Prediction of Ratoon Sugarcane Family Yield and Selection Using Remote Imagery
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Family Selection Yield Performance
3.2. Family Selection Based on Remote Sensing
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salassi, M.E.; Deliberto, M.A.; Legendre, B.L. Economic importance of Louisiana sugarcane production in 2008. World 2010, 1, 154. [Google Scholar]
- Kimbeng, C.A.; Cox, M.C. Early generation selection of sugarcane families and clones in Australia: A review. J. Am. Soc. Sugar Cane Technol. 2003, 23, 21–39. [Google Scholar]
- Hogarth, D.M.; Braithwaite, M.J.; Skinner, J.C. Selection of sugarcane families in the Burdekin district. Proc. Conf. Aust. Soc. Sugar Cane Technol. 1990, 12, 99–104. [Google Scholar]
- Jackson, P.A.; Bull, J.K.; McRae, T.A. The role of family selection in sugarcane breeding programs and the effect of genotype × environment interactions. Proc. Int. Soc. Sugar Cane Technol. 1995, 22, 261–269. [Google Scholar]
- Jackson, P.; McRae, T.; Hogarth, M. Selection of sugarcane families across variable environments II. Patterns of response and association with environmental factors. Field Crops Res. 1995, 43, 119–130. [Google Scholar] [CrossRef]
- Cox, M.C.; Stringer, J.K. Efficacy of early generation selection in a sugarcane improvement program. Proc. Conf. Aust. Soc. Sugar Cane Technol. 1998, 20, 148–153. [Google Scholar]
- Kimbeng, C.A.; McRae, T.A.; Stringer, J.K. Gains from family and visual selection in sugarcane, particularly for heavily lodged crops in the Burdekin region. Proc. Aust. Soc. Sugarcane Technol. 2000, 22, 163–169. [Google Scholar]
- Milligan, S.B.; Legendre, B.L. Development of a practical method for sugarcane cross appraisal. J. Am. Soc. Sugar Cane Technol. 1990, 11, 59–68. [Google Scholar]
- Chang, Y.S.; Milligan, S.B. Estimating the potential of sugarcane families to produce elite genotypes using bivariate methods. Theor. Appl. Genet. 1992, 84, 633–639. [Google Scholar] [CrossRef]
- Chang, Y.S.; Milligan, S.B. Estimating the potential of sugarcane families to produce elite genotypes using univariate cross prediction methods. Theor. Appl. Genet. 1992, 84, 662–671. [Google Scholar] [CrossRef]
- Tai, P.Y.P.; Shine, J.M.; Miller, J.D.; Edme, S.J. Estimating the family performance of sugarcane crosses using small progeny test. J. Am. Soc. Sugar Cane Technol. 2003, 2003 23, 61–70. [Google Scholar]
- Rudorff, B.F.T.; Batista, G.T. Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sens. Environ. 1990, 33, 183–192. [Google Scholar] [CrossRef]
- Almeida, T.I.R.; de Souza Filho, C.R.; Rossetto, R. ASTER and Landsat ETM + images applied to sugarcane yield forecast. Int. J. Remote Sens. 2006, 27, 4057–4069. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Ahmed, F.B. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. Int. J. Remote Sens. 2008, 29, 3753–3767. [Google Scholar] [CrossRef]
- Johnson, R.M.; Viator, R.P.; Richard, E.P., Jr. Estimation of sugarcane sucrose and biomass with remote sensing techniques (abstract). J. Am. Soc. Sugar Cane Technol. 2007, 27, 68. [Google Scholar]
- Pinheiro Lisboa, I.; Melo Damian, J.; Roberto Cherubin, M.; Silva Barros, P.P.; Ricardo Fiorio, P.; Cerri, C.C.; Eduardo Pellegrino Cerri, C. Prediction of sugarcane yield based on NDVI and concentration of leaf-tissue nutrients in fields managed with straw removal. Agronomy 2018, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Basnayake, J.; Wei, X.; Lakshmanan, P. High-throughput phenotyping of indirect traits for early-stage selection in sugarcane breeding. Remote Sens. 2019, 11, 2952. [Google Scholar] [CrossRef] [Green Version]
- Gracia-Romero, A.; Vergara-Díaz, O.; Thierfelder, C.; Cairns, J.E.; Kefauver, S.C.; Araus, J.L. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens. 2018, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [Green Version]
- Buchaillot, M.; Gracia-Romero, A.; Zaman-Allah, M.A.; Tarekegne, A.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L.; Kefauver, S.C. Evaluating the performance of different commercial and pre-commercial maize varieties under low nitrogen conditions using affordable phenotyping tools. Proceedings 2018, 2, 366. [Google Scholar] [CrossRef] [Green Version]
- Kefauver, S.C.; El-Haddad, G.; Vergara-Diaz, O.; Araus, J.L. RGB Picture vegetation indexes for high-throughput phenotyping platforms (HTPPs). In Remote Sensing for Agriculture, Ecosystems, and Hydrology, XVII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9637, p. 96370J. [Google Scholar]
- Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.M.; Araus, J.L.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Kefauver, S.C.; Elazab, A.; Nieto-Taladriz, M.T.; Araus, J.L. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions. Crop J. 2015, 3, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Elazab, A.; Bort, J.; Vergara, O.; Serret, M.D.; Araus, J.L. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. 2015, 116, 20–29. [Google Scholar] [CrossRef]
- Tew, T.L.; White, W.H.; Legendre, B.L.; Grisham, M.P.; Dufrene, E.O.; Garrison, D.D.; Veremis, J.C.; Pan, Y.-B.; Richard, E.P., Jr.; Miller, J.D. Registration of ‘HoCP 96-540’ sugarcane. Crop Sci. 2005, 45, 785–786. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, K.P.; Gravois, K.A. The development of new sugarcane varieties at the LSU AgCenter. J. Am. Soc. Sugar Cane Technol. 2004, 24, 142–164. [Google Scholar]
- Gravois, K. Sugarcane Production Handbook; Pub. 2859; Louisiana State University AgCenter: Baton Rouge, LA, USA, 2014. [Google Scholar]
- Johnson, R.M.; Richard, E.P., Jr. Variability in sugar yield, sugar quality and soil properties in Louisiana sugarcane production systems. Agron. J. 2005, 97, 760–771. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. Base SAS 9.4 Procedures Guide; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Casadesús, J.; Villegas, D. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. J. Integr. Plant Biol. 2014, 56, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pointer, M.R. A comparison of the CIE 1976 colour spaces. Color Res. Appl. 1981, 6, 108–118. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R., Jr.; Daughtry, C.S.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 10, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Rodríguez-Pardo, C.E. The dark side of CIELAB. In Color Imaging XVII: Displaying, Processing, Hardcopy, and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8292, p. 82920. [Google Scholar]
- Kylander, O.S.; Kylander, K. Gimp the Official Handbook with Cdrom; Coriolis Value: Scottsdale, AZ, USA, 1999. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Vargas, M.; Combs, E.; Alvarado, G.; Atlin, G.; Mathews, K.; Crossa, J. META: A Suite of SAS Programs to Analyze Multienvironment Breeding Trials. Agron. J. 2013, 105, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Wray, N.; Visscher, P. Estimating trait heritability. Nat. Educ. 2008, 1, 29. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Milligan, S.B.; Martin, F.A.; Gravois, K.A. Inheritance of sugarcane ratooning ability and the relationship of younger crop traits to older crop traits. Crop Sci. 1996, 36, 45–60. [Google Scholar] [CrossRef]
- Todd, J.R.; White, W.H.; Dufrene, E.O.; Tew, T.L.; Pan, Y.-B.; Duet, M.J.; Verdun, D.L.; Hale, A.L.; Dalley, C.D.; Grisham, M.P.; et al. Registration of ‘HoCP 04-838’ sugarcane. J. Plant Regist. 2018, 12, 324–332. [Google Scholar] [CrossRef]
- Skinner, J.C. Efficiency of bunch-planted and single-planted seedlings for selecting superior families in sugarcane. Euphytica 1982, 31, 523–537. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front. Plant Sci. 2017, 8, 1733. [Google Scholar] [CrossRef]
Plant Cane | Second Ratoon | |||||||
---|---|---|---|---|---|---|---|---|
Family | Female | Male | Plot Yield kg | sd err † | Group ‡ | Plot Yield kg | sd err | Group |
CPX14-0705 | HoCP04-852 | Ho12-630 | 91.85 | 10.37 | A | 174.63 | 14.16 | A |
CPX14-0732 | HoCP04-838 | HoCP04-852 | 87.69 | 10.37 | AB | 147.04 | 14.16 | ABCD |
CPX15-0167 | HoCP13-756 | L09-099 | 86.56 | 10.37 | AB | 134.57 | 14.16 | BCDE |
CP14-1066 | Ho09-832 | HoCP01-517 | 85.05 | 10.37 | AB | 182.62 | 15.50 | A |
HoCP96-540 ¶ | LCP6-454 | LCP85-384 | 83.16 | 10.37 | ABC | 145.91 | 14.16 | ABCD |
CP14-0385 | L08-090 | HoCP04-838 | 76.73 | 10.37 | ABC | 154.22 | 14.16 | ABCD |
CPX14-0646 | HoCP12-641 | L11-172 | 76.35 | 10.37 | ABC | 88.83 | 14.16 | FG |
CPX14-0759 | HoCP12-641 | HoCP96-540 | 75.60 | 10.37 | ABC | 122.09 | 14.16 | DEF |
CP14-0386 | L09-112 | HoCP04-838 | 73.71 | 10.37 | ABC | 147.04 | 14.16 | ABCD |
CPX14-0677 | HoCP11-539 | HoCP09-857 | 72.20 | 10.37 | ABC | 153.84 | 14.16 | ABCD |
CPX14-1024 | HoCP01-517 | HoCP96-540 | 70.68 | 10.37 | ABC | 152.33 | 14.16 | ABCD |
CPX14-0699 | HoCP12-676 | Ho12-630 | 68.80 | 10.37 | ABC | 98.66 | 14.16 | EFG |
CPX14-1172 | Ho09-832 | HoCP05-918 | 68.42 | 10.37 | ABC | 153.09 | 14.16 | ABCD |
CPX14-1229 | HoCP09-857 | Ho11-512 | 68.04 | 10.37 | ABC | 175.01 | 14.16 | A |
CPX14-0727 | HoCP01-517 | HoCP04-852 | 66.90 | 10.37 | ABC | 166.32 | 14.16 | ABC |
CP14-0332 | Ho11-512 | Ho11-529 | 65.01 | 10.37 | ABC | 98.28 | 14.16 | EFG |
CPX14-0724 | HoCP12-647 | HoCP04-852 | 63.50 | 10.37 | ABC | 169.34 | 14.16 | AB |
CP14-0341 | L12-201 | Ho10-937 | 62.75 | 10.37 | BCD | 72.57 | 14.16 | G |
CPX14-1052 | HoCP01-517 | Ho09-824 | 61.99 | 10.37 | BCD | 165.18 | 14.16 | ABC |
CPX14-1028 | HoCP11-548 | HoCP96-540 | 60.10 | 10.37 | BCD | 130.78 | 14.16 | BCDE |
CPX14-1234 | HoCP 12-643 | Ho11-512 | 59.34 | 10.37 | BCD | 127.76 | 14.16 | CDEF |
CPX15-0105 | HoCP09-804 | HoCP04-852 | 55.57 | 10.37 | CD | 164.80 | 14.16 | ABC |
CPX14-0794 | HoCP11-537 | Ho12-630 | 55.57 | 10.37 | CD | 131.54 | 14.16 | BCDE |
CP14-0334 | L12-201 | Ho11-529 | 34.02 | 10.37 | D | 89.96 | 14.16 | FG |
Effect | Numerator DF | Denominator DF | F Value | Pr > F |
---|---|---|---|---|
Crop year | 1 | 236 | 380.66 | <0.0001 |
Family | 23 | 236 | 4.47 | <0.0001 |
Family × Crop | 23 | 236 | 2.68 | <0.0001 |
Trait | PC-1R | PC-2R | 1R-2R |
---|---|---|---|
Plot weight | - | 0.36 | - |
Intensity | 0.63 | 0.19 | 0.70 |
Hue | 0.41 | 0.74 | 0.38 |
Saturation | −0.23 | −0.33 | 0.20 |
Lightness | 0.71 | 0.31 | 0.65 |
a* | 0.34 | 0.35 | −0.01 |
b* | 0.73 | 0.53 | 0.41 |
u* | 0.09 | 0.39 | −0.29 |
v* | 0.75 | 0.54 | 0.49 |
GA | 0.05 | 0.28 | −0.06 |
GGA | −0.31 | 0.28 | −0.35 |
CSI | 0.20 | 0.46 | 0.08 |
NGRDI | 0.18 | 0.13 | 0.44 |
NGRDI SD | 0.49 | 0.32 | 0.29 |
TGI | 0.62 | 0.39 | 0.32 |
TGI SD | 0.19 | 0.36 | −0.02 |
Crop | Plant Cane Weight | Significance | Second Ratoon Weight | Significance | |
---|---|---|---|---|---|
Second Ratoon weight | - | 0.36 | 0.09 | - | - |
a* | PC | −0.32 | 0.12 | −0.52 | 0.01 |
1R | −0.11 | 0.61 | −0.04 | 0.86 | |
2R | −0.07 | 0.75 | −0.62 | 0.00 | |
b* | PC | −0.25 | 0.24 | 0.23 | 0.28 |
1R | 0.11 | 0.62 | 0.39 | 0.06 | |
2R | −0.34 | 0.11 | 0.32 | 0.13 | |
u* | PC | −0.54 | 0.01 | −0.47 | 0.02 |
1R | −0.08 | 0.71 | 0.27 | 0.20 | |
2R | −0.36 | 0.08 | −0.75 | <0.001 | |
v* | PC | −0.20 | 0.34 | 0.27 | 0.21 |
1R | 0.14 | 0.50 | 0.40 | 0.05 | |
2R | −0.14 | 0.51 | 0.52 | 0.01 | |
lightness | PC | −0.16 | 0.45 | 0.21 | 0.31 |
1R | 0.23 | 0.29 | 0.44 | 0.03 | |
2R | 0.32 | 0.13 | 0.77 | <0.001 | |
intensity | PC | −0.18 | 0.39 | 0.16 | 0.46 |
1R | 0.25 | 0.24 | 0.46 | 0.02 | |
2R | 0.40 | 0.05 | 0.77 | <0.001 | |
Hue | PC | 0.54 | 0.01 | 0.15 | 0.49 |
1R | −0.05 | 0.83 | −0.55 | 0.01 | |
2R | 0.63 | 0.00 | 0.05 | 0.82 | |
GA | PC | 0.22 | 0.30 | 0.44 | 0.03 |
1R | −0.20 | 0.35 | −0.27 | 0.21 | |
2R | −0.03 | 0.90 | 0.44 | 0.03 | |
GGA | PC | 0.35 | 0.10 | 0.48 | 0.02 |
1R | −0.11 | 0.62 | −0.53 | 0.01 | |
2R | 0.18 | 0.39 | 0.35 | 0.10 | |
CSI | PC | −0.62 | 0.00 | −0.36 | 0.08 |
1R | 0.10 | 0.65 | 0.53 | 0.01 | |
2R | −0.40 | 0.05 | −0.04 | 0.86 | |
NGDRI | PC | 0.52 | 0.009 | 0.38 | 0.07 |
1R | −0.19 | 0.37 | −0.55 | 0.005 | |
2R | −0.06 | 0.77 | −0.28 | 0.19 | |
NGRDI SD | PC | 0.18 | 0.40 | −0.19 | 0.36 |
1R | −0.16 | 0.44 | −0.44 | 0.03 | |
2R | 0.03 | 0.88 | −0.01 | 0.97 | |
TGI | PC | 0.05 | 0.80 | 0.39 | 0.06 |
1R | 0.11 | 0.61 | 0.30 | 0.16 | |
2R | −0.20 | 0.36 | 0.44 | 0.03 | |
TGI SD | PC | −0.36 | 0.09 | −0.33 | 0.12 |
1R | −0.30 | 0.16 | 0.28 | 0.19 | |
2R | −0.58 | 0.003 | 0.34 | 0.10 | |
Saturation | PC | 0.24 | 0.27 | 0.20 | 0.36 |
1R | −0.03 | 0.88 | 0.30 | 0.15 | |
2R | −0.65 | 0.00 | −0.24 | 0.25 |
Trait | Plant Cane | 1st Ratoon | 2nd Ratoon |
---|---|---|---|
weight | 0.20 | NA | 0.65 |
Intensity | 0.42 | 0.05 | 0.75 |
Hue | 0.43 | 0.31 | 0.78 |
Saturation | 0.54 | 0.44 | 0.83 |
Lightness | 0.41 | 0.08 | 0.74 |
a* | 0.60 | 0.07 | 0.73 |
b* | 0.53 | 0.26 | 0.73 |
u* | 0.62 | 0.07 | 0.75 |
v* | 0.50 | 0.19 | 0.72 |
GA | 0.66 | 0.19 | 0.42 |
GGA | 0.67 | 0.33 | 0.27 |
CSI | 0.56 | 0.34 | 0.18 |
NGRDI | 0.63 | 0.34 | 0.35 |
NGRDI SD | 0.49 | 0.37 | 0.35 |
TGI | 0.52 | 0.21 | 0.73 |
TGI SD | 0.41 | 0.09 | 0.33 |
Crops | Model | F Value | Pr > F | R-Square | Adj R-Sq |
---|---|---|---|---|---|
Plant cane | Family, PC: Hue, Lightness, b* | 4.02 | 0.02 | 0.46 | 0.34 |
First Ratoon | Family, 1R: Hue, TGI SD | 9.05 | 0.0005 | 0.58 | 0.51 |
Second Ratoon | Family, 2R: Intensity, CSI, Saturation, GGA | 16.75 | <0.0001 | 082 | 0.77 |
PC, 1R | PC: Hue, NGRDI SD, b*; 1R: Hue, TGI SD | 12.27 | <0.0001 | 0.77 | 0.71 |
PC, 1R, 2R | Family, PC: Hue; 1R: TGI SD; 2R GGA, CSI, Intensity | 21.38 | <0.0001 | 0.88 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todd, J.; Johnson, R. Prediction of Ratoon Sugarcane Family Yield and Selection Using Remote Imagery. Agronomy 2021, 11, 1273. https://doi.org/10.3390/agronomy11071273
Todd J, Johnson R. Prediction of Ratoon Sugarcane Family Yield and Selection Using Remote Imagery. Agronomy. 2021; 11(7):1273. https://doi.org/10.3390/agronomy11071273
Chicago/Turabian StyleTodd, James, and Richard Johnson. 2021. "Prediction of Ratoon Sugarcane Family Yield and Selection Using Remote Imagery" Agronomy 11, no. 7: 1273. https://doi.org/10.3390/agronomy11071273
APA StyleTodd, J., & Johnson, R. (2021). Prediction of Ratoon Sugarcane Family Yield and Selection Using Remote Imagery. Agronomy, 11(7), 1273. https://doi.org/10.3390/agronomy11071273