Understanding the Dynamic of Rice Farming Systems in Southern Mozambique to Improve Production and Benefits to Smallholders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Chókwè Irrigation Scheme (CIS)
2.2. Data Collection
Household Survey
2.3. Data Analysis
2.3.1. Typology of Rice Farming Systems
2.3.2. Crop Patterns across Farming Systems
2.3.3. Drivers and Predictors of Rice Yield Production and Farming Systems
2.3.4. Rice Farming Systems
2.3.5. Predicting Factors Affecting Production and Yield
3. Results
3.1. Socio-Economic and Demographic Characteristics
3.2. Typologies of Different Rice Farming Systems in the CIS
3.3. Farmer Choices Regarding Different Rice Farming Systems in the CIS
3.4. Production and Yield of Rice in the CIS
4. Discussion
4.1. Drivers of Rice Farming Systems
4.2. Promoting Factors and Constraints for Rice Productivity in the CIS
4.3. Policy Recommendations to Improve Production and Productivity for Smallholder Farmers in the CIS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAO Rice Market Monitor (RMM); FAO: Rome, Italy, 2018; Volume 21. [Google Scholar]
- Karimov, A.A.; Terefe, B.; Baye, K.; Hazard, B.; Abate, G.T.; Covic, N. Wheat contribution to food and nutrition security and leveraging opportunities for sustainability, nutrition and health outcomes. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; Volume 3, pp. 270–277. ISBN 9780128126882. [Google Scholar]
- FAO. FAO Rice Market Monitor; FAO: Rome, Italy, 2013; Volume 21. [Google Scholar]
- Fahad, S.; Adnan, M.; Noor, M.; Arif, M.; Alam, M.; Khan, I.A.; Ullah, H.; Wahid, F.; Mian, I.A.; Jamal, Y.; et al. Major Constraints for Global Rice Production. In Advances in Rice Research for Abiotic Stress Tolerance; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 1–22. ISBN 9780128143322. [Google Scholar]
- Sanchez, P.A. Soil fertility and hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef] [Green Version]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Adenle, A.A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
- Goldstone, J. Africa 2050: Demographic Truth and Consequences; Hoover: Stanford, CA, USA, 2019. [Google Scholar]
- Karingi, S.; Mwakubo, S. Promotion of Fertilizer Production, Cross-Border Trade and Consumption in Africa; African Development Bank Group: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Mutsvangwa-Sammie, E.P.; Manzungu, E.; Siziba, S. Key attributes of agricultural innovations in semi-arid smallholder farming systems in south-west Zimbabwe. Phys. Chem. Earth 2018, 105, 125–135. [Google Scholar] [CrossRef]
- Dixon, J. Concept and Classifications of Farming Systems; Elsevier: Ansterdam, The Netherlands, 2019; Volume 3, ISBN 9780081005965. [Google Scholar]
- Fagnombo, J.; Sintondji, L.O.; Malé, A.; Baggie, I.; Agbahungba, G.; Hamadoun, A.; Zwart, S.J. Predictors determining the potential of inland valleys for rice production development in West Africa. Appl. Geogr. 2018, 96, 86–97. [Google Scholar] [CrossRef]
- Sileshi, G.; Akinnifesi, F.K.; Ajayi, O.C.; Chakeredza, S.; Kaonga, M.; Matakala, P. Contributions of agroforestry to Ecosystem Services in the Miombo eco-region of Eastern and Southern Africa. Afr. J. Environ. Sci. Technol. 2007, 1, 68–80. [Google Scholar] [CrossRef]
- Makumba, W.; Janssen, B.; Oenema, O.; Akinnifesi, F.K.; Mweta, D.; Kwesiga, F. The long-term effects of a gliricidia-maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties. Agric. Ecosyst. Environ. 2006, 116, 85–92. [Google Scholar] [CrossRef]
- Kwesiga, F.; Akinnifesi, F.K.; Mafongoya, P.L.; McDermott, M.H.; Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 2003, 59, 173–186. [Google Scholar] [CrossRef]
- Mills, G.; Obasanjo, O.; Herbst, J.; Davis, D. Making Africa Work, 1st ed.; Ronan, M., Moodie, G., Eds.; Tafelberg: Cape Town, South Africa, 2017; ISBN 978-0-624-08027-5. [Google Scholar]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing Rice Production in Sub-Saharan Africa: Challenges and Opportunities. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2007; Volume 94, pp. 55–133. ISBN 0123741076. [Google Scholar]
- Maclean, J.; Hardy, B.; Hettle, G. Rice Almanac: Source Book for One of the Most Important Economic Activities on Earth, 4th ed.; IRRI: Los Baños, Philippines, 2013. [Google Scholar]
- Cunguara, B.; Thompson, T.; Davis, K. Mozambique: Desk Study of Extension and Advisory Services Developing Local Extension Capacity (DLEC) Project; Feed the Future: Washington, DC, USA, 2018. [Google Scholar]
- JICA. The Project for Rice Produtivity Improvement in Chokwe Irrigation Scheme; JICA: Maputo, Mozambique, 2014. [Google Scholar]
- Zeigler, R.S. Rice. Encyclopedia of Applied Plant Sciences. Encycl. Appl. Plant Sci. 2016, 3, 45–49. [Google Scholar] [CrossRef]
- Ministry of Agriculture. National Rice Development Strategy Mozambique; Ministry of Agriculture: Maputo, Mozambique, 2009.
