Net Energy Balance and Fuel Quality of an Alley Cropping System Combining Grassland and Willow: Results of the 2nd Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Site and the Agronomic Systems
2.2. Experimental Design and Cultivation Measures
2.3. Assessment of Aboveground Biomass
2.4. Conversion Technologies
2.4.1. Combustion of Hay (CH)
2.4.2. Integrated Generation of Solid Fuel and Biogas from Biomass (IFBB)
2.4.3. Whole Crop Digestion (WCD)
2.4.4. Combustion of Willow Wood Chips (CW)
2.5. Chemical Biomass Analyses
2.6. Energy Balance
2.7. Statistics
3. Results and Discussion
3.1. Methane Yields
3.2. Fuel Quality
3.3. Net Energy Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. United Nations Framework Convention on Climate Change: UNFCCC. Available online: https://unfccc.int/sites/default/files/convention_text_with_annexes_english_for_posting.pdf (accessed on 15 May 2019).
- UNFCCC. Adoption of the Paris Agreement—Paris Agreement Text English. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 12 July 2019).
- Elzen, M.D.; Fekete, H.; Fransen, T.; Höhne, N.; Meinshausen, M.; Riahi, K.; Rogelj, J.; Schaeffer, R.; Sha, F.; Winkler, H. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A.; et al. Bioenergy and climate change mitigation: An assessment. GCB Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, D.J.; Verweij, P.A.; van der Hilst, F.; Faaij, A.P.C. Biodiversity impacts of bioenergy crop production: A state-of-the-art review. GCB Bioenergy 2014, 6, 183–209. [Google Scholar] [CrossRef] [Green Version]
- Pugesgaard, S.; Schelde, K.; Larsen, S.U.; Laerke, P.E.; Jørgensen, U. Comparing annual and perennial crops for bioenergy production—Influence on nitrate leaching and energy balance. GCB Bioenergy 2015, 7, 1136–1149. [Google Scholar] [CrossRef]
- Gregg, J.S.; Izaurralde, R.C. Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: Trade-offs for a sustainable bioenergy feedstock. Biofuels 2010, 1, 69–83. [Google Scholar] [CrossRef]
- Rathmann, R.; Szklo, A.; Schaeffer, R. Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renew. Energy 2010, 35, 14–22. [Google Scholar] [CrossRef]
- Buchholz, T.; Luzadis, V.A.; Volk, T.A. Sustainability criteria for bioenergy systems: Results from an expert survey. J. Clean. Prod. 2009, 17, S86–S98. [Google Scholar] [CrossRef]
- Mitchell, C.; Stevens, E.; Watters, M. Short-rotation forestry–operations, productivity and costs based on experience gained in the UK. For. Ecol. Manag. 1999, 121, 123–136. [Google Scholar] [CrossRef]
- Di Nasso, O.N.N.; Guidi, W.; Ragaglini, G.; Tozzini, C.; Bonari, E. Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB Bioenergy 2010, 2, 89–97. [Google Scholar] [CrossRef]
- Huber, J.A.; May, K.; Siegl, T.; Schmid, H.; Gerl, G.; Hülsbergen, K.-J. Yield potential of tree species in organic and conventional short-rotation agroforestry systems in southern Germany. Bioenergy Res. 2016, 9, 955–968. [Google Scholar] [CrossRef]
- Karp, A.; Shield, I. Bioenergy from plants and the sustainable yield challenge. New Phytol. 2008, 179, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, P.; Tufvesson, L.M. Agricultural crop-based biofuels–resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 2011, 19, 108–120. [Google Scholar] [CrossRef]
- Hennig, C.; Gawor, M. Bioenergy production and use: Comparative analysis of the economic and environmental effects. Energy Convers. Manag. 2012, 63, 130–137. [Google Scholar] [CrossRef]
