The Effect of Mycorrhizal Fungi and Organic Fertilizers on Quantitative and Qualitative Traits of Two Important Satureja Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Set Up, Soil Conditions, and Treatments Application
2.2. Measurement of LAI and Dry Mass Weight
2.3. Essential Oil Isolation, Compound Identification, and Analysis
2.4. Statistical Analysis
3. Results
3.1. Plant Height
3.2. Lateral Branch Number
3.3. Leaf Area Index
3.4. Plant Dry Mass Weight
3.5. Essential Oil Percentage
3.6. Carvacrol Content
3.7. Essential Oil Yield
3.8. Nitrogen Content
3.9. Phosphorus Content
3.10. Potassium Content
3.11. Iron Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadian, J.; Azizi, A.; Tabatabaei, M.F.; Naghavi, M.R.; Jamzad, Z.; Friedt, W. Analysis of the genetic diversity and affinities of different Iranian Satureja Species based on SAMPL markers. J. Med. Plant Res. 2010, 76, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Jamzad, Z. Thymus and Satureja Species of Iran; Publications of Research Institute of Forests and Rangelands: Tehran, Iran, 2009; 171p. [Google Scholar]
- Sefidkon, F.; Sadeghzadeh, L.; Timoori, M.; Asgari, F.; Ahmadi, S. Evaluation the effects of antimicrobial of essential oil of two savory species Satureja bachtiarica Bunge and Satureja khuzistanica Jamzad in two harvest stage. J. Med. Aromat. Plants 2007, 23, 174–182. [Google Scholar]
- Tavafi, M.; Ahmadvand, H.; Tamjidipoor, A.; Delfan, B.; Khalatbari, A.R. Satureja khozestanica essential oil ameliorates progression of diabetic nephropathy in uninephrectomized diabetic rats. Tissue Cell 2011, 43, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Samadi, N.; Zaree, R.; Bakhiar, H.; Salehnia, A.; Azimi, S. Comparative Antibacterial Efficacy of Endemic Satureja Khuzistanica Jamzad Essential Oil, Sodium Hypochlorite and Chlorhexidine Gluconate Solutions as Root Canal Irrigations. Dent. Res. J. 2011, 8, 28–32. [Google Scholar]
- Sepahvand, A.; Kordbache, P.; Delfhan, B.; Zeini, F.; Hashemi, S.; Mahmoodi, M. Antifungal effects of essential oil of Satureja khuzistanicais in the region of Lorestan with the method of in vitro. Iran. J. Yafteh. Lorestan Univ. Med. Sci. 2005, 2, 37–43. [Google Scholar]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef]
- Glauce, M.; Sokmen, M.; Daferera, D.; Agar, G.; Ozkan, H.; Kartal, N. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Eminagaoglu, O.; Tepe, B.; Yumrutas, O.; Akpulat, H.A.; Daferera, D.; Polissiou, M. The in vitro antioxidative properties of the essential oils and methanol extracts of Satureja spicigera (K. Koch.) Boiss. and Satureja cuneifolia ten. Food Chem. 2007, 100, 339–343. [Google Scholar] [CrossRef]
- Saleh Rastin, N. Biofertilizers and Their Role in Order to Reach to Sustainable Agriculture. In A Compilation of Papers of Necessity for the Production of Biofertilizers in Iran; Klavazi, K., Malakouti, J., Eds.; Nashr, Amouzesh Keshavarzi: Tehran, Iran, 2001; 54p. [Google Scholar]