- Alasia, A.; Low, J.; Soregaroli, C. Food Demand Changes in Mozambique: Assessing the Role of the Rice Sector; FAO: Rome, Italy, 2003. [Google Scholar]
- Instituto Nacional de Estatística. Anuário Estatístico; Instituto Nacional de Estatística: Maputo, Mozambique, 2018. [Google Scholar]
- Silici, L.; Bias, C.; Cavane, E. Sustainable Agriculture for Small-Scale Farmers in Mozambique; Internationa Institute for Environment and Development: London, UK, 2015. [Google Scholar]
- Benfica, R.; Cunguara, B.; Thurlow, J. Linking agricultural investments to growth and poverty: An economywide approach applied to Mozambique. Agric. Syst. 2018, 172, 91–100. [Google Scholar] [CrossRef]
- Dixon, J.; Gulliver, A.; Gibbon, D. Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing Word; FAO: Rome, Italy; Washington, DC, USA, 2001. [Google Scholar]
- MASA Plano Nacional de Arroz em Moçambique; Ministério de Agricultura e Segurança Alimentar: Maputo, Mozambique, 2019.
- Kajisa, K.; Payongayong, E. Potential of and constraints to the rice Green Revolution in Mozambique: A case study of the Chokwe irrigation scheme. Food Policy 2011, 36, 615–626. [Google Scholar] [CrossRef]
- Abbas, M. Chokwé: Efeitos Locais de Políticas Instáveis, Erráticas e Contraditórias; OMR: Maputo, Mozambique, 2018. [Google Scholar]
- De Sousa, L.S.; Wambua, R.M.; Raude, J.M.; Mutua, B.M. Assessment of Water Flow and Sedimentation Processes in Irrigation Schemes for Decision-Support Tool Development: A Case Review for the Chókwè Irrigation Scheme, Mozambique. AgriEngineering 2019, 1, 100–118. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, J.E.; Kotrlik, J.W. Organizational Research: Determining Appropriate Sample Size in Survey Research. Sci. Open 2001, 19, 43–50. [Google Scholar]
- Landry, J.; Chirwa, P.W. Analysis of the potential socio-economic impact of establishing plantation forestry on rural communities in Sanga district, Niassa province, Mozambique. Land Use Policy 2011, 28, 542–551. [Google Scholar] [CrossRef] [Green Version]
- MAE Perfil do Distrito do CHÓKWE Provincia de Gaza; Governo do Mozambique: Maputo, Mozambique, 2012.