- Karp, A.; Richter, G.M. Meeting the challenge of food and energy security. J. Exp. Bot. 2011, 62, 3263–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauber, J.; Jones, M.B.; Stout, J.C. The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2010, 2, 289–309. [Google Scholar] [CrossRef]
- Costanzo, A.; Bàrberi, P. Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron. Sustain. Dev. 2014, 34, 327–348. [Google Scholar] [CrossRef] [Green Version]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Beuschel, R.; Piepho, H.-P.; Joergensen, R.G.; Wachendorf, C. Impact of willow-based grassland alley cropping in relation to its plant species diversity on soil ecology of former arable land. Appl. Soil Ecol. 2020, 147, 103373. [Google Scholar] [CrossRef]
- Long, A.J.; Nair, P.R. Trees outside forests: Agro-, community, and urban forestry. New For. 1999, 17, 145–174. [Google Scholar] [CrossRef]
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Ehret, M.; Bühle, L.; Graß, R.; Lamersdorf, N.; Wachendorf, M. Bioenergy provision by an alley cropping system of grassland and shrub willow hybrids: Biomass, fuel characteristics and net energy yields. Agrofor. Syst. 2015, 89, 365–381. [Google Scholar] [CrossRef]
- Ehret, M.; Graß, R.; Wachendorf, M. Productivity at the tree-crop interface of a young willow-grassland alley cropping system. Agrofor. Syst. 2018, 92, 71–83. [Google Scholar] [CrossRef]
- Graß, R.; Malec, S.S.; Wachendorf, M. Biomass performance and competition effects in an established temperate agroforestry system of willow and grassland—Results of the 2nd rotation. Agronomy 2020, 10, 1819. [Google Scholar] [CrossRef]
- Rowe, R.L.; Hanley, M.E.; Goulson, D.; Clarke, D.J.; Doncaster, C.P.; Taylor, G. Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 2011, 35, 325–336. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Richter, F.; Graß, R.; Fricke, T.; Zerr, W.; Wachendorf, M. Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. II. Effects of hydrothermal conditioning and mechanical dehydration on anaerobic digestion of press fluids. Grass Forage Sci. 2009, 64, 354–363. [Google Scholar] [CrossRef]
- Wachendorf, M.; Richter, F.; Fricke, T.; Graß, R.; Neff, R. Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci. 2009, 64, 132–143. [Google Scholar] [CrossRef]
- Bühle, L.; Dürl, G.; Hensgen, F.; Urban, A.; Wachendorf, M. Effects of hydrothermal conditioning and mechanical dewatering on ash melting behaviour of solid fuel produced from European semi-natural grasslands. Fuel 2014, 118, 123–129. [Google Scholar] [CrossRef]
- Hensgen, F.; Bühle, L.; Donnison, I.; Frasier, M.; Vale, J.; Corton, J.; Heinsoo, K.; Melts, I.; Wachendorf, M. Mineral concentrations in solid fuels from European semi-natural grasslands after hydrothermal conditioning and subsequent mechanical dehydration. Bioresour. Technol. 2012, 118, 332–342. [Google Scholar] [CrossRef]
- Rao, M.R.; Coe, R.D. Measuring crop yields in on-farm agroforestry studies. Agrofor. Syst. 1991, 15, 275–289. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014.
- Hartmann, L.; Richter, F.; Busch, G.; Ehret, M.; Jansen, M.; Lamersdorf, N. Establishment of short rotation coppices in the South of Lower Saxony and in Central Thuringia in the context of the BEST-research framework–Site characteristics and initial biomass production. Forstarchiv 2014, 85, 134–150. [Google Scholar] [CrossRef]
- KTBKuratorium für Technik und Bauwesen in der Landwirtschaft e.V. KTBL-Dieselbedarf. Available online: https://daten.ktbl.de/dieselbedarf/main.html (accessed on 10 July 2019).