- Heidari, Z.; Besharati, H.; Farahani, S.M. Effect of some chemical fertilizer and biofertilizer on quantitative and qualitative characteristics of saffron. Saffron Agron. Technol. 2014, 2, 187–189. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Gupta, M.; Kiran, S.; Gulati, A.; Singh, B.; Tewari, R. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-a biosynthesis of Aloe barbadensis Miller. Microbiol. Res. 2012, 167, 358–363. [Google Scholar] [CrossRef]
- Perramon, B.; Bosch-Serra, A.D.; Domingo, F.; Boixadera, J. Organic and mineral fertilization management improvements to a double annual cropping system under humid Mediterranean conditions. Eur. J Agron. 2016, 76, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, A.; Saghir Khan, M.D.; Amil, M.D. Interactive effect of diazotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur. J. Agron. 2003, 19, 15–21. [Google Scholar] [CrossRef]
- Nooshkam, A.; Majnonhossini, N.; Hadian, j.; Jahansoz, M.R.; Khavazi, K.; Salehnia, A.N.; Hedayatpoor, S. Study the effects of biological and chemical fertilizer on quantitative and qualitative characteristics of savory species (Satureja khuzestanica jamzad). J. Crop Prod. 2016, 84, 87–103. [Google Scholar]
- Gupta, M.L.; Prasad, A.; Ram, M.; Kumar, S. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield-related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Menthe arvensis) under field conditions. Bioresour. Technol. 2004, 81, 77–79. [Google Scholar] [CrossRef]
- Ahmadabadi, Z.; Ghajarsepanloo, M. Effect of organic fertilizer application on some soil physical properties. J. Soil Water Conserv. Res. 2012, 12, 99–116. [Google Scholar]
- Heidarpour, O.; Esmaielpour, B.; Soltani Toolarood, A.; Khorramdel, S. Effect of vermicompost on summer’s morphophysiological, biochemical, and yield characteristics savory (Satureja hortensis L.) under different irrigation regimes. J. Agroecol. 2020, 12, 507–522. [Google Scholar] [CrossRef]
- Hossaini, S.M.; Aghaalikhani, M.; Sefidkon, F.; Galivant, A. Vegetative and essential oil yields of savory (Satureja sahendica Burn.) affected by vermicompost and Redroot Pigweed (Amaranthus retroflexux L.) competition. Iran. J. Med. Aromat. Plants Res. 2015, 31, 342–356. [Google Scholar] [CrossRef]
- Naiji, M.; Souri, M.K. Evaluation of growth and yield of Savory (Satureja hortensis) under organic and biological fertilizers toward organic production. J. Plant Prot. 2015, 38, 93–103. [Google Scholar] [CrossRef]
- Rezvani Moghadam, P.; Amin Ghafoori, A.; Bakhshaei, S.; Jafari, L. Study the effects of biological and organic fertilizers on quantitative traits and essential oil of savoy (Satureja hortensis L.). J. Agric. 2013, 5, 105–112. (In Persian) [Google Scholar] [CrossRef]
