Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Management and Experiment Design
2.3. SWC and Crop Biomass Monitoring and Measurement
2.4. Simulation and Validation of SWC and Crop Biomass
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vereecken, H.; Huisman, J.A.; Franssen, H.J.H.; Brueggemann, N.; Bogena, H.R.; Kollet, S.; Javaux, M.; Van Der Kruk, J.; Vanderbor-ght, J. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour. Res. 2015, 51, 2616–2633. [Google Scholar] [CrossRef]
- Hu, C.; Saseendran, S.A.; Green, T.R.; Ma, L.; Li, X.; Ahuja, L.R. Evaluating nitrogen and water management in a double-cropping system using RZWQM. Vadose Zone J. 2006, 5, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Hammami, Z.; Qureshi, A.S.; Sahli, A.; Gauffreteau, A.; Chamekh, Z.; Ben Azaiez, F.E.; Ayadi, S.; Trifa, Y. Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments. Agronomy 2020, 10, 1459. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.; Wei, X.; Wang, Y. Hillslope scale temporal stability of soil water storage in diverse soil layers. J. Hydrol. 2013, 498, 254–264. [Google Scholar] [CrossRef]
- Ma, L.; Malone, R.W.; Heilman, P.; Karlen, D.L.; Kanwar, R.S.; Cambardella, C.A.; Saseendran, S.A.; Ahuja, L.R. RZWQM simulation of long-term crop production, water and nitrogen balances in Northeast Iowa. Geoderma 2007, 140, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Meki, M.N.; Kim, S.; Kiniry, J.R. Crop modeling application to improve irrigation efficiency in year-round vegetable production in the texas winter garden region. Agronomy 2020, 10, 1525. [Google Scholar] [CrossRef]
- Song, S.; Zhang, S.; Wang, T.; Meng, J.; Zhou, Y.; Zhang, H. Balancing conservation and development in Winter Olympic construc-tion: Evidence from a multi-scale ecological suitability assessment. Sci. Rep. 2018, 8, 14083. [Google Scholar] [CrossRef]
- Chen, X.; Qi, Z.; Gui, D.; Gu, Z.; Ma, L.; Zeng, F.; Li, L.; Sima, M.W. A Model-Based Real-Time Decision Support System for Irrigation Scheduling to Improve Water Productivity. Agronomy 2019, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Ma, L.; Harmel, R.D.; Yu, Q.; Sima, M.W.; Bartling, P.N.S.; Malone, R.W.; Nolan, B.T.; Doherty, J. Uncertainty of ceres-maize calibration under different irrigation strategies using PEST optimization algorithm. Agronomy 2019, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Shao, M.; Zeng, C.; Jia, X.; Huang, L.; Zhang, Y.; Zhu, J. Application of cosmic-ray neutron sensing to monitor soil water content in an alpine meadow ecosystem on the northern Tibetan Plateau. J. Hydrol. 2016, 536, 247–254. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H. Method for Soil Moisture and Surface Temperature Estimation in the Tibetan Plateau Using Spaceborne Radiometer Observations. IEEE Geosci. Remote. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Phogat, V.; Mahadevan, M.; Skewes, M.; Cox, J.W. Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design. Irrig. Sci. 2012, 30, 315–333. [Google Scholar] [CrossRef]
- Tian, S.; Tregoning, P.; Renzullo, L.J.; Van Dijk, A.I.J.M.; Walker, J.P.; Pauwels, V.R.N.; Allgeyer, S. Improved water balance com-ponent estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour. Res. 2017, 53, 1820–1840. [Google Scholar] [CrossRef]
- Pinnington, E.; Amezcua, J.; Cooper, E.; Dadson, S.; Ellis, R.; Peng, J.; Robinson, E.; Morrison, R.; Osborne, S.; Quaife, T. Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data. Hydrol. Earth Syst. Sci. 2021, 25, 1617–1641. [Google Scholar] [CrossRef]
- Zhu, X.; Shao, M.; Jia, X.; Huang, L.; Zhu, J.; Zhang, Y. Application of temporal stability analysis in depth-scaling estimated soil water content by cosmic-ray neutron probe on the northern Tibetan Plateau. J. Hydrol. 2017, 546, 299–308. [Google Scholar] [CrossRef]
- Baroni, G.; Scheiffele, L.; Schrön, M.; Ingwersen, J.; Oswald, S. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing. J. Hydrol. 2018, 564, 873–887. [Google Scholar] [CrossRef]
- Fersch, B.; Francke, T.; Heistermann, M.; Schroen, M.; Doepper, V.; Jakobi, J.; Baroni, G.; Blume, T.; Bogena, H.; Budach, C.; et al. A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth Syst. Sci. Data 2020, 12, 2289–2309. [Google Scholar] [CrossRef]
- Mwangi, S.; Zeng, Y.; Montzka, C.; Yu, L.; Su, Z. Assimilation of Cosmic-Ray Neutron Counts for the Estimation of Soil Ice Con-tent on the Eastern Tibetan Plateau. J. Geophys. Res. Atmos. 2020, 125, e2019JD031529. [Google Scholar] [CrossRef] [Green Version]
- Scheiffele, L.M.; Baroni, G.; Franz, T.E.; Jakobi, J.; Oswald, S.E. A profile shape correction to reduce the vertical sensitivity of cos-mic-ray neutron sensing of soil moisture. Vadose Zone J. 2020, 19, e20083. [Google Scholar] [CrossRef]
- Duygu, M.B.; Akyurek, Z. Using cosmic-ray neutron probes in validating satellite soil moisture products and land surface models. Water 2019, 11, 1362. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kanwar, R.S.; Singh, P.; Ahuja, L.R. Evaluation of the root zone water quality model for predicting water and NO3-N movement in an Iowa soil. Soil Tillage Res. 1999, 50, 223–236. [Google Scholar] [CrossRef]
- Liu, C.; Qi, Z.; Gu, Z.; Gui, D.; Zeng, F. Optimizing Irrigation Rates for Cotton Production in an Extremely Arid Area Using RZWQM2-Simulated Water Stress. Trans. ASABE 2017, 60, 2041–2052. [Google Scholar] [CrossRef] [Green Version]
- Saseendran, S.A.; Ma, L.; Malone, R.; Heilman, P.; Ahuja, L.R.; Kanwar, R.S.; Karlen, D.L.; Hoogenboom, G. Simulating, management effects on crop production, tile drainage, and water quality using RZWQM-DSSAT. Geoderma 2007, 140, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.W.; Nielsen, D.C.; Ahuja, L.R.; Kiniry, J.R.; Hanson, J.D.; Hoogenboom, G. An evaluation of RZWQM, CROPGRO, and CERES-maize for responses to water stress in the central great plains of the US. In Agricultural System Models in Field Research and Technology Transfer; CRC Press: Boca Raton, FL, USA, 2002; pp. 119–148. [Google Scholar]
- Bai, X.; Jia, X.; Jia, Y.; Shao, M.; Hu, W. Modeling long-term soil water dynamics in response to land-use change in a semi-arid area. J. Hydrol. 2020, 585, 124824. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Sima, M.W.; Fang, Q.X.; Qi, Z.; Yu, Q. Direct assimilation of measured soil water content in Root Zone Water Quality Model calibration for deficit-irrigated maize. Agron. J. 2020, 112, 844–860. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Ai, Z.; Li, J.; Gu, C. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Sci. Total. Environ. 2018, 618, 121–131. [Google Scholar] [CrossRef]
- Tu, C.; Li, F. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields. J. Environ. Sci. 2017, 54, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Li, F.; Leng, P.; Li, Z.; Tian, C.; Qiao, Y.; Li, Z. Differential Influence of No-Tillage and Precipitation Pulses on Soil Hetero-trophic and Autotrophic Respiration of Summer Maize in the North China Plain. Agronomy 2020, 10, 2004. [Google Scholar] [CrossRef]
- Du, K.; Li, F.; Qiao, Y.; Leng, P.; Li, Z.; Ge, J.; Yang, G. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total. Environ. 2021, 766, 144384. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Ferre, T.P.A.; Rosolem, R.; Zweck, C.; Stillman, S.; Zeng, X.; Shuttleworth, W.J. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resour. Res. 2012, 48, W08515. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, L.R.; Rojas, K.W.; Hanson, J.D.; Shaffer, M.J.; Ma, L. Modeling Management Effects on Water Quality and Crop Production. Root Zone Water Quality Model; Water Resources Publications, LLC: Littleton, CO, USA, 2000; pp. 372–379. [Google Scholar]
- Fang, Q.-X.; Yu, Q.; Wang, J.-L. Simulating Soil Water Dynamics and Its Effects on Crop Yield Using RZWQM- CERES in the North China Plain. Acta Agron. Sin. 2009, 35, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.D.; Rojas, K.W.; Shaffer, M.J. Calibrating the Root Zone Water Quality Model. Agron. J. 1999, 91, 171–177. [Google Scholar] [CrossRef]
- Yu, Q.; Saseendran, S.A.; Ma, L.; Flerchinger, G.N.; Green, T.R.; Ahuja, L.R. Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM. Agric. Syst. 2006, 89, 457–477. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, L.; Yu, Q.; Malone, R.W.; Saseendran, S.A.; Ahuja, L.R. Modeling Nitrogen and Water Management Effects in a Wheat-Maize Double-Cropping System. J. Environ. Qual. 2008, 37, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersebaum, K.C.; Hecker, J.-M.; Mirschel, W.; Wegehenkel, M. Modelling Water and Nutrient dynamics in Soil-Crop systems: A Comparison of Simulation Models Applied on Common Data Sets; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Xu, J.; Cai, H.; Wang, X.; Ma, C.; Lu, Y.; Ding, Y.; Wang, X.; Chen, H.; Wang, Y.; Saddique, Q. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water Manag. 2020, 228, 105904. [Google Scholar] [CrossRef]
- Han, E.; Merwade, V.; Heathman, G.C. Application of data assimilation with the Root Zone Water Quality Model for soil moisture profile estimation in the upper Cedar Creek, Indiana. Hydrol. Process. 2012, 26, 1707–1719. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Verhoest, N.E.C.; De Lannoy, G.J.M.; Guissard, V.; Lucau, C.; Defourny, P. Optimization of a coupled hydrolo-gy-crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter. Water Resour. Res. 2007, 43, W04421. [Google Scholar] [CrossRef] [Green Version]
- De Wit, A.M.; Van Diepen, C.A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol. 2007, 146, 38–56. [Google Scholar] [CrossRef]
- Nearing, G.S.; Crow, W.T.; Thorp, K.R.; Moran, M.S.; Reichle, R.H.; Gupta, H.V. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment. Water Resour. Res. 2012, 48, W25525. [Google Scholar] [CrossRef] [Green Version]
Growth Stages | 2017–2018 | 2018–2019 | ||
---|---|---|---|---|
RMSE | RRMSE | RMSE | RRMSE | |
Emergency | 0.0479 | 0.2866 | 0.0266 | 0.1569 |
Wintering | 0.0147 | 0.1065 | 0.0229 | 0.1508 |
Jointing | 0.0148 | 0.0651 | 0.0241 | 0.1082 |
B + H + F | 0.0434 | 0.1775 | 0.0307 | 0.1462 |
Milking | 0.0196 | 0.0866 | 0.0434 | 0.2062 |
Mature | 0.0483 | 0.1829 | 0.0188 | 0.0959 |
Study Period | Item | Leaf Area Index | Grain Yield | Aboveground Biomass |
---|---|---|---|---|
2017–2018 | Measured values | 1.91 | 5.88 | 9.11 |
Simulated values | 1.65 | 5.55 | 13.26 | |
RMSE | 0.42 | 3.40 | 4.14 | |
RRMSE | 0.2566 | 0.0577 | 0.4548 | |
2018–2019 | Measured values | 2.30 | 6.12 | 11.19 |
Simulated values | 2.04 | 6.36 | 12.85 | |
RMSE | 0.46 | 2.39 | 1.67 | |
RRMSE | 0.2257 | 0.0390 | 0.1479 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Qiao, Y.; Zhang, Q.; Li, F.; Li, Q.; Liu, S.; Tian, C. Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2. Agronomy 2021, 11, 1245. https://doi.org/10.3390/agronomy11061245
Du K, Qiao Y, Zhang Q, Li F, Li Q, Liu S, Tian C. Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2. Agronomy. 2021; 11(6):1245. https://doi.org/10.3390/agronomy11061245
Chicago/Turabian StyleDu, Kun, Yunfeng Qiao, Qiuying Zhang, Fadong Li, Qi Li, Shanbao Liu, and Chao Tian. 2021. "Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2" Agronomy 11, no. 6: 1245. https://doi.org/10.3390/agronomy11061245
APA StyleDu, K., Qiao, Y., Zhang, Q., Li, F., Li, Q., Liu, S., & Tian, C. (2021). Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2. Agronomy, 11(6), 1245. https://doi.org/10.3390/agronomy11061245