- Temudo, M.P.; Talhinhas, P. Dynamics of change in a ‘female farming system’, Mbanza Kongo/Northern Angola. J. Peasant Stud. 2019, 46, 258–275. [Google Scholar] [CrossRef]
- Mota, A.A.; Lachore, S.T.; Handiso, Y.H. Assessment of food insecurity and its determinants in the rural households in Damot Gale Woreda, Wolaita zone, southern Ethiopia. Agric. Food Secur. 2019, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Michalscheck, M.; Mellon-Bedi, S.; Kuivanen, K.S.; Alvarez, S.; Adjei-Nsiah, S.; Descheemaeker, K. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. Wageningen J. Life Sci. 2016, 78, 153–166. [Google Scholar] [CrossRef]
- Ribeiro, P.F.; Nunes, L.C.; Beja, P.; Reino, L.; Santana, J.; Moreira, F.; Santos, J.L. A Spatially Explicit Choice Model to Assess the Impact of Conservation Policy on High Nature Value Farming Systems. Ecol. Econ. 2018, 145, 331–338. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology. Dev. Environ. Model. 2003, 24, 870. [Google Scholar] [CrossRef]
- García-Pérez, M.A.; Núñez-Antón, V.V. Cellwise Residual Analysis in Two-Way Contingency Tables. Educ. Psychol. Meas. 2003, 63, 825–839. [Google Scholar] [CrossRef]
- Sharpe, D. Your Chi-Square Test Is Statistically Significant: Now What? Practical Assessment, Research & Evaluation. Pract. Assessment Res. Eval. 2015, 20, 1. [Google Scholar]
- Mbanze, A.M.; Viera da Silva, C.; Ribeiro, N.S.; Silva, J.; Santos, J.L. A Livelihood and Farming System Approach for Effective Conservation Policies in Protected Areas of Developing Countries: The Case Study of the Niassa National Reserve in Mozambique. Land Use Policy 2020, 99, 1–16. [Google Scholar] [CrossRef]
- Chukwu, V.A.; Eze, A.; Osuafor, O.O. Socio-Economic Determinants of Adoption of Improved Rice Production Technologies among Rice Farmers in Ebonyi State, Nigeria: A Logit Regression. Agriculture 2016, 94, 39900–39908. [Google Scholar]
- Ducrot, R.; Leite, M.; Gentil, C.; Bouarfa, S.; Rollin, D.; Famba, S. Strengthening the capacity of irrigation schemes to cope with flood through improved maintenance: A collaborative approach to analySe the case of Chókwè, Mozambique. Irrig. Drain. 2018. [Google Scholar] [CrossRef] [Green Version]
- Menete, M.Z.L.; van Es, H.M.; Brito, R.M.L.; DeGloria, S.D.; Famba, S. Evaluation of system of rice intensification (SRI) component practices and their synergies on salt-affected soils. Field Crop. Res. 2008, 109, 34–44. [Google Scholar] [CrossRef]
- Ayoola, J.; Dangbegnon, C. Socio-economic factors influencing rice production among male and female farmers in Northern Guinea Savanna Nigeria: Lessons for promoting gender equity in action research. Agric. Biol. J. N. Am. 2011, 2, 1010–1014. [Google Scholar] [CrossRef]
- Kajisa, K. Constraints on Rice Sector Development in Mozambique; JICA: Tokyo, Japan, 2014; ISBN 8134098045. [Google Scholar]
- Ibraimo, M. Observador Rural; OMR: Mozambique, Maputo, 2017. [Google Scholar]
- Sraïri, M.T.; Ghabiyel, Y. Coping with the work constraints in crop-livestock farming systems. Ann. Agric. Sci. 2017, 62, 23–32. [Google Scholar] [CrossRef]
- Afolami, C.A.; Obayelu, A.E.; Agbonlahor, M.U.; Lawal-Adebowale, O. Socioeconomic Analysis of Rice Farmers and Effects of Group Formation on Rice Production in Ekiti and Ogun States of South-West Nigeria. J. Agric. Sci. 2012, 4, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Ismael, F.; Ndayiragije, A.; Fangueiro, D. New Fertilizer Strategies Combining Manure and Urea for Improved Rice Growth in Mozambique. Agronomy 2021, 11, 783. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Glover, S.; Jones, S. Can commercial farming promote rural dynamism in sub-Saharan Africa? Evidence from Mozambique. World Dev. 2019, 114, 110–121. [Google Scholar] [CrossRef]