- Tohidi Nejad, E.; Rastegari, F. Effects of biological and organic fertilizers on morphological parameters and chamazulene yield of German chamomile (Matricaria chamomilla L.) under drought stress condition. Iran. J. Med. Aromat. Plants 2019, 34, 949–962. [Google Scholar] [CrossRef]
- Miri, H.; Darzi, M.T. Effects of manure and phosphate solubilizing biofertilizer on growth, yield and essential oil quality of dragonhead (Dracocephalum moldavica L.) in Firouzkuh region. Field Crops Res. 2017, 49, 35–45. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- El-Tarabily, A.K.; Nassar, A.H.; Giles, E.; Hardy, S.J.; Sivasithamparam, K. Fish emulsion as a food base for rhizobacteria promoting the growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant Soil 2003, 252, 397–411. [Google Scholar] [CrossRef]
- Aranganathan, L.; Radhika Rajasree, S.R. Bioconversion of marine trash fish (MTF) to organic liquid fertilizer for effective solid waste management and its efficacy on Tomato growth, Manag. Environ. 2016, 27, 93–103. [Google Scholar] [CrossRef]
- Shahsavani, S.; Abbaspoor, A.; Parsaiyan, M.; Younkers, Z. Effect of fish waste, chemical fertilizer and biofertilizer on yield and yield components of bean (Vigna sinensis) and some soil properties. J. Pulses Res. 2017, 8, 45–59. (In Persian) [Google Scholar] [CrossRef]
- Sparkman, O.D. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert P. Adams. J. Am. Soc. Mass Spectrom. 2005, 16, 1902–1903. [Google Scholar] [CrossRef] [Green Version]
- Emami, A. Methods of Plant Analysis (Volume I). J. Inst. Soil Water 1996, 2, 128. (In Persian) [Google Scholar]
- Pellegrini, M.; Ricci, A.; Serio, A.; Chaves-López, C.; Mazzarrino, G.; D’Amato, S.; Paparella, A. Characterization of essential oils obtained from abruzzo autochthonous plants. Antioxidant and antimicrobial activities assessment for food application. Foods 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi Pirbalouti, A.; Moalem, E.; Yousefi, M.; Malekpoor, F.; Yousef-Naanaie, S. Influence of 315 ecological factors on carvacrol content of Satureja khuzistanica Jamzad. J. Essent. Oil Bear. Plants 2014, 14, 630–638. [Google Scholar] [CrossRef]
- Osoli, N.; Taleshi, K. Evaluation of the effects of biological fertilizers and vermicompost on biological characteristics and essential oil quality of fennel plant (Foeniculum vulgare Mill) Khoramabad. J. Appl. Res. Plant Ecophysiol. 2018, 4, 123–138. (In Persian) [Google Scholar]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth. A meta-analysis. J. Sustain. Agric 2019, 39, 34. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kapoor, R.; Bhatnagar, A.K. Effectiveness of two arbuscular mycorrhizal fungi on essential oil and artemisinin concentrations in three accessions of Artemisia annua L. Appl. Soil Ecol. 2008, 40, 174–181. [Google Scholar] [CrossRef]