- Zerr, W. Versuchsanlage zur energetischen Beurteilung von Substraten und Kofermentaten für Biogasanlagen. UWSF-Z Umweltchem Ökotox 2006, 18, 219–227. [Google Scholar] [CrossRef]
- Verein deutscher Ingenieure. Vergärung Organischer Stoffe [Fermentation of Organic Materials]; Beuth: Berlin, Germany, 2006. [Google Scholar]
- Weissbach, F.; Kuhla, S. Substance losses in determining the dry matter content of silage and green fodder: Arising errors and possibilities of correction. Uebersichten Tierernaehrung 1995, 23, 189–214. [Google Scholar]
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie aus Biomasse, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- R Development Core Team. R—A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009. [Google Scholar]
- Richter, F.; Fricke, T.; Wachendorf, M. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 2. Properties of energy carriers and energy yield. Bioresour. Technol. 2011, 102, 4866–4875. [Google Scholar] [CrossRef] [PubMed]
- Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is it really robust? Methodology 2010, 6, 147–151. [Google Scholar] [CrossRef]
- Nitsche, M.; Hensgen, F.; Wachendorf, M. Using grass cuttings from sports fields for anaerobic digestion and combustion. Energies 2017, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Hensgen, F.; Bühle, L.; Donnison, I.; Heinsoo, K.; Wachendorf, M. Energetic conversion of European semi-natural grassland silages through the integrated generation of solid fuel and biogas from biomass: Energy yields and the fate of organic compounds. Bioresour. Technol. 2014, 154, 192–200. [Google Scholar] [CrossRef]
- Nurmatov, N.; Leon Gomez, D.; Hensgen, F.; Bühle, L.; Wachendorf, M. High-quality solid fuel production from leaf litter of urban street trees. Sustainability 2016, 8, 1249. [Google Scholar] [CrossRef] [Green Version]
- Obernberger, I.; Brunner, T.; Barnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Richter, F.; Fricke, T.; Wachendorf, M. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 1. The fate of mineral compounds. Bioresour. Technol. 2011, 102, 4855–4865. [Google Scholar] [CrossRef] [PubMed]
- Hensgen, F.; Wachendorf, M. Aqueous leaching prior to dewatering improves the quality of solid fuels from grasslands. Energies 2018, 11, 846. [Google Scholar] [CrossRef] [Green Version]
- Ehret, M.; Graß, R.; Wachendorf, M. The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agrofor. Syst. 2015, 89, 557–570. [Google Scholar] [CrossRef]
- Aylott, M.J.; Casella, E.; Tubby, I.; Street, N.R.; Smith, P.; Taylor, G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 2008, 178, 358–370. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B.; Aronsson, P. Impact of willow short rotation coppice on water quality. Bioenergy Res. 2012, 5, 537–545. [Google Scholar] [CrossRef]
- Stork, M.; Schulte, A.; Murach, D. Large-scale fuelwood production on agricultural fields in mesoscale river catchments–GIS-based determination of potentials in the Dahme river catchment (Brandenburg, NE Germany). Biomass Bioenergy 2014, 64, 42–49. [Google Scholar] [CrossRef]
- Wilkinson, J.; Evans, E.; Bilsborrow, P.; Wright, C.; Hewison, W.; Pilbeam, D. Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenergy 2007, 31, 469–474. [Google Scholar] [CrossRef]
Machinery | Average Diesel Consumption (L ha−1) | ||
---|---|---|---|
WCD | IFBB | CH | |
Cultivator and harrow, 2.5 m, 83 kW 1 | 4.9 1 | 4.9 1 | 4.9 1 |
Grass seed drill, 2.5 m, 83 kW 1 | 2.2 1 | 2.2 1 | 2.2 1 |
Field roller, 6 m, 83 kW 1 | 0.7 1 | 0.7 1 | 0.7 1 |
Mulcher, 3 m, 83 kW 1 | 5.0 1 | 5.0 1 | 5.0 1 |
Pasture harrow, 9 m, 83 kW | 1.8 | 1.8 | 1.8 |
Mower and conditioner 3.2 m, 83 kW | 44.6 | 29.4 | 28.4 |
Rotary tedder/turner, 8.75 m, 83 kW | - | - | 50.4 |
Rotary windrower | 28.5 | 18.0 | 18.0 |
Self-loading trailer, 28 m³, 7 t, 83 kW | 48.7 | 34.7 | |
Ensiling, wheel loader, 13.5 t, 105 kW, 4 m³ | 7.4 | 5.7 | |
Round baler, 1.5 m, 320 kg/bale, 67 kW | 16.9 | ||
Bale transport, front loader, dumper, 2 × 8 t, 1800 daN, 54 kW | 9.0 | ||
Total | 147.4 | 105.9 | 141.8 |
Machinery | Average Diesel Consumption (L ha−1) |
---|---|
Cultivator and harrow, 2.5 m, 83 kW 1 | 4.9 1 |
Planting, double row, 3 m, 102 kW 1 | 2.0 1 |
Hoeing machine, 9 m, 67 kW 1 | 0.9 1 |
Field Chopper, 9 m, 67 kW | 32.5 |
Woodchip transport, 2 × 10 t, 67 kW | 22.0 |
Forest rotary tiller, 160 kW 1,2 | 4.2 1,2 |
Total | 66.5 |
Conversion System | Volatile Solid Content/Methane Yield | Clover Grass (CG) | Diversity (DG) | p-Value |
---|---|---|---|---|
Volatile solid content of press fluids (% of FM) | 0.46 ± 0.1 | 0.62 ± 0.2 | - | |
IFBB | Biomass specific methane yield (LN kg−1VS) | 285.4 ± 18.7 | 302.4 ± 21.2 | 0.565 |
Area specific methane yield (m³ ha−1) | 125.0 ± 41.7 | 181.1 ± 66.6 | 0.495 | |
Volatile solid content of silages (% of FM) | 26.37 ± 3.4 | 27.55± 2.9 | - | |
WCD | Biomass specific methane yield (LN kg−1VS) | 231.5 ± 11.5 | 230.9 ± 11.4 | 0.971 |
Area specific methane yield (m³ ha−1) | 343.6 ± 83.4 | 280.3 ± 101.4 | 0.634 |
Solid Fuel | Grassland Type | HHV | DM | Ash | Cl | K | N | S |
---|---|---|---|---|---|---|---|---|
MJ kg−1 DM | % | % DM | ||||||
Hay a | CG | 17.98 ± 0.20 | 91.05 ± 0.33 | 12.01 ± 1.22 | 1.19 ± 0.23 | 2.87 ± 0.12 | 1.67 ± 0.24 | 0.24 ± 0.04 |
DG | 18.46 ± 0.16 | 89.71 ± 0.54 | 11.31 ± 0.96 | 0.99 ± 0.12 | 2.52 ± 0.06 | 2.00 ± 0.20 | 0.24 ± 0.03 | |
IFBB | CG | 18.80 ± 0.16 | 93.35 ± 0.58 | 5.61 ± 0.45 | 0.11 ± 0.02 | 0.49 ± 0.03 | 1.30 ± 0.23 | 0.11 ± 0.02 |
press cake a | DG | 19.00 ± 0.09 | 92.67 ± 0.39 | 5.83 ± 0.54 | 0.12 ± 0.02 | 0.48 ± 0.01 | 1.42 ± 0.15 | 0.12 ± 0.02 |
Willow SRC woodchips b | 19.70 | 2.0 | 0.004 | 0.26 | 0.54 | 0.05 | ||
Guiding value c | <0.1 | <0.6 | <0.1 |
HHV | DM | Ash | Cl | K | N | S | |
---|---|---|---|---|---|---|---|
Conversion pathway (CH, IFBB) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0385 | <0.001 |
Grassland type (CG, DG) | 0.14 | 0.204 | 0.868 | 0.704 | 0.729 | 0.278 | 0.959 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzene, I.; Hensgen, F.; Graß, R.; Wachendorf, M. Net Energy Balance and Fuel Quality of an Alley Cropping System Combining Grassland and Willow: Results of the 2nd Rotation. Agronomy 2021, 11, 1272. https://doi.org/10.3390/agronomy11071272
Dzene I, Hensgen F, Graß R, Wachendorf M. Net Energy Balance and Fuel Quality of an Alley Cropping System Combining Grassland and Willow: Results of the 2nd Rotation. Agronomy. 2021; 11(7):1272. https://doi.org/10.3390/agronomy11071272
Chicago/Turabian StyleDzene, Ilze, Frank Hensgen, Rüdiger Graß, and Michael Wachendorf. 2021. "Net Energy Balance and Fuel Quality of an Alley Cropping System Combining Grassland and Willow: Results of the 2nd Rotation" Agronomy 11, no. 7: 1272. https://doi.org/10.3390/agronomy11071272
APA StyleDzene, I., Hensgen, F., Graß, R., & Wachendorf, M. (2021). Net Energy Balance and Fuel Quality of an Alley Cropping System Combining Grassland and Willow: Results of the 2nd Rotation. Agronomy, 11(7), 1272. https://doi.org/10.3390/agronomy11071272