant Physiol. 2008, 20, 29–37. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Kefauver, S.C.; Elazab, A.; Nieto-Taladriz, M.T.; Araus, J.L. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions. Crop J. 2015, 3, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Kibite, S.; Evans, L.E. Causes of negative correlations between grain yield and grain protein concentration in common wheat. Euphytica 1984, 33, 801–810. [Google Scholar] [CrossRef]
- Oury, F.-X.; Godin, C. Yield and grain protein concentration in bread wheat: How to use the negative relationship between the two characters to identify favourable genotypes? Euphytica 2007, 157, 45–57. [Google Scholar] [CrossRef]
- Bogard, M.; Allard, V.; Brancourt-Hulmel, M.; Heumez, E.; Machet, J.-M.; Jeuffroy, M.-H.; Gate, P.; Martre, P.; Le Gouis, J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J. Exp. Bot. 2010, 61, 4303–4312. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Hulanicki, P.S.; Sokolski, M.; Hulanicky, P.; Dubis, B. Yield and quality of winter wheat (Triticum aestivum L.) in response to different systems of foliar fertilization. J. Elem. 2016, 21, 715–728. [Google Scholar] [CrossRef]
- Janczak-Pieniazek, M.; Buczek, J.; Kaszuba, J.; Szpunar-Krok, E.; Bobrecka-Jamro, D.; Jaworska, G. A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars. Appl. Sci. Basel 2020, 10, 7104. [Google Scholar] [CrossRef]
- Blandino, M.; Pilati, A.; Reyneri, A. Effect of foliar treatments to durum wheat on flag leaf senescence, grain yield, quality and deoxynivalenol contamination in North Italy. Field Crop. Res. 2009, 114, 214–222. [Google Scholar] [CrossRef]
- Ložek, O.; Fecenko, J.; Mazur, B.; Mazur, K. The effect of foliar application of humate on wheat grain yield and quality. Rostl. Výroba 1997, 43, 37–41. [Google Scholar]
- Rao, A.C.S.; Smith, J.L.; Jandhyala, V.K.; Papendick, R.I.; Parr, J.F. Cultivar and Climatic Effects on the Protein Content of Soft White Winter Wheat. Agron. J. 1993, 85, 1023–1028. [Google Scholar] [CrossRef]
- Dupont, F.M.; Hurkman, W.J.; Vensel, W.H.; Tanaka, C.; Kothari, K.M.; Chung, O.K.; Altenbach, S.B. Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature. Eur. J. Agron. 2006, 25, 96–107. [Google Scholar] [CrossRef]
- Pompa, M.; Giuliani, M.M.; Giuzio, L.; Gagliardi, A.; Di Fonzo, N.; Flagella, Z. Effect of sulphur fertilization on grain quality and protein composition of Durum Wheat (Triticum durum Desf.). Ital. J. Agron. 2009, 4, 159–170. [Google Scholar] [CrossRef]
- Simmonds, N.W. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 1995, 67, 309–315. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of Genotype, Growing Season and Nitrogen Level on Gluten Protein Assembly of Durum Wheat Grown under Mediterranean Conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Michel, S.; Löschenberger, F.; Ametz, C.; Pachler, B.; Sparry, E.; Bürstmayr, H. Combining grain yield, protein content and protein quality by multi-trait genomic selection in bread wheat. Theor. Appl. Genet. 2019, 132, 2767–2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Nunez, V.; Garcia del Moral, L.F. Durum wheat quality in Mediterranean environments II. Influence of climatic variables and relationships between quality parameters. Field Crop. Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Sci. Rep. 2020, 10, 17759. [Google Scholar] [CrossRef]
- Le Mire, G.; Nguyen, M.L.; Fassotte, B.; Du Jardin, P.; Verheggen, F.; Delaplace, P.; Jijakli, M.H. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 299–313. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
Year/Soil Depth | Nutrient Content (mg kg−1) | |||
---|---|---|---|---|
Nan | P | K | Mg | |
2016/0.3 m | 17.66 | 56.31 | 122.70 | 270.05 |
2017/0.3 m | 22.10 | 45.28 | 119.98 | 290.23 |
Source of Variation | Production Components | |||||
---|---|---|---|---|---|---|
GY | PC | V | FN | BD | GC | |
p-Values | ||||||