- Amiri, P.; Azizi, M.; Nabizade, A. Effect of mycorrhizal fungi on yield and quality of maize under drought stress conditions. J. Agric. Sci. 2012, 91, 32–48. [Google Scholar]
- Zamani, F.; Amirnia, R.; Rezaei-Cheyanne, E.; Rahimi, A. The effect of bacterial biofertilizers and mycorrhizal fungi on seed yield and chemical composition of essential oil of three fennel landrace. J. Crops Improv. 2019, 20, 831–848. [Google Scholar] [CrossRef]
- Karagiannidisa, N.; Thomidisa, T.; Lazarib, D.; Panou-Filotheoua, E.; Karagiannidoua, C. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci. Hort. 2011, 129, 329–334. [Google Scholar] [CrossRef]
- Andrea, C.; Lingua, G.; Bardi, L.; Masoero, G.; Berta, G. Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in Ocimum basilicum var. Genovese. Caryologya 2007, 60, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Abdelhafez, A.; Abdel-Monsief, R.A. Effects of VAmycorrhizal inoculation on growth, yield and nutrient content of cantaloupe and cucumber under different water regimes. J. Agric. Biol. Sci. 2006, 2, 503–550.8. [Google Scholar]
- Khalvati, M.A.; Mzafar, A.; Schmidhalter, U. Quantification of water uptake by arbuscular mycorrhizal hypha and its signification for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol. 2005, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ding, F.; Gao, X.; Wang, Y.; Li, M.; Wang, J. Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type. J. Soils Sediments 2019, 19, 1407–1415. [Google Scholar] [CrossRef]
- Safikhani, F.; Heydari sharifabad, H.; Syadat, A.; Sharifi ashorabadi, A.; Syednedjad, M.; Abbaszadeh, B. The effect of drought stress on percentage and yield of essential oil and physiological characteristics (Deracocephalum moldavica L.). J. Med. Aromat. Plant 2007, 23, 86–89. [Google Scholar]
Depth (cm) | Soil Texture | Clay (%) | Silt (%) | Sand (%) | pH | EC (mmho/cm) | N (%) | Average P (ppm) | Average K (ppm) | SP | OC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
0–30 | Silty-Clay | 26 | 35 | 39 | 6.9 | 1.1 | 0.1 | 10.4 | 250 | 43 | 0.6 |
Type of Fertilizers | EC (mmho/cm) | pH | OC (%) | N (%) | P | K | Fe |
---|---|---|---|---|---|---|---|
(mg/kg) | |||||||
Cattle manure | 4.14 | 9.01 | 22 | 1.87 | 0.14 | 2.8 | 789 |
Vermicompost | 8.4 | 6.5 | 31 | 1.16 | 0.9 | 1.24 | 891 |
Fish manure | 5.5 | 6.5 | 5.32 | 0.65 | 0.12 | 0.75 | 500 |
S.O.V | df | H | LB | LAI | DW | EO | EY | N | P | K | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
Year | 1 | 95.03 ** | 2096.03 ** | 0.81 ** | 0.76 ** | 13.61 ** | 1954.64 ** | 23.26 ** | 5.98 ** | 25.03 ** | 166,776.03 ** |
Year (rep) | 4 | 49.05 | 283.98 | 0.07 | 3.36 | 0.14 | 57.67 | 2.26 | 0.86 ** | 0.70 ** | 4117.78 |
Species | 1 | 917.45 ** | 414.81 ** | 0.01 ** | 18.55 ** | 45.43 ** | 5.30 ns | 10.93 ** | 1.97 ** | 9.34 ** | 4059.27 ** |
Treatment | 10 | 261 ** | 351.63 ** | 0.26 ** | 8.08 ** | 11.45 ** | 447.17 ** | 7.42 ** | 2.05 ** | 9.23 ** | 67,372.08 ** |
Species × treatment | 10 | 3.67 ns | 3.03 ns | 0.001 ns | 0.08 ns | 0.14 ns | 2.13 ns | 0.06 ns | 0.05 ns | 0.05 ns | 386.53 ns |
Year × species | 1 | 152.75 ** | 144.27 ** | 0.003 ns | 4.64 ** | 3.65 ** | 0.06 ns | 2.41 ** | 0.04 ns | 3.12 ** | 49,959.27 ** |
Year × treatment | 10 | 26.01 ** | 4.88 ns | 0.002 ns | 0.25 ns | 0.11 ns | 8.05 ns | 0.07 ns | 0.34 ** | 0.45 ** | 1690.06 * |
Year × species × treatment | 10 | 7.57 ns | 3.25 ns | 0.001 ns | 0.01 ns | 0.06 ns | 2.01 ns | 0.08 ns | 0.06 ns | 0.05 ns | 62.83 ns |
Error | 84 | 5.14 | 5.65 | 0.002 | 0.22 | 0.22 | 5.15 | 0.18 | 0.04 | 0.16 | 920.61 |
CV | - | 7.29 | 8.2 | 9.10 | 12.0 | 11.26 | 15.2 | 16. 10 | 16.9 | 13.11 | 8.44 |
S.O.V | df | β-Myrcene | α-Terpinolene | γ-Terpinene | Linalool | Carvacrol | Thymol Acetate | Caryophyllene | β-Bisabolene | Para-Cymene |
---|---|---|---|---|---|---|---|---|---|---|
Year | 1 | 0.02 ns | 0.06 ** | 3.6 ** | 1.38 ** | 24.48 ** | 0.02 ns | 5.77 ** | 1.59 ** | 8.42 ** |
Year(rep) | 4 | 0.02 | 0.006 | 0.48 | 0.03 | 1.57 | 0.007 | 0.06 | 0.24 | 1.05 |
Species | 1 | 0.0001 ns | 0.0007 ns | 0.76 ns | 0.01 ns | 1673.4 ** | 0.00003 ns | 0.22 ns | 0.32 ns | 0.006 ns |
Treatment | 10 | 0.007 ns | 0.004 ns | 0.34 ns | 0.05 ns | 209.35 ** | 0.012 ns | 0.4 ns | 0.72 ns | 0.26 ns |
Species × treatment | 10 | 0.006 ns | 0.006 ns | 0.25 ns | 0.17 ns | 5.38 ns | 0.016 ns | 0.36 ns | 0.3 ns | 0.41 ns |
Year × species | 1 | 0.00003 ns | 0.004 ns | 0.007 ns | 0.007 ns | 3.38 ns | 0.010 ns | 0.56 ns | 0.0006 ns | 0.07 |
Year × treatment | 10 | 0.006 ns | 0.002 ns | 0.099 ns | 0.02 ns | 0.94 ns | 0.012 ns | 0.26 ns | 0.23 ns | 0.43 ns |
Year × species × treatment | 10 | 0.007 ns | 0.006 ns | 0.09 ns | 0.05 ns | 0.40 ns | 0.018 ns | 0.33 ns | 0.18 ns | 0.46 ns |
Error | 84 | 0.006 | 0.005 | 0.28 | 0.04 | 5.27 | 0.006 | 0.30 | 0.35 | 0.27 |
CV | - | 19.12 | 17.77 | 18.25 | 20.21 | 2.9 | 15.65 | 16.62 | 17.66 | 16.21 |
Treatments | H (cm) | LB | LAI | DW (t/ha) | EO (%) | EY (kg/ha) | N (%) | P (%) | K (%) | Fe (mg/kg) | Carvacrol |
---|---|---|---|---|---|---|---|---|---|---|---|
Species | |||||||||||
Rechingeri | 33.74 b | 18.12 b | 0.57 b | 2.51 b | 4.77 a | 13.05 a | 2.21 b | 1.09 b | 2.6 b | 353 b | 75.5 b |
Khuzestanica | 28.46 a | 21.66 a | 0.6 a | 3.26 a | 3.6 b | 12.65 b | 2.78 a | 1.33 a | 3.13 a | 364 a | 82.62 a |
LSD5% | 0.78 | 0.82 | 0.01 | 0.14 | 0.16 | 0.78 | 0.14 | 0.07 | 0.14 | 10.5 | 0.79 |
Year | |||||||||||
Year two (2018) | 30.25 b | 15.9 b | 0.51 b | 2.13 b | 3.86 b | 9 b | 2.08 b | 1 b | 2.43 b | 323.45 b | 78.63 b |
Year three (2019) | 31.36 a | 23.87 a | 0.67 a | 3.65 a | 4.5 a | 16.7 a | 2.92 a | 1.42 a | 3.24 a | 394.76 a | 79.49 a |
LSD5% | 3.38 | 8.14 | 0.13 | 0.88 | 0.18 | 3.67 | 0.72 | 0.44 | 0.40 | 98.07 | 0.6 |
Treatment | |||||||||||
control | 23.0 h | 11.8 j | 0.31 g | 1.51 g | 2.45 h | 3.74 g | 1.08 h | 0.61 g | 1.43 j | 227.92 h | 72.08 h |
Mycorrhiza (F. mosseae) | 33.91 c | 24.3 c | 0.71 b | 3.69 bc | 5.10 bc | 18.77 b | 3.19 bc | 1.42 cd | 3.62 bc | 426.5 bc | 83.16 b |
Mycorrhiza (R. irregularis) | 36.58 b | 26.7 b | 0.76 a | 3.83 ab | 5.25 ab | 20.09 b | 3.47 ab | 1.56 bc | 3.92 ab | 444.83 ab | 83.97 ab |
Mycorrhiza (G. fasciculatum) | 32.33 cde | 21.75 d | 0.67 bc | 3.36 c | 4.78 cd | 16.10 c | 2.86 cd | 1.28 d | 3.37 cd | 407.33 c | 80.83 c |
Fish manure soil | 26.25 g | 14.66 h | 0.43 f | 1.98 f | 3.23 fg | 6.51 f | 1.67 fg | 0.75 fg | 1.91 h | 277.92 g | 74.6 g |
Fish manure_solution | 27.58 fg | 15.5 h | 0.45 f | 2.16 f | 3.19 g | 7.09 f | 1.7 fg | 0.81 fg | 2.05 gh | 292.83 g | 75.75 g |
Cattle manure soil | 28.41 f | 16.58 hg | 0.53 e | 2.53 e | 3.61 ef | 9.25 e | 2 ef | 0.95 ef | 2.37 fg | 322.67 f | 76.41 fg |
Cattle manure solution | 30.66 e | 17.66 fg | 0.54 e | 2.75 de | 3.97 e | 10.91 e | 2.22 e | 1.04 e | 2.58 f | 339 ef | 78.19 ef |
Vermicompst soil | 32.58 cd | 20.91 de | 0.62 d | 2.94 d | 4.49 d | 13.15 d | 2.58 d | 1.35 d | 2.94 e | 363.42 de | 80.26 dc |
Vermicompost solution | 39.16 a | 29.58 a | 0.79 a | 4.15 a | 5.53 a | 22.92 a | 3.78 a | 1.91 a | 4.18 a | 466.25 a | 85.54 a |
Biofertilizer_phosphate | 31.66 de | 19.25 ef | 0.63 cd | 2.89 d | 4.43 d | 12.1 d | 2.63 d | 1.63 ab | 3.12 ed | 381.5 d | 78.85 de |
LSD5% | 1.84 | 1.93 | 0.04 | 0.33 | 0.38 | 1.84 | 0.34 | 0.17 | 0.3 | 24.63 | 1.86 |
Traits Year | H | LB | DW | EO | N | K | Fe | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | |
(Rechingeri) | 28.7 c | 31.8 b | 15.2 d | 16.6 c | 1.9 d | 2.3 c | 4.3 b | 5.1 a | 1.7 b | 2.5 ab | 2.0 c | 2.9 b | 298 d | 378 b |
(Khuzestanica) | 27.6 c | 35.2 a | 20.8 b | 26.5 a | 2.7 b | 3.7 a | 3.4 c | 3.6 c | 2.3 c | 2.7 a | 3.1 b | 3.4 a | 348 c | 405 a |
LSD5% | 1.13 | 1.16 | 0.229 | 0.219 | 0.254 | 0.208 | 14.7 |
Traits Treatments | H | P | K | Fe | ||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | |
Control | 22.0 m | 24.0 lm | 0.57 m | 0.65 lm | 1.40 n | 1.46 n | 219 l | 237 kl |
Mycorrhiza (F. mosseae) | 30.8 efg | 36.5 bc | 1.07 gh | 1.77 bc | 3.01 fg | 4.25 bc | 380 f | 473 bc |
Mycorrhiza (R. irregularis) | 34.5 cd | 38.2 ab | 1.15f g | 1.98 b | 3.29 ef | 4.56 ab | 398 ef | 492 ab |
Mycorrhiza (G. fasciculatum) | 29.3 f–i | 34.8 cd | 1.04 ghi | 1.53 de | 2.82 fgh | 3.90 cd | 365 fg | 450 cd |
Fish manure soil | 26.7 ijk | 24.3 klm | 0.76 klm | 0.79 klm | 1.68 mn | 2.09 j–m | 251 kl | 296 ij |
Fish manure solution | 28.5 g–j | 26.5 jkl | 0.79 klm | 0.82 i–l | 1.77 lmn | 2.26 ijk | 268 jk | 318 hi |
Cattle manure soil | 27.7 hij | 28.2 g–j | 0.81 jkl | 1.02 g–j | 1.95 klm | 2.62 ghi | 289 ij | 343 gh |
Cattle manure solution | 30.8 efg | 30.2 e–h | 0.88 h–k | 1.16 fg | 2.22 i–l | 2.89 fgh | 307 i | 371f g |
Vermicompost soil | 32.5 de | 31.3 ef | 0.95 g–k | 1.66 cd | 2.47 hij | 3.25 ef | 322 hi | 396 ef |
Vermicompost solution | 37.5 b | 40.5 a | 1.59 cd | 2.25 a | 3.51 de | 4.85 a | 417 de | 515 a |
Biofertilizer Phosphate | 30.5 efg | 32.5 de | 1.31 ef | 1.97 b | 2.64 ghi | 3.58 de | 343 gh | 420 de |
LSD5% | 2.64 | 0.230 | 0.487 | 34.5 |
S. khusestanica | S. rechingeri | ||||
---|---|---|---|---|---|
Name | % | R I | Name | % | R I |
α-phellandrene | 0.57 | 539 | a-thujene | 0.2 | 924 |
α-pipene | 0.26 | 560 | a-pinene | 0.2 | 936 |
β-myrcene | 1.17 | 680 | camphene | 0.2 | 946 |
α-phellandrene | 0.16 | 735 | b-pinene | 0.4 | 974 |
α-terpinolene | 0.59 | 761 | myrcene | 0.2 | 988 |
p-cymene | 2.03 | 787 | a-phellandrene | 0.3 | 1004 |
i-limonene | 0.15 | 795 | p-cymene | 3 | 1024 |
β-phellandrene | 0.12 | 804 | limonene | 0.3 | 1028 |
g-terpinene | 2.58 | 874 | 1,8-cineole | 2 | 1030 |
Trans-sabinene hydrate | 0.35 | 917 | g-terpinene | 5.8 | 1058 |
Linalool | 0.62 | 989 | cis-sabinene hydrate | 0.3 | 1065 |
Terpinene-4-0l | 0.49 | 1242 | terpinolene | 0.2 | 1086 |
β-terpineol | 0.12 | 1287 | trans-sabinene hydrate | 0.2 | 1097 |
α-terpineol | 0.14 | 1304 | Linalool | 0.9 | 1098 |
Thymol methyl ether | 0.13 | 1393 | cumin aldehyde | 0.9 | 1143 |
Carvacrol | 86.08 | 1623 | borneol | 0.8 | 1165 |
α-terpineol | 0.21 | 1707 | Terpinene-4-0l | 2.5 | 1174 |
Thymol acetate | 0.65 | 1759 | α-terpineol | 0.8 | 1186 |
Linalyl acetate | 0.12 | 1779 | thymol methyl ether | 0.3 | 1232 |
Caryophyllene | 0.79 | 1911 | carvacrol methyl ether | 0.3 | 1242 |
Farnesene | 0.18 | 2107 | thymol | 0.2 | 1289 |
β-bisabolene | 1.86 | 2127 | carvacrol | 76 | 1298 |
α-humulene | 0.31 | 2208 | β-caryophyllene | 0.5 | 1417 |
Caryophyllene oxide | 0.10 | 2351 | β-bisabolene | 0.4 | 1505 |
i-t-butyl-4-benzene | 0.21 | 3407 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastami, A.; Amirnia, R.; Sayyed, R.Z.; Enshasy, H.A.E. The Effect of Mycorrhizal Fungi and Organic Fertilizers on Quantitative and Qualitative Traits of Two Important Satureja Species. Agronomy 2021, 11, 1285. https://doi.org/10.3390/agronomy11071285
Bastami A, Amirnia R, Sayyed RZ, Enshasy HAE. The Effect of Mycorrhizal Fungi and Organic Fertilizers on Quantitative and Qualitative Traits of Two Important Satureja Species. Agronomy. 2021; 11(7):1285. https://doi.org/10.3390/agronomy11071285
Chicago/Turabian StyleBastami, Asma, Reza Amirnia, R. Z. Sayyed, and Hesham A. El Enshasy. 2021. "The Effect of Mycorrhizal Fungi and Organic Fertilizers on Quantitative and Qualitative Traits of Two Important Satureja Species" Agronomy 11, no. 7: 1285. https://doi.org/10.3390/agronomy11071285
APA StyleBastami, A., Amirnia, R., Sayyed, R. Z., & Enshasy, H. A. E. (2021). The Effect of Mycorrhizal Fungi and Organic Fertilizers on Quantitative and Qualitative Traits of Two Important Satureja Species. Agronomy, 11(7), 1285. https://doi.org/10.3390/agronomy11071285