Chókwè Scheme | Number of Villages Sampled | Total Small Rice Farms | No and (%) of Household Sampled |
---|---|---|---|
Upstream/Montante | 8 | 782 | 93 (11.9) |
Midstream/Sul | 12 | 1137 | 138 (12.1) |
Downstream/Rio | 5 | 994 | 110 (11.1) |
Total | 25 | 2913 | 341 (11.7) |
Variable Name/Cod | Type | Unity of Measuring/Class | Min-Max | Mean (SE) |
---|---|---|---|---|
Age of the household | Numerical | NA | 25–79 | 53.30 (±0.59) |
Education | Ordinal | 4 Classes | Illiterate (0)–high School (3) | 1.01 (±0.35) |
Distance to the farming field | Ordinal | 4 Classes | <30 min (1)–>60 min (4) | 2.47 (±0.58) |
Labour force in the family | Numerical | NA | 1–28 | 10.23 (±0.25) |
Permanent workers | Categorical | Dummy | 0–1 | NA |
Seeding | Numerical | Kg/ha | 20–300 | 50.98 (±1.47) |
Application of fertiliser | Categorical | dummy | 0–1 | NA |
Quantity of fertiliser | Numerical | Kg/ha | 0–200 | 22.58 (±2.35) |
Use of pesticides | Categorical | Dummy | 0–1 | NA |
Total rice activities | Numerical | NA | 0–3 | 1.3 (±0.04) |
Region | Categorical | Dummy | 0–1 | NA |
Variables | Frequency | Percentage % |
---|---|---|
Gender | ||
Male | 210 | 62 |
Female | 131 | 38 |
Total | 341 | 100 |
Age | ||
25–34 | 19 | 5.6 |
35–49 | 103 | 30 |
50–64 | 172 | 50 |
65–79 | 47 | 14 |
Total | 341 | 100 |
Level of education | ||
Illiterate | 59 | 17.3 |
Primary | 230 | 67.4 |
Secondary | 42 | 12.3 |
High School | 10 | 2.9 |
Total | 341 | 100 |
Use of fertilisers | ||
No | 256 | 75.1 |
Yes | 85 | 24.9 |
Total | 341 | 100 |
Farming System | |||||||
---|---|---|---|---|---|---|---|
Subsistence | Specialised Rice | Mixed Crops | Rice–Livestock | ||||
Variables | N = 105|30.8% | N = 85|24.9% | N = 61|17.9% | N = 90|26.4% | Mean | p-Value | Eta2 |
Rice (ton/ha) | 1.64 c | 3.24 a | 1.88 c | 2.49 b | 2.31 | 0.000 *** | 0.374 |
Livestock | 2.95 b | 3.59 b | 3.61 b | 18.46 a | 7.32 | 0.000 *** | 0.478 |
Other Crops | 1.61 c | 1.94 b | 3.59 a | 3.56 a | 2.56 | 0.000 *** | 0.729 |
Proportion of Households Growing Each Type of Other Crop (%) | |||||||
Vegetables | 6.7 | 15.3 | 60.7 | 61.1 | 31.8(112) | 0.000 *** | 0.54 |
Adjusted residual | −−− | −− | +++ | +++ | |||
Maize | 92.4 | 89.4 | 100 | 97.8 | 94.4(322) | 0.015 * | 0.175 |
Adjusted residual | − | + | |||||
Cowpeas | 26.7 | 37.6 | 100 | 100 | 61.9(211) | 0.000 *** | 0.705 |
Adjusted residual | −−− | −− | +++ | +++ | |||
Common beans | 35.2 | 35.3 | 0.0 | 1.1 | 19.9(68) | 0.000 *** | 0.430 |
Adjusted residual | +++ | ++ | −−− | −− | |||
Sweet potatoes | 0.0 | 16.5 | 98.4 | 95.6 | 46.9(160) | 0.000 *** | 0.898 |
Adjusted residual | −−− | −−− | +++ | +++ | |||
Other Characteristics of the Farming System | |||||||
Distance to the farming field # (min) | 1.06 b | 1.05 b | 1.98 a | 1.99 a | 1.47 | 0.000 *** | 0.190 |
Proportion of literate households | 81.0 | 74.1 | 91.8 | 86.7 | 82.7 | 0.028 * | 0.164 |
Adjusted residual | − | + |
Farming System | Drivers | Coefficient | Std. Error | Z-Value | Alf (α) | Exp(B) |
---|---|---|---|---|---|---|
Specialised Rice | Intercept | −1.492 | 1.126 | 1.756 | 0.185 | |
Region = mid + downstream | −0.262 | 0.245 | 1.148 | 0.284 | 0.769 | |
Age | −0.022 | 0.016 | 1.803 | 0.179 | 0.978 | |
Total rice activities | 0.114 | 0.326 | 0.123 | 0.726 | 1.121 | |
Distance to the farming field | −0.221 | 0.205 | 1.160 | 0.281 | 0.802 | |