W | 0.0000 ** | 0.0000 ** | 0.0000 ** | 0.0000 ** | 0.0360 * | 0.0000 ** |
V | 0.0000 ** | 0.0061 ** | 0.0000 ** | 0.0001 ** | 0.0000 ** | 0.0000 ** |
B | 0.0000 ** | 0.2505 | 0.9131 | 0.8173 | 0.6405 | 0.8771 |
B x W | 0.0000 ** | 0.2923 | 0.8637 | 0.1280 | 0.6880 | 0.9020 |
B x V | 0.0166 * | 0.0000 ** | 0.0355 * | 0.0006 ** | 0.0641 | 0.0021 ** |
B x W x V | 0.0000 ** | 0.0002 ** | 0.8380 | 0.3285 | 0.0014 ** | 0.0000 ** |
V0 | V1 | V2 | |
---|---|---|---|
Grain yield (GY) (t ha−1) ** | 3.80 ± 1.83 b | 4.00 ± 1.82 a | 4.03 ± 1.62 a |
Protein content (PC) (%) ** | 15.64 ± 1.20 a | 15.78 ± 1.14 a | 15.86 ± 1.50 a |
Vitreousness (V) (%) ** | 87.22 ± 4.52 a | 87.17 ± 4.25 a | 87.39 ± 5.25 a |
Falling number (FN) (s) ** | 346.56 ± 63.37 a | 347.17 ± 58.02 a | 343.06 ± 56.86 a |
Bulk density (BD) (g l−1) ** | 784.06 ± 33.50 a | 789.22 ± 15.78 a | 785.44 ± 28.88 a |
Gluten content (GC) (%) ** | 34.51 ± 2.91 a | 34.47 ± 3.09 a | 34.67 ± 3.99 a |
Interaction | GY (t ha−1) | PC (%) | V (%) | FN (s) | BD (g l−1) | GC (%) | |
---|---|---|---|---|---|---|---|
B x W | |||||||
2017 | V0 | 2.10 b | 16.70 b | 91.00 b | 401.33 b | 779.11 a | 37.14 b |
V1 | 2.29 c | 16.66 b | 90.67 b | 388.44 b | 786.56 a | 37.03 b | |
V2 | 2.55 d | 16.74 b | 91.11 b | 396.00 b | 777.89 a | 37.12 b | |
2018 | V0 | 5.51 a | 14.58 a | 83.44 a | 291.78 a | 789.00 a | 31.87 a |
V1 | 5.70 e | 14.91 a | 83.67 a | 305.89 a | 791.89 a | 31.91 a | |
V2 | 5.50 a | 14.98 a | 83.67 a | 290.11 a | 793.00 a | 32.21 a | |
B x V | GY (t ha−1) | PC (%) | V (%) | FN (s) | BD (g l−1) | GC (%) | |
Elsadur | V0 | 3.62 b | 15.80 ab | 84.83 ab | 344.67 ab | 752.50 b | 34.49 bcd |
V1 | 3.87 c | 15.35 a | 85.17 ab | 310.50 a | 776.50 abc | 33.03 ab | |
V2 | 3.82 c | 15.48 a | 84.00 b | 333.00 a | 770.50 ab | 33.30 abc | |
Lunadur | V0 | 4.45 e | 15.55 a | 87.33 ab | 354.17 ab | 812.00 de | 33.59 abc |
V1 | 4.57 f | 16.25 bc | 88.83 ab | 392.67 b | 806.83 cde | 34.55 cd | |
V2 | 4.76 g | 15.40 a | 88.17 ab | 344.83 ab | 815.50 e | 32.98 a | |
Auradur | V0 | 3.35 d | 15.57 a | 89.50 a | 340.83 ab | 787.67 cde | 35.44 d |
V1 | 3.54 ab | 15.75 ab | 87.50 ab | 338.33 a | 784.33 cd | 35.85 d | |
V2 | 3.51 a | 16.70 c | 90.00 a | 351.33 ab | 770.33 ab | 37.72 e |
Auradur | Elsadur | Lunadur | |
---|---|---|---|
Grain yield (GY) (t ha−1) ** | 3.47 ± 1.51 a | 3.77 ± 1.80 b | 4.59 ± 1.74 c |
Protein content (PC) (%) ** | 16.01 ± 1.98 b | 15.54 ± 0.57 a | 15.73 ± 0.80 ab |
Vitreousness (V) (%) ** | 89.00 ± 4.65 a | 84.67 ± 2.70 b | 88.11 ± 5.10 a |
Falling number (FN) (s) ** | 343.50 ± 67.83 ab | 329.39 ± 55.27 a | 363.89 ± 48.29 b |
Bulk density (BD) (g l−1) ** | 780.78 ± 18.64 a | 766.50 ± 26.21 a | 811.44 ± 8.33 b |
Gluten content (GC) (%) ** | 36.34 ± 4.29 b | 33.61 ± 1.77 a | 33.71 ± 2.70 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pačuta, V.; Rašovský, M.; Michalska-Klimczak, B.; Wyszyňski, Z. Grain Yield and Quality Traits of Durum Wheat (Triticum durum Desf.) Treated with Seaweed- and Humic Acid-Based Biostimulants. Agronomy 2021, 11, 1270. https://doi.org/10.3390/agronomy11071270
Pačuta V, Rašovský M, Michalska-Klimczak B, Wyszyňski Z. Grain Yield and Quality Traits of Durum Wheat (Triticum durum Desf.) Treated with Seaweed- and Humic Acid-Based Biostimulants. Agronomy. 2021; 11(7):1270. https://doi.org/10.3390/agronomy11071270
Chicago/Turabian StylePačuta, Vladimír, Marek Rašovský, Beata Michalska-Klimczak, and Zdzislaw Wyszyňski. 2021. "Grain Yield and Quality Traits of Durum Wheat (Triticum durum Desf.) Treated with Seaweed- and Humic Acid-Based Biostimulants" Agronomy 11, no. 7: 1270. https://doi.org/10.3390/agronomy11071270
APA StylePačuta, V., Rašovský, M., Michalska-Klimczak, B., & Wyszyňski, Z. (2021). Grain Yield and Quality Traits of Durum Wheat (Triticum durum Desf.) Treated with Seaweed- and Humic Acid-Based Biostimulants. Agronomy, 11(7), 1270. https://doi.org/10.3390/agronomy11071270