Productivity and Profitability of Kharif Rice Are Influenced by Crop Establishment Methods and Nitrogen Management in the Lateritic Belt of the Subtropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments and Design
2.2.1. Farmer’s Practice (FP)
2.2.2. State Recommended Nitrogen Application (SR)
2.2.3. Nutrient Expert Based Nitrogen Management (NE)
2.2.4. Greenseeker Handheld Crop Sensor (GS)
2.2.5. Leaf Color Chart (LCC)
2.2.6. Direct Seeded Rice (DSR)
2.2.7. Drum Seeded Rice (DRR)
2.2.8. Conventional Transplanting (TPR)
2.3. Experimental Procedure
2.4. Measurements and Analytical Procedures
2.4.1. Growth and Yield Attributes
2.4.2. Yield
2.4.3. Economics
2.5. Calculations and Statistical Analysis
3. Results
3.1. Growth Parameter
3.2. Grain Yield and Yield Attributes
3.3. Economics
4. Discussion
4.1. Growth Parameter
4.2. Yield and Yield Parameter
4.3. Economics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panda, D.; Nayak, A.K.; Mohanty, S. Nitrogen management in rice. Oryza 2019, 56, 125–135. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Jat, M.L.; Rana, D.S.; Khatri-Chhetri, A.; Jat, H.S.; Bijarniya, D.; Sutaliya, J.M.; Kumar, M.; Singh, L.K.; Jat, R.K.; et al. Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Sci. Rep. 2021, 11, 1564. [Google Scholar] [CrossRef] [PubMed]
- Bijay, S.; Singh, Y. Management and Use Efficiency of Fertilizer Nitrogen in Production of Cereals in India; Issues and Strategies. J. Indian Nitrogen Manag. 2017, 10, 149–162. [Google Scholar]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Ram, M.S.; Shankar, T.; Maitra, S.; Adhikary, R.; Swamy, G.V.V.S.N. Productivity, nutrient uptake and nutrient use efficiency of summer rice (Oryza sativa) as influenced by integrated nutrient management practices. Crop Res. 2020, 55, 65–72. [Google Scholar] [CrossRef]
- GOI. Agricultural Statistics at a Glance 2018; Government of India Ministry of Agriculture and Farmers Welfare Department of Agriculture, Cooperation and Farmers Welfare, Directorate of Economics and Statistics, Government of India; GOI: New Delhi, India, 2018; pp. 87–89. [Google Scholar]
- Shankar, T.; Banerjee, M.; Malik, G.C.; Dutta, S.; Maiti, D.; Maitra, S.; Alharby, H.; Bamagoos, A.; Hossain, A.; Ismail, I.A.; et al. The productivity and nutrient use efficiency of rice–rice–black gram cropping sequence are influenced by location specific nutrient management. Sustainability 2021, 13, 3222. [Google Scholar] [CrossRef]
- Mohapatra, T.; Nayak, A.K.; Raja, R.; Shahid, M. Vision 2050; Central Rice Research Institute; Indian Council of Agricultural Research: Cuttack, India, 2013; p. 26. [Google Scholar]
- Pathak, H.; Tripathi, R.; Jambhulkar, N.N.; Bisen, J.P.; Panda, B.B. Eco-Regional Rice Farming for Enhancing Productivity, Profitability and Sustainability; NRRI Research Bulletin No. 22; ICAR-National Rice Research Institute: Cuttack, India, 2020; p. 28. [Google Scholar]
- FAOSTAT 2020. Available online: http://www.fao.org/faostat/en/#data/RFN; http://www.fao.org/faostat/en/#data/RL (accessed on 17 March 2020).
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; Van, K.C. Effciency of fertilizer nitrogen in cereal production: Retrospect and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Adhikari, C.; Bronson, K.F.; Panaullah, G.M.; Regmi, A.P.; Saha, P.K.; Dobermann, A.; Olk, D.C.; Hobbs, P.R.; Pasuquin, E. On-farm N supply and N nutrition in the rice wheat system of Nepal and Bangladesh. Field Crop. Res. 1999, 64, 273–286. [Google Scholar] [CrossRef]
- Surekha, K.; Kumar, M.R.; Nagendra, V.; Sailaja, N.; Satyanarayana, T. 4R Nitrogen management for sustainable rice production. Better Crop. South Asia 2016, 10, 16. [Google Scholar]
- Alam, M.K.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) Establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- Bhatt, R.; Singh, P.; Hossain, A.; Timsina, J. Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. Paddy Water Environ. 2021, 1–21. [Google Scholar] [CrossRef]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Pathak, H.; Tewari, A.N.; Sankhyan, S.; Dubey, D.S.; Singh, M.U.; Jain, V.K.N.; Bhatia, A. Direct-seeded rice: Potential, performance and problems—A review. Curr. Adv. Agric. Sci. 2011, 3, 77–88. [Google Scholar]
- De Datta, S.K. Technology development and the spread of direct seeded flooded rice in Southeast Asia. Exp. Agric. 1986, 22, 417–426. [Google Scholar] [CrossRef]
- Pandey, S.; Velasco, L.E.; Suphanchaimat, N. Economics of direct seeding in northeast Thailand. In Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopez, K., Hardy, B., Eds.; IRRI: Manila, Philippines, 2002; pp. 139–160. [Google Scholar]
- Thet, K.; Ko, K.M.M.; Ngwe, K.; Min, T.D.; Win, K.K. Performance of Different Varieties in Direct Seeded Rice (Oryza sativa L.) as Affected by Different Sowing Methods. J. Agric. Res. 2019, 6, 65–71. [Google Scholar]
- Bhatt, R.; Kukal, S.S. Direct Seeded Rice in South Asia. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 217–252. [Google Scholar] [CrossRef]
- Ali, A.M.; Thind, H.S.; Singh, V.; Singh, B. A framework for refining nitrogen management in dry direct-seeded rice using GreenSeeker™ optical sensor. Comput. Electron. Agric. 2015, 110, 114–120. [Google Scholar] [CrossRef]
- Ali, M.A.; Ladha, J.K.; Rickman, J.; Lales, J.S. Comparison of different methods of rice establishment and nitrogen management strategies for lowland rice. J. Crop Improv. 2006, 16, 173–189. [Google Scholar] [CrossRef]
- Ahmed, S.; Latiful, B. Performance of Aus Rice in Different Tillage Systems and Crop Establishment Method in Southwest Bangladesh. J. Exp. Sci. 2018, 9, 05–08. [Google Scholar] [CrossRef]
- Chen, S.; Ge, Q.; Chu, G.; Xu, C.; Yan, J.; Zhang, X.; Wang, D. Seasonal differences in the rice grain yield and nitrogen use efficiency response to seedling establishment methods in the Middle and Lower reaches of the Yangtze River in China. Field Crop. Res. 2017, 205, 157–169. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Awan, T.H.; Abugho, S.B.; Evengelista, G.; Sudhir, Y. Effect of crop establishment methods and weed control treatments on weed management, and rice yield. Field Crop. Res. 2015, 172, 72–84. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.K.; Kaur, J.; Jat, M.L.; Martin, K.L.; Singh, Y.; Singh, V.; Chandna, P.; Chaudhary, O.P.; Gupta, R.K.; et al. Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agron. Sustain. Dev. 2011, 31, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A. Development of an algorithm for optimizing nitrogen fertilization in wheat using GreenSeeker proximal optical sensor. Exp. Agric. 2020, 56, 688–698. [Google Scholar] [CrossRef]
- Ramesh, C.; Pavithra, S. Fertiliser Use and Imbalance in India Analysis of States. Econ. Political Wkly. 2015, 50, 98–104. [Google Scholar]
- Pathak, H. Nitrogen and climate change: Interactions, impacts, mitigation and adaptation. J. Indian Soc. Soil Sci. 2013, 60, 109–119. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. J. Agron. 1951, 54, 464–465. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 183–193. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determinations of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Hanway, J.J.; Heidel, H. Soil analyses methods as used in Iowa State College Soil Testing Laboratory. Iowa Agric. 1952, 57, 1–31. [Google Scholar]
- Adhikari, B.; Bag, M.K.; Bhowmick, M.K.; Kundu, C. Status Paper on Rice in West Bengal; Hyderabad (India): Rice Knowledge Management Portal (RKMP). Directorate of Rice Research, Rajendranagar, Hyderabad 500030, India. 2011, pp. 1–47. Available online: http://www.rkmp.co.in/sites/default/files/ris/rice-state-wise/Status%20Paper%20on%20Rice%20in%20West%20Bengal.Pdf (accessed on 28 April 2021).
- Pampolino, M.F.; Witt, C.; Pasuquin, J.M.; Johnston, A.; Fisher, M.J. Development approach and evaluation of the Nutrient Expert software for nutrient management in cereal crops. Comput. Electron. Agric. 2012, 88, 103–110. [Google Scholar] [CrossRef]
- Ali, A.M.; Abou-Amer, I.; Ibrahim, S.M. Using GreenSeeker active optical sensor for optimizing maize nitrogen fertilization in calcareous soils of Egypt. Arch. Agron. Soil Sci. 2018, 64, 1083–1093. [Google Scholar] [CrossRef]
- Singh, B.; Singh, V.; Purba, J.; Sharma, R.K.; Jat, M.L.; Singh, Y.; Thind, H.S.; Gupta, R.K.; Chaudhary, O.P.; Chandna, P.; et al. Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis. Agric. 2015, 16, 455–475. [Google Scholar] [CrossRef]
- Xue, L.; Li, G.; Qin, X.; Yang, L.; Zhang, H. Topdressing nitrogen recommendation for early rice with an active sensor in South China. Precis. Agric. 2014, 15, 95–110. [Google Scholar] [CrossRef]
- Nayak, A.K.; Mohanty, S.; Raja, R.; Shahid, M.; Lal, B.; Tripathi, R.; Bhattacharyya, P.; Panda, B.B.; Gautam, P.; Thilagam, V.K.; et al. Customized Leaf Colour Chart for Nitrogen Management in Rice for Different Ecologies. CRRI News Letter January–March. 2013, 34, 14. Available online: http://www.crri.nic.in/CRRI_newsletter/crnljanmar13.pdf (accessed on 20 May 2021).
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sestak, Z.; Catsky, J.; Jarvis, P.G. Plant Photosynthetic Production. Manual of Methods; Junk, W., Ed.; The Hague: The Netherlands, 1971; pp. 818–824. [Google Scholar]
- Watson, D.J. The physiological basis of variation in yield. Adv. Agron. 1952, 4, 101–145. [Google Scholar]
- Cochran, W.G.; Cox, G.M. Experimental Design; Asia Publishing House: Calcutta, India, 1977; pp. 142–181. [Google Scholar]
- Yogeswari, D.; Porpavai, S. Effect of crop establishment methods and irrigation scheduling on growth and yield of rice. Int. J. Chem. Stud. 2018, 6, 32–35. [Google Scholar]
- Gill, J.S.; Walia, S.S.; Gill, R.S. Direct seeded rice: An alternative rice establishment technique in north-west India—A review. Int. J. Adv. Res. 2014, 2, 375–386. [Google Scholar]
- Gupta, G.; Shrestha, A.; Shrestha, A.; Amagain, L.P. Evaluation of different nutrient management practice in yield and growth in rice in Morang district. Adv. Plants Agric. Res. 2016, 3, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.T.; Wu, Z.; Jiang, T.H.; Liu, F.; Zhang, Z.J. Effects of nitrogen reduction at different growth stages on rice population production characteristics and preliminary analysis of nitrogen reduction strategies. J. Yangzhou Univ. 2020, 65, 52–58. [Google Scholar]
- Moldenhauer, K.A.K.; Gibbons, J.H. Rice Morphology and Development. In Rice: Origin, History, Technology, and Production; Smith, C.W., Dilday, R.H., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 103–128. [Google Scholar]
- Huang, M.; Zou, Y.; Jiang, P.; Xia, B.; Feng, Y.; Cheng, Z.; Mo, Y. Yield Component Differences between Direct-Seeded and Transplanted Super Hybrid Rice. Plant Prod. Sci. 2011, 14, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Peng, S.; Sanico, A.L.; Liu, H. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. J. Plant Nutr. 2003, 26, 1203–1222. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Kumhar, B.L.; Chavan, V.G.; Rajemahadik, V.A.; Kanade, V.M.; Dhopavkar, R.V.; Tilekar, R.N. Effect of different rice establishment methods on growth, yield and different varieties during kharif season. Int. J. Plant Ani Environ. Sci. 2016, 6, 127–132. [Google Scholar]
- Liu, H.; Hussain, S.; Zheng, M.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, C.; Li, Y.; Zhu, L.; Liu, S.; Yan, L.; Feng, G.; Gao, Q. Agronomic and environmental benefits of nutrient expert on maize and rice in Northeast China. Environ. Sci. Pollut. Res. 2020, 27, 28053–28065. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Thind, H.S.; Sharma, S.; Singh, V. Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field Crop. Res. 2014, 161, 11–15. [Google Scholar] [CrossRef]
- Sharma, V.; Bali, A.S.; Kachroo, D. Effect of different establishment methods and sowing schedules on growth and yield of hybrid rice (Oryza sativa) and their after effects on succeeding wheat (Triticum aestivum) in rice—Wheat cropping system. Econ. Aff. 2016, 61, 487–493. [Google Scholar] [CrossRef]
- Budhathoki, S.; Amgain, L.P.; Subedi, S.; Iqbal, M.; Nikee Shrestha, N.; Aryal, S. Assessing growth, productivity and profitability of drought tolerant rice using nutrient expert—Rice and other precision fertilizer management practices in Lamjung, Nepal. Acta Sci. Agric. 2018, 2, 153–158. [Google Scholar] [CrossRef]
- Kumar, T.; Singh, G.; Singh, R.A.; Shahi, A.K.; Kumar, M.; Rajput, S.K.S. Effect of site-specific nutrient management on productivity and profitability of rice in low land situation. Int. J. Chem. Stud. 2019, 7, 1963–1966. [Google Scholar]
- Pateel, V.L.; Veeresh, H.; Narayana, K.R.; Gaddi, A.K.; Basavanneppa, M.A. Use of chlorophyll meter and optical sensors for nitrogen management in direct seeded rice. J. Farm Sci. 2017, 30, 365–369. [Google Scholar]
- Alam, M.; Sarker, S.; Momin, M.A. Profitability of rice production using a drum seeder. J. Bangladesh Agril. Univ. 2007, 5, 135–144. [Google Scholar]
- Ramesh, S.; Chandrasekaran, B. Evaluation of crop establishment methods and nitrogen management strategies on realizing yield potential of rice hybrid ADTRH 1. Asian J. Plant Sci. 2007, 6, 239–251. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; Huo, Z. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 2017, 16, 984–991. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 2010, 61, 3177–3189. [Google Scholar] [CrossRef] [Green Version]
- Bhagavathi, M.S.; Baradhan, G.; Suresh Kumar, S.M.; Arivudainambi, S. Effect of different crop establishment methods on rice (Oryza sativa L.): A review. Plant Arch. 2020, 20, 3416–3422. [Google Scholar]
- Bana, R.C.; Yadav, S.S.; Shivran, A.C.; Singh, P.; Kudi, V.K. Site-specific nutrient management for enhancing crop productivity. Int. Res. J. Pure Appl. Chem. 2020, 21, 17–25. [Google Scholar] [CrossRef]
- Rickman, J.F.; Pyseth, M.; Bunna, S.; Sinath, P. Direct seeding of rice in Cambodia. In Increased Lowland Rice Production in the Mekong Region; Fukai, S., Basnayake, J., Eds.; ACIAR: Canberra, ACT, Australia, 2001; p. 101. [Google Scholar]
- Lav, B.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.S.; Gathala, M.; Pathak, H. Saving of water and labour in rice-wheat systems with no-tillage and direct seeding technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar]
- Kaur, J.; Singh, A. Direct seeded rice: Prospects, problems/constraints and researchable issues in India. Curr. Agric. Res. J. 2017, 5, 13–32. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Mouriya, A.K.; Kumar, V. Productivity and economics of direct seeded rice. Int. J. Sci. Environ. Technol. 2018, 7, 2033–2039. [Google Scholar]
- Rashid, M.H.; Alam, M.M.; Khan, M.A.H.; Ladha, J.K. Productivity and resource use of direct-(drum)-seeded and transplanted rice in puddled soils in rice–rice and rice–wheat ecosystems. Field Crop. Res. 2009, 113, 274–281. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Wang, X.; Xiong, D.; Wang, F. Comparing the Grain Yields of Direct-Seeded and Transplanted Rice: A Meta-Analysis. Agronomy 2019, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Evangelista, G.; Faronilo, J.; Humphreys, E.; Henry, A.; Fernandez, L. Establishment method effect on crop performance and water productivity of irrigated rice in the tropics. Field Crop. Res. 2014, 166, 112–127. [Google Scholar] [CrossRef]
- Gopal, R.; Jat, R.K.; Malik, R.K.; Kumar, V.; Alam, M.M.; Jat, M.L.; Mazid, M.A.; Saharawat, Y.S.; McDonald, A.; Gupta, R. Direct Dry Seeded Rice Production Technology and Weed Management in Rice Based Systems; Technical Bulletin; International Maize and Wheat Improvement Center: New Delhi, India, 2010; p. 28. [Google Scholar]
- Gupta, R.K.; Ladha, J.K.; Singh, S.; Singh, R.; Jat, M.L.; Saharawat, Y.; Singh, V.P.; Singh, S.S.; Singh, G.; Sah, G.; et al. Production Technology for Direct Seeded Rice; Rice–Wheat Consortium Technical Bulletin 8; Rice–Wheat Consortium for the Indo-Gangetic Plains; NASC: New Delhi, India, 2006; p. 16. [Google Scholar]
- Bell, M.A.; Rickman, J.; Castro, J.E.C.; Actan, L.B.; McNamara, J. Precision land leveling for rice production in Asia. In Proceedings of the International Agricultural Engineering Conference; Salokhe, V.M., Jianxia, Z., Eds.; Asian Institute of Technology (AIT): Bangkok, Thailand, 1998; pp. 257–264. [Google Scholar]
- Rahman, A.; Salam, M.A.; Kader, M.A. Effect of crop establishment methods on the yield of boro rice. J. Bangladesh Agric. Univ. 2019, 17, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Goudra, S.; Mudalagiriyappa, D.C.; Kalyana, K.N.; Murthy, P.K.; Kumar, M.P. Influence of precision nitrogen management through crop sensors on growth and yield of aerobic rice (Oryza sativa L.). J. Pharm. Phytochem. 2019, 8, 2409–2413. [Google Scholar]
- Ladha, J.K.; Jat, M.L.; Stirling, C.M.; Chakraborty, D.; Pradhan, P.; Krupnik, T.J.; Sapkota, T.B.; Pathak, H.; Rana, D.S.; Tesfaye, K.; et al. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Adv. Agron. 2020, 163, 39–116. [Google Scholar] [CrossRef]
- Kandel, S.; Shrestha, A.; Neupane, M.P. Assessing the growth and productivity of rice under different fertilizer management practices grown under SRI Production in Kavre, Midhill of Nepal. Ann. Rev. Res. 2018, 3, 555614. [Google Scholar]
- Liu, X.; Ferguson, R.B.; Zheng, H.; Cao, Q.; Tian, Y.; Cao, W.; Zhu, Y. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China). Sensors 2017, 17, 672. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Amgain, L.; Subedi, R.; Shrestha, P.; Shahi, S. Productivity and Profitability Analysis of Old Aged Hybrid Rice Seedling Using Nutrient-Rice Expert and Other Precision Nutrient Management Practices at Lamjung, Nepal. Int. J. Appl. Sci. Biotechnol. 2018, 6, 232–237. [Google Scholar] [CrossRef]
- Hossain, M.F.; Salam, M.A.; Uddin, M.R.; Pervez, Z.; Sarkar, M.A.R. A comparative study of direct seeding versus transplanting method on the yield of aus rice. J. Agron. 2002, 1, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Raj, S.K.; Jose, N.; Mathew, R.; Leenakumary, S. Influence of stand establishment techniques on yield and economics of rice cultivation in Kuttanad. Int. J. Sci. Res. Publ. 2013, 3, 1–6. [Google Scholar]
- Seth, M.; Thakurand, D.R.; Manuja, S. Effect of tillage and site-specific nutrient management on productivity of rice-wheat cropping system. J. Crop Weed. 2019, 15, 115–119. [Google Scholar]
- Krishnakumar, S.; Haefelem, S. Integrated nutrient management and LCC based nitrogen management on soil fertility and yield of rice (Oryza sativa L.). Sci. Res. Essays 2013, 8, 2059–2067. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Panwar, A.S.; Naresh, R.K.; Singh, P.; Mahajan, N.C.; Chowdhary, U.; Kumar, S.; Malik, M.; Meena, A.L.; Ghashal, P.C.; et al. Improving Rice-wheat cropping system through precision nitrogen management: A review. J. Pharma. Phytochem. 2018, 7, 1119–1128. [Google Scholar]
- Kumar, A.; Jnanesha, A.C. Effect of Crop Establishment Methods on Growth Yield and Water Productivity of Rice. Int. J. Agric. Sci. 2017, 8, 40–45. [Google Scholar]
- Devkota, K.P.; Khanda, C.M.; Beebout, S.J.; Mohapatra, B.K.; Singleton, G.R.; Puskur, R. Assessing alternative crop establishment methods with a sustainability lens in rice production systems of Eastern India. J. Clean. Prod. 2020, 244, 118835. [Google Scholar] [CrossRef]
- Dobermann, A.; Witt, C.; Dawe, D.; Gines, G.C.; Nagarajan, R.; Satawathananont, S.; Son, T.T.; Tan, P.S.; Wang, G.H.; Chien, N.V.; et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crop. Res. 2002, 74, 37–66. [Google Scholar] [CrossRef]
- Qureshi, A.; Singh, D.K.; Pandey, P.C.; Singh, V.P.; Raverkar, K.P. Site specific nutrient management approaches for enhancing productivity and profitability in rice and wheat under rice-wheat cropping system. Int. J. Agric. Sci. 2016, 8, 2838–2842. [Google Scholar]
Particulars | Value | Methods Followed |
---|---|---|
Soil textural classes | Sandy loam | - |
Sand (%) | 72.6 | Hydrometer method [31] |
Silt (%) | 17.8 | Hydrometer method [31] |
Clay (%) | 9.6 | Hydrometer method [31] |
Soil pH | 6.06 | Determined with the help of pH meter in 1:2.5 ratio of soil water suspension [32] |
Electrical conductivity (EC) (dS m−1) | 0.22 | Using conductivity meter [32] |
Organic carbon (%) | 0.36 | Volumetric weight combustion method [33] |
Available nitrogen (kg ha−1) | 185 | Alkaline permanganate method [34] |
Available phosphorus (kg ha−1) | 26.6 | Brays method No.1 [35] |
Available potassium (kg ha−1) | 270.6 | Flame photometer method [36] |
Treatment | Total N Applied | Total P2O5 Applied | Total K2O Applied |
---|---|---|---|
(kg ha−1) | (kg ha−1) | (kg ha−1) | |
Farmer’s practice (FP) | |||
Conventional transplanted rice (TPR) | 68 | 46 | 37 |
Direct seeded rice (DSR) | 68 | 46 | 37 |
Drum seeded rice (DRR) | 68 | 46 | 37 |
State recommended based N management (SR) | |||
Conventional transplanted rice (TPR) | 80 | 40 | 40 |
Direct seeded rice (DSR) | 80 | 40 | 40 |
Drum seeded rice (DRR) | 80 | 40 | 40 |
Nutrient expert based N management (NE) | |||
Conventional transplanted rice (TPR) | 118 | 37 | 51 |
Direct seeded rice (DSR) | 118 | 37 | 51 |
Drum seeded rice (DRR) | 118 | 37 | 51 |
Green seeker based N management (GS) | |||
Conventional transplanted rice (TPR) | 92.9 | 37 | 51 |
Direct seeded rice (DSR) | 95.3 | 37 | 51 |
Drum seeded rice (DRR) | 97.6 | 37 | 51 |
Leaf color chart based N management (LCC) | |||
Conventional transplanted rice (TPR) | 79.6 | 40 | 40 |
Direct seeded rice (DSR) | 79.6 | 40 | 40 |
Drum seeded rice (DRR) | 79.6 | 40 | 40 |
Treatments | Plant Height (cm) | Number of Tillers m−2 | ||||
---|---|---|---|---|---|---|
At harvest | At 75 DAS | |||||
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
Establishment method | ||||||
TPR | 117.7 a | 102.1 b | 109.9 | 350.9 a | 343.5 a | 347.2 a |
DSR | 111.8 a | 118.6 a | 115.2 | 321.2 b | 329.4 a | 325.9 ab |
DRR | 114.4 a | 107.0 b | 110.6 | 299.5 b | 306.5 b | 300.0 b |
SEm± | 2.0 | 2.0 | 1.4 | 7.1 | 6.9 | 7.0 |
CD at 5% | NS | 7.9 | NS | 27.8 | 27.2 | 27.7 |
Nitrogen management | ||||||
FP | 107.0 c | 101.8 c | 104.4 d | 285.4 c | 281.4 c | 283.7 c |
SR | 111.9 bc | 104.4 c | 108.2 c | 306.8 bc | 312.6 b | 308.6 b |
NE | 122.2 a | 119.2 a | 120.7 a | 347.2 a | 360.9 a | 353.2 a |
GS | 118.4 ab | 113.0 ab | 115.7 b | 364.7 a | 357.0 a | 360.0 a |
LCC | 113.7 abc | 107.7 bc | 110.7 c | 315.2 b | 320.4 b | 316.3 b |
SEm± | 3.2 | 2.6 | 2.1 | 8.2 | 8.8 | 8.2 |
CD at 5% | 9.4 | 7.7 | 5.9 | 23.9 | 25.8 | 23.9 |
Interaction effect | NS | NS | NS | NS | NS | NS |
Treatments | Dry Matter Accumulation (gm−2) | Leaf Area Index (LAI) | ||||
---|---|---|---|---|---|---|
at Harvest | at 95 DAS | |||||
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
Establishment method | ||||||
TPR | 1274.1 a | 1129.2 b | 1201.7 a | 4.97 a | 4.52 | 4.74 a |
DSR | 1020.8 b | 1462.4 a | 1241.6 a | 4.70 a | 4.39 | 4.54 a |
DRR | 980.9 b | 1093.9 b | 1037.4 b | 4.12 b | 4.24 | 4.18 b |
SEm± | 22.1 | 45.9 | 29.6 | 0.08 | 0.13 | 0.08 |
CD at 5% | 87.0 | 180.3 | 116.4 | 0.33 | NS | 0.26 |
Nitrogen management | ||||||
FP | 948.2 c | 1051.1 c | 999.6 b | 4.22 c | 3.97 c | 4.09 d |
SR | 1022.6 c | 1163.0 bc | 1092.8 b | 4.30 c | 4.23 bc | 4.27 d |
NE | 1278.2 a | 1428.5 a | 1353.4 a | 5.15 a | 4.74 a | 4.95 a |
GS | 1169.9 b | 1315.2 ab | 1242.5 a | 4.82 ab | 4.53 ab | 4.67 b |
LCC | 1040.9 c | 1184.8 bc | 1112.9 b | 4.49 bc | 4.45 ab | 4.47 c |
SEm± | 35.6 | 77.3 | 43.2 | 0.12 | 0.12 | 0.08 |
CD at 5% | 103.9 | 225.5 | 126.2 | 0.34 | 0.35 | 0.24 |
Interaction effect | NS | NS | NS | NS | NS | NS |
Treatments | Effective Tillers m−2 | Filled Grains/Panicle | Test Weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | ||||
Establishment method | ||||||||||||
TPR | 287.6 a | 277.2 a | 282.4 a | 104.2 a | 96.8 a | 100.5 a | 26.4 | 25.8 | 26.1 | |||
DSR | 279.7 a | 263.4 ab | 271.5 a | 86.2 b | 93.3 b | 89.7 b | 25.7 | 26.0 | 25.9 | |||
DRR | 245.2 b | 240.6 b | 242.9 b | 83.1 b | 86.6 b | 84.8 b | 25.0 | 24.9 | 25.0 | |||
SEm± | 7.9 | 7.0 | 5.2 | 3.3 | 2.8 | 2.2 | 0.4 | 0.5 | 0.3 | |||
CD at 5% | 30.8 | 27.3 | 17.1 | 13.0 | NS | 7.0 | NS | NS | NS | |||
Nitrogen Management | ||||||||||||
FP | 231.9 c | 249.7 b | 240.8 c | 79.2 b | 82.5 c | 80.9 d | 23.6 | 24.7 | 24.1 | |||
SR | 249.4 bc | 253.1 b | 251.3 c | 86.2 b | 84.3 c | 85.3 c | 25.2 | 25.5 | 25.3 | |||
NE | 295.4 a | 265.2 ab | 280.3 ab | 97.4 a | 97.5 b | 97.5 b | 26.4 | 26.6 | 26.5 | |||
GS | 313.9 a | 277.9 a | 295.9 a | 106.1 a | 107.1 a | 106.6 a | 26.4 | 25.6 | 26.0 | |||
LCC | 263.4 b | 256.1 b | 259.8 bc | 86.9 b | 89.6 bc | 88.3 c | 27.0 | 25.6 | 26.3 | |||
SEm± | 9.3 | 6.6 | 5.7 | 3.2 | 3.1 | 2.2 | 0.9 | 0.7 | 0.6 | |||
CD at 5% | 27.0 | 19.2 | 16.1 | 9.2 | 9.2 | 6.3 | NS | NS | NS | |||
Interaction effect | NS | NS | NS | NS | NS | NS |
Treatments | Grain Yield (kg ha) | Straw Yield (kg ha) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | |
Establishment method | ||||||
TPR | 4990 a | 4513 a | 4751 a | 6359 a | 5940 a | 6150 a |
DSR | 4491 a | 4671 a | 4581 a | 5676 b | 5594 a | 5635 a |
DRR | 3750 b | 4095 b | 3923 b | 5130 c | 5002 b | 5066 b |
SEm± | 136 | 99 | 84 | 138 | 126 | 93 |
CD at 5% | 534.3 | 390.1 | 274.8 | 542.7 | 492.7 | 304.4 |
Nitrogen Management | ||||||
FP | 4114 b | 4024 c | 4069 c | 5151 c | 5050 d | 5100 d |
SR | 4155 b | 4188 bc | 4172 bc | 5543 bc | 5278 cd | 5411 c |
NE | 4682 a | 4653 ab | 4668 a | 6191 a | 5967 a | 6079 a |
GS | 4795 a | 4906 a | 4851 a | 5981 ab | 5744 ab | 5862 ab |
LCC | 4306 ab | 4360 abc | 4333b | 5742 ab | 5520 bc | 5631 bc |
SEm± | 161 | 186 | 123 | 183 | 115 | 108 |
CD at 5% | 470.8 | 541.9 | 349.7 | 533.1 | 336.3 | 307.0 |
Interaction effect | NS | NS | NS | NS | NS | NS |
Treatments | Gross Return (Rs/ha) | Net Return (Rs/ha) | Return per Rupee Invested (Rs/ha) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | Pooled | 2017 | 2018 | Pooled | 2017 | 2018 | Pooled | ||||
Establishment method | ||||||||||||
TPR | 115,257 a | 104,985 a | 110,121 a | 67,709 a | 56,830 b | 62,269 a | 2.42 a | 2.18 b | 2.30 b | |||
DSR | 103,548 b | 106,450 a | 104,999 a | 62,549 a | 64,902 a | 63,726 a | 2.53 a | 2.56 a | 2.54 a | |||
DRR | 88,020 c | 93,724 b | 90,872 b | 46,007 b | 51,111 b | 48,559 b | 2.09 b | 2.20 b | 2.15 c | |||
SEm± | 2947 | 1919 | 1758 | 2947 | 1919 | 1758 | 0.07 | 0.05 | 0.04 | |||
CD at 5% | 11,567 | 7534 | 5733 | 11,567 | 7534 | 5733 | 0.27 | 0.18 | 0.14 | |||
Nitrogen management | ||||||||||||
FP | 94,656 c | 92,627 b | 93,642 c | 51,359 b | 48,730 c | 50,045 c | 2.19 b | 2.12 c | 2.16 c | |||
SR | 96,965 c | 96,501 b | 96,733 bc | 53,651 b | 52,586 bc | 53,118 bc | 2.23 b | 2.21 bc | 2.22 bc | |||
NE | 109,036 ab | 107,632 a | 108,334 a | 65,009 a | 63,004 ab | 64,007 a | 2.47 a | 2.42 ab | 2.44 a | |||
GS | 110,236 a | 111,283 a | 110,760 a | 66,583 a | 67,102 a | 66,843 a | 2.52 a | 2.52 a | 2.52 a | |||
LCC | 100,481 bc | 100,556 ab | 100,519 b | 57,173 ab | 56,649 ab | 56,911 b | 2.32 ab | 2.30 abc | 2.31 b | |||
SEm± | 3170 | 3569 | 2387 | 3170 | 3569 | 2387 | 0.07 | 0.08 | 0.05 | |||
CD at 5% | 9251 | 10415 | 6785 | 9251 | 10415 | 6785 | 0.21 | 0.23 | 0.15 | |||
Interaction effect NS | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanta, S.; Banerjee, M.; Malik, G.C.; Shankar, T.; Maitra, S.; Ismail, I.A.; Dessoky, E.S.; Attia, A.O.; Hossain, A. Productivity and Profitability of Kharif Rice Are Influenced by Crop Establishment Methods and Nitrogen Management in the Lateritic Belt of the Subtropical Region. Agronomy 2021, 11, 1280. https://doi.org/10.3390/agronomy11071280
Mohanta S, Banerjee M, Malik GC, Shankar T, Maitra S, Ismail IA, Dessoky ES, Attia AO, Hossain A. Productivity and Profitability of Kharif Rice Are Influenced by Crop Establishment Methods and Nitrogen Management in the Lateritic Belt of the Subtropical Region. Agronomy. 2021; 11(7):1280. https://doi.org/10.3390/agronomy11071280
Chicago/Turabian StyleMohanta, Samata, Mahua Banerjee, Ganesh Chandra Malik, Tanmoy Shankar, Sagar Maitra, Ismail Ahmed Ismail, Eldessoky S. Dessoky, Attia O. Attia, and Akbar Hossain. 2021. "Productivity and Profitability of Kharif Rice Are Influenced by Crop Establishment Methods and Nitrogen Management in the Lateritic Belt of the Subtropical Region" Agronomy 11, no. 7: 1280. https://doi.org/10.3390/agronomy11071280
APA StyleMohanta, S., Banerjee, M., Malik, G. C., Shankar, T., Maitra, S., Ismail, I. A., Dessoky, E. S., Attia, A. O., & Hossain, A. (2021). Productivity and Profitability of Kharif Rice Are Influenced by Crop Establishment Methods and Nitrogen Management in the Lateritic Belt of the Subtropical Region. Agronomy, 11(7), 1280. https://doi.org/10.3390/agronomy11071280