Household labour force | 0.044 | 0.043 | 1.073 | 0.300 | 1.045 | |
Permanent labour force = Yes | 0.951 | 1.271 | 0.559 | 0.455 | 2.587 | |
Seeding (kg/ha) | 0.027 | 0.008 | 10.515 | 0.001 *** | 1.028 | |
Fertiliser application = No | −0.966 | 0.404 | 5.735 | 0.017 ** | 0.380 | |
Mixed Crops | Intercept | −5.206 | 1.629 | 10.213 | 0.001 ** | |
Region = mid + downstream | 0.884 | 0.297 | 8.882 | 0.003 ** | 2.421 | |
Age | −0.073 | 0.022 | 11.028 | 0.001 ** | 0.929 | |
Total rice activities | 1.480 | 0.436 | 11.533 | 0.001 ** | 4.392 | |
Distance to the farming field | 0.406 | 0.222 | 3.344 | 0.067 | 1.501 | |
Household labour force | 0.091 | 0.057 | 2.521 | 0.112 | 1.096 | |
Permanent labour force = Yes | 3.584 | 1.456 | 6.056 | 0.014 ** | 36.010 | |
Seeding (kg/ha) | −0.007 | 0.013 | 0.269 | 0.604 | 0.993 | |
Fertiliser application = No | 0.712 | 0.610 | 1.364 | 0.243 | 2.038 | |
Rice–livestock | Intercept | −7.030 | 1.565 | 20.170 | 0.000 *** | |
Region = mid + downstream | 0.879 | 0.287 | 9.404 | 0.002 ** | 2.408 | |
Age | −0.070 | 0.022 | 10.344 | 0.001** | 0.933 | |
Total rice activities | 0.952 | 0.408 | 5.440 | 0.020* | 2.590 | |
Distance to the farming field | 0.455 | 0.217 | 4.370 | 0.037* | 1.576 | |
Household labour force | 0.201 | 0.054 | 13.878 | 0.000*** | 1.223 | |
Permanent labour force = Yes | 2.461 | 1.436 | 2.936 | 0.087 | 11.718 | |
Seeding (kg/ha) | 0.022 | 0.010 | 4.687 | 0.030* | 1.022 | |
Fertiliser application = No | −0.123 | 0.525 | 0.055 | 0.815 | 0.884 |
Variables | Coefficient | Std. Error | T-Value | Alf(α) |
---|---|---|---|---|
Intercept | 0.227 | 0.473 | 0.479 | 0.633 |
Fertiliser (Kg/ha) | 0.007 | 0.003 | 1.938 | 0.056 * |
Seeds (Kg/ha) | 0.016 | 0.003 | 5.813 | 0.000 **** |
Pesticide (yes/no) | 0.531 | 0.335 | 1.583 | 0.117 |
Age of the household | 0.021 | 0.009 | 2.338 | 0.022 ** |
R2 | 0.5101 | |||
p-value | 0.000 **** | |||
Start AIC | −4.92 | |||
End AIC | −12.83 |
Variables | Coefficient | Std. Error | T-value | Alf(α) |
---|---|---|---|---|
Intercept | 0.317 | 0.150 | 2.119 | 0.035 ** |
Years of experience | 0.022 | 0.005 | 4.576 | 0.000 **** |
Total rice activities | −0.330 | 0.087 | −3.784 | 0.000 **** |
Amount of money paid for labour | 0.009 | 0.002 | 4.890 | 0.000 **** |
Permanent labour force | 2.669 | 0.259 | 10.302 | 0.000 **** |
R2 | 0.3501 | |||
R2 Adjusted | 0.3423 | |||
p-value | 0.000 **** | |||
Start AIC | −73.34 | |||
End AIC | −82.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismael, F.; Mbanze, A.A.; Ndayiragije, A.; Fangueiro, D. Understanding the Dynamic of Rice Farming Systems in Southern Mozambique to Improve Production and Benefits to Smallholders. Agronomy 2021, 11, 1018. https://doi.org/10.3390/agronomy11051018
Ismael F, Mbanze AA, Ndayiragije A, Fangueiro D. Understanding the Dynamic of Rice Farming Systems in Southern Mozambique to Improve Production and Benefits to Smallholders. Agronomy. 2021; 11(5):1018. https://doi.org/10.3390/agronomy11051018
Chicago/Turabian StyleIsmael, Fátima, Aires A. Mbanze, Alexis Ndayiragije, and David Fangueiro. 2021. "Understanding the Dynamic of Rice Farming Systems in Southern Mozambique to Improve Production and Benefits to Smallholders" Agronomy 11, no. 5: 1018. https://doi.org/10.3390/agronomy11051018
APA StyleIsmael, F., Mbanze, A. A., Ndayiragije, A., & Fangueiro, D. (2021). Understanding the Dynamic of Rice Farming Systems in Southern Mozambique to Improve Production and Benefits to Smallholders. Agronomy, 11(5), 1018. https://doi.org/10.3390/agronomy